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Instructions for Specific Problem Types

For “Select One” questions, please fill in the appropriate bubble completely:

Select One: Who taught this course?

 Matt Gormley

# Marie Curie

# Noam Chomsky

If you need to change your answer, you may cross out the previous answer and bubble in
the new answer:

Select One: Who taught this course?

 Henry Chai

# Marie Curie

��@@ Noam Chomsky

For “Select all that apply” questions, please fill in all appropriate squares completely:

Select all that apply: Which are instructors for this course?

■ Matt Gormley

■ Henry Chai

□ I don’t know

Again, if you need to change your answer, you may cross out the previous answer(s) and
bubble in the new answer(s):

Select all that apply: Which are the instructors for this course?

■ Matt Gormley

■ Henry Chai

��@@■ I don’t know

For questions where you must fill in a blank, please make sure your final answer is fully
included in the given space. You may cross out answers or parts of answers, but the final
answer must still be within the given space.

Fill in the blank: What is the course number?

10-601 10-��SS6301
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1 Decision Trees (0 points)

1.1. To exploit the desirable properties of decision tree classifiers and perceptrons, Adam
came up with a new algorithm called the “perceptron tree” that combines features
from both. Perceptron trees are similar to decision trees, but each leaf node contains
a perceptron rather than a majority vote.

To create a perceptron tree, the first step is to follow a regular decision tree learn-
ing algorithm (such as ID3) and perform splitting on attributes until the specified
maximum depth is reached. Once maximum depth has been reached, at each leaf
node, a perceptron is trained on the remaining attributes which have not yet been
used in that branch. Classification of a new example is done via a similar proce-
dure. The example is first passed through the decision tree based on its attribute
values. When it reaches a leaf node, the final prediction is made by running the
corresponding perceptron at that node.

Assume that you have a dataset with 6 binary attributes {A, B, C, D, E, F} and
two output labels {-1, 1}. A perceptron tree of depth 2 on this dataset is given
below. Weights of the perceptron are given in the leaf nodes. Assume bias b = 1
for each perceptron.

Figure 1: Perceptron Tree of depth 2

(a) Numerical answer: What would the given perceptron tree predict as the
output label for the sample x = [1, 1, 0, 1, 0, 1]?

1

Explanation: A=1 and D=1 so the point is sent to the right-most leaf node,
where the perceptron output is (1*1)+(0*0)+((-1)*0)+(1*1)+1 = 3. Prediction
= sign(3) = 1.
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(b) True or False: The decision boundary of a perceptron tree will always be
linear.

⃝ True

⃝ False

False, since decision tree boundaries need not be linear.

(c) True or False: For small values of max depth (e.g., 2 or 3), decision trees are
more likely to underfit the data than perceptron trees.

⃝ True

⃝ False

True. For smaller values of max depth, decision trees essentially degenerate
into majority-vote classifiers at the leaves. On the other hand, perceptron trees
have the capacity to make use of “unused” attributes at the leaves to predict
the correct class.

1.2. Select all that apply: Given a training dataset, D, suppose you train two decision
trees, one using mutual information as the splitting criterion and the other using
training error rate. If both trees are trained until they achieve zero training error,
which of the following statements must be true?

2 Both trees split on the same feature at the root node.

2 Both trees have the same depth

2 Both trees make the same predictions for each data point in D

2 Both trees use all of the features in D

2 None of the above.

C; the two splitting criterion could make completely different splits and use com-
pletely different features but because we know both achieve zero training error,
they must make the same predictions (i.e., the correct labels) for each training data
point.

1.3. True or False: One advantage of the ID3 algorithm for training decision trees is
that it is not susceptible to overfitting because it uses recursion.

⃝ True

⃝ False

False

1.4. Fill in the blank: Complete the following paragraph about pruning decision trees
by circling the best of the provided options for each of blanks:
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When pruning a decision tree, each split is replaced with the most common

label among the training / validation data points that end up at

each node. Splits are compared based on their reduction in

training / validation error rate and if two splits are tied, we prune

the node closer to / farther from the root.

When pruning a decision tree, each split is replaced with the most common label
among the training data points that end up at each node. Splits are compared
based on their reduction in validation error rate and if two splits are tied, we prune
the node closer to the root.
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1.5. The ID3 algorithm for learning decision trees greedily picks the split with the best
mutual information at every node. In this question, you’ll see an example of when
this strategy may not result in a globally optimal tree.

(a) Drawing: On the training dataset below, draw the decision boundaries learned
by a decision tree with a max depth of 2. The decision tree uses mutual infor-
mation as its splitting criterion and breaks ties by choosing +. You may not
use a feature twice in a single path from the root node to a leaf node in the
tree.

Solution:

(b) Numerical answer: What is the training error of the tree drawn in part (a)?

1/4

(c) Drawing: On the training dataset below, draw the decision boundaries of the
globally optimal tree–that is, the tree with the lowest training error. The same
criteria apply from above: max depth of 2, ties are broken by in favor of +,
and a feature may only be used once in a path from root to leaf.
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Solution:

(d) Numerical answer: What is the training error of the tree drawn in part (c)?

0
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2 K Nearest Neighbors (0 points)

2.1. Consider the following training dataset for a regression task:

D =
{(

x(1), y(1)
)
,
(
x(2), y(2)

)
, · · · ,

(
x(N), y(N)

)}
with x(i) ∈ R and y(i) ∈ R.

For regression with k-nearest neighbors, we make predictions on unseen data points
similar to the classification algorithm, but instead of a majority vote, we take the
mean of the output values of the k nearest points to some new data point x. That
is,

h(x) =
1

k

∑
i ∈ N (x,D)

y(i)

where N is the neighborhood function i.e., N (x,D) is the set of indices of the k
closest training points to x.

In the dataset shown above, the red ×’s denote training points and the black semi-
circles A, B, C denote test points of unknown output values. For convenience, all
training data points have integer input and output values. Assume ties are broken
by selecting the point with the lower x value.
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(a) Numerical answer: When k = 1, what is the mean squared error on the
training set?

0

(b) Numerical answer: When k = 2, what is the predicted value at A?

4

(c) Numerical answer: When k = 2, what is the predicted value at B?

5

(d) Numerical answer: When k = 3, what is the predicted value at C?

7

(e) Numerical answer: When k = 8, what is the predicted value at C?

5.375

(f) Math: With k = N , for any dataset D with the form specified in the beginning
of this question, write down a mathematical expression for the predicted value
ŷ = h(x). Your response shouldn’t include a reference to the neighborhood
function N ().

ȳ = 1
N

∑N
i=1 y

(i)

2.2. Select one: Imagine you are using a k-Nearest Neighbor classifier on a dataset with
lots of noise. You want your classifier to be less sensitive to the noise. Which of the
following changes is likely to help achieve this goal and what is the corresponding
effect on the prediction time?

⃝ Increase the value of k → Increase in prediction time

⃝ Decrease the value of k → Increase in prediction time

⃝ Increase the value of k → Decrease in prediction time

⃝ Decrease the value of k → Decrease in prediction time

Increase the value of k → Increase in prediction time



10-601 Machine Learning Practice Problems - Page 10 of 52 -

2.3. You have just enrolled into your favourite course at CMU - Introduction to Machine
Learning 10-301/601 - but you have not yet decided if you want to take it for a
grade or as pass/fail. You want to use your performance in HW1 and HW2 to make
this decision. You follow a general rule that if you can get at least a B in the course,
you will take it for a grade, and if not, you will take it as pass/fail.

You have just learned the new classification technique, k-NN, and wish to employ
it to make your decision. You start by collecting data from 10 prior students: you
measure their performance on HW1 and HW2, along with their final letter grades.
You then create a binary label based on the final grades such that you assign a
label of + if the final grade is at least a B and − otherwise. Next, you train a k-NN
model on this data set using the Euclidean distance metric.

0 20 40 60 80 100

20

30

40

50

60

70

80

90

100

HW1

H
W

2

(a) Numerical answer: What is the training error rate on this dataset for a k-NN
model where k = 1?

0

(b) Numerical answer: What is the training error rate on this dataset for a k-NN
model where k = 3?

2/10, (30,80) and

(40, 40) will be

miss-classified
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(c) True or False: Using Euclidean distance as the distance measure, the decision
boundary of a k-NN model with k = 1 is a piece-wise straight line, that is, it
contains only straight line segments. Justify your answer.

⃝ True

⃝ False

True. Because 1-NN decision boundary always follows a boundary equidistant
from the two closest points in that region.

(d) Drawing: In the image above, draw a rough decision boundary for k = 1.
Clearly label the + and - sides of the decision boundary.

(e) You have scored 60 in HW1 and 40 in HW2, and you now want to predict if
your final grade would be at least a B.

i. Numerical answer: What would be the predicted class when k = 1?

-

ii. Numerical answer: What would be the predicted class when k = 3?

-

(f) Short answer: Looking at the training errors, you choose the model with k
= 1 as it has the lowest training error. Do you think this is the right approach
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to select a model? Why or why not?

No, we would use validation dataset (validation error) to choose k as k is a
hyper parameter.
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2.4. Select all that apply: Which of the following statements about k-NN models
is/are always true?

2 Decreasing k makes a k-NN model have simpler or less complex decision
boundaries.

2 Increasing k makes a k-NN model less sensitive to outliers.

2 k-NNs can be applied to classification problems but not regression prob-
lems.

2 k-NNs can be applied to datasets with real-valued features but not cate-
gorical features.

2 None of the above

B
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3 Model Selection and Errors (0 points)

3.1. Train and test errors: In this problem, we will see how you can debug a classifier
by looking at its train and test errors. Consider a classifier trained until convergence
on some training data Dtrain, and tested on a separate test set Dtest. You look at
the test error, and find that it is very high. You then compute the training error
and find that it is close to 0.

(a) Short Answer: What is this scenario called?

overfitting

(b) Select all that apply: Which of the following actions are likely to address
the issue you identified in the previous question?

2 Increasing the training data size.

2 Decreasing the training data size.

2 Increasing model complexity (For example, if your classifier is a de-
cision tree, increase the depth).

2 Decreasing model complexity.

2 Training on a combination of Dtrain and Dtest and test on Dtest

2 None of the above

a and d

The model is overfitting. In order to address the problem, we can either increase
training data size or decrease model complexity. We should never do (e), the
model shouldn’t see any testing data in the training process.

(c) Select one: Say you plot the train and test errors as a function of the model
complexity. Which of the following two plots is your plot expected to look like?
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(a) (b)

⃝ Plot A

⃝ Plot B

B. When model complexity increases, model can overfit better, so training error
will decrease. But when it overfits too much, testing error will increase.
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3.2. What are the effects of the following on overfitting? Choose the best answer.

(a) Increasing the max depth a decision tree is allowed to grow to.

⃝ Less likely to overfit

⃝ More likely to overfit

More likely to overfit

(b) Increasing the minimum mutual information threshold required to add a split
to a decision tree.

⃝ Less likely to overfit

⃝ More likely to overfit

Less likely to overfit

(c) Increasing the minimum number of data points required to add a split to a
decision tree.

⃝ Less likely to overfit

⃝ More likely to overfit

Less likely to overfit

(d) Increasing k in k-nearest neighbor.

⃝ Less likely to overfit

⃝ More likely to overfit

Less likely to overfit

(e) Increasing the training data size for decision trees. Assume that training data
points are drawn independently from the true data distribution.

⃝ Less likely to overfit

⃝ More likely to overfit

Less likely to overfit

(f) Increasing the training data size for 1-nearest neighbor. Assume that training
data points are drawn independently from the true data distribution.

⃝ Less likely to overfit

⃝ More likely to overfit

Less likely to overfit
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3.3. Consider a learning algorithm that uses two hyperparameters, γ and ω, and it takes
1 hour to train regardless of the size of the training set.

We choose to do random subsampling cross-validation, where we do K runs of
cross-validation and for each run, we randomly subsample a fixed fraction αN of
the dataset for validation and use the remaining for training, where α ∈ (0, 1) and
N is the number of data points.

(a) Numerical answer: In combination with the cross-validation method above,
we choose to do grid search on discrete values for the two hyperparameters.

Given N = 1000 data points, K = 4 runs, and α = 0.25, if we have 100 hours
to complete the entire cross-validation process, what is the maximum number
of discrete values of γ that we can include in our search if we also want to
include 8 values of ω? Assume that any computations other than training are
negligible.

3

Round 100/4/8 = 3.125 down to 3.

(b) Short answer: In 1-2 concise sentences, describe one advantage of increasing
the value of α.

More data used for validation, giving a better estimate of performance on held-
out data.

3.4. Select one: When implementing k-Fold Cross-Validation for a Linear Regression
model with a 1-dimensional input feature, which of the following best describes the
correct procedure?

⃝ The dataset is divided into k contiguous blocks, where each block consists
of adjacent data points based on the sorting of the 1-dimensional feature
values. The model is trained k times, each time using a different block as
the test set and the remaining blocks for training.

⃝ The dataset is randomly partitioned into k equal-sized subsets. For each
fold, the Linear Regression model is trained on k-1 subsets and validated
on the remaining subset to assess the model’s performance.

⃝ The model is trained once using the entire dataset as the training set and
then tested k times, each time with a different single data point as the
test set.
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⃝ We fit a Linear Regression model to every possible subset of size k of the
training data (resulting in

(
N
k

)
models) and then average their errors on

a held-out test dataset.

B

1. Randomly split the dataset into k equal-sized folds.

2. For each fold:

(a) Treat the fold as the validation set, and the remaining k-1 folds as the
training set.

(b) Train the model on the k-1 training sets and evaluate it on the validation
set.

(c) Retain the evaluation score and discard the model.

3. The performance measure reported by k-Fold Cross-Validation is then the av-
erage of the values computed in the loop. This method ensures that each data
point is used exactly once as part of the validation set, providing a comprehen-
sive assessment of the model’s performance.
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4 Perceptron (0 points)

4.1. Suppose you are given the following dataset:

Example Number X1 X2 Y
1 -1 2 -1
2 -2 -2 +1
3 1 -1 +1
4 -3 1 -1

You wish to perform the Batch Perceptron algorithm on this data. Assume you
start with initial weights θT = [0, 0] and bias b = 0, and that you pass through all
of the examples in order of their example number.

(a) Numerical answer: What would be the updated weight vector θ after we
pass example 1 through the Perceptron algorithm?

[1,−2]

(b) Numerical answer: What would be the updated bias b after we pass example
1 through the Perceptron algorithm?

−1

(c) Numerical answer: What would be the updated weight vector θ after we
pass example 2 through the Perceptron algorithm?

[1,−2]

(d) Numerical answer: What would be the updated bias b after we pass example
2 through the Perceptron algorithm?

−1

(e) Numerical answer: What would be the updated weight vector θ after we
pass example 3 through the Perceptron algorithm?
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[1,−2]

(f) Numerical answer: What would be the updated bias b be after we pass
example 3 through the Perceptron algorithm?

−1
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(g) True or False: Your friend stops you here and tells you that you do not need
to update the Perceptron weights or bias anymore; is this true or false?

⃝ True

⃝ False

True, all points are classified correctly.

4.2. Select all that apply: Let S = {(x(1), y(1)), · · · , (x(n), y(n))} be n linearly sepa-
rable points by a separator through the origin in Rd. Let S ′ be generated from S
as: S ′ = {(cx(1), y(1)), · · · , (cx(n), y(n))}, where c > 1 is a constant. Suppose that
we would like to run the perceptron algorithm on both data sets separately, with
the same initial θ from class, and that the perceptron algorithm converges on S.
Which of the following statements are true?

2 The mistake bound of perceptron on S ′ is larger than the mistake bound
on S

2 The perceptron algorithm when run on S and S ′ returns the same clas-
sifier, modulo constant factors (i.e., if wS and w′

S are outputs of the
perceptron for S and S ′, then w′

S = c1wS for some constant c1).

2 The perceptron algorithm converges on S ′.

2 None of the above.

B and C are true. Simply follow the perceptron update rule and we see that the
update on wS and wS′ is identical up to the constant c. A is false as the maximum
margin between any point to the decision hyperplane is also scaled up by c, and the
mistake bound is unchanged.

4.3. True or False: Given a linearly separable dataset, the convergence time of the
perceptron algorithm depends on the sample size n.

⃝ True

⃝ False

False. For a linearly separable dataset, the runtime of the perceptron algorithm does
not depend on the size of the training data. The perceptron converges after making
mistakes. The upper bound on number of mistakes is decided by the distance of
the furthest point from the origin and the margin only.

4.4. Select all that apply: Which of the following are inductive biases of the percep-
tron algorithm?

2 Most of the cases in a small neighborhood in feature space belong to the
same class.

2 The true decision boundary is linear.

2 We prefer to correct the most recent mistakes.
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2 We prefer the simplest hypothesis that explains the data.

2 None of the above.

BC

4.5. True or False: All data points (x, y) that the Perceptron learning algorithm sees
during training affect the weights equally.

⃝ True

⃝ False

False: only mistakes affect the Perceptron weights
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5 MLE/MAP (0 points)

5.1. Magnetic Resonance Imaging (MRI) scans are commonly used to generate detailed
images of patients’ internal anatomy at hospitals. The scanner returns an image
with N pixels. For each pixel, we extract the noise from that pixel to obtain a
vector of noise terms x ∈ RN s.t. ∀ i ∈ {1...N}, xi ≥ 0 and xi is independent and
identically distributed and follows a Rayleigh distribution. The probability density
function of a Rayleigh distribution is given by:

f(x | σ) = x

σ2
exp

(
−x2

2σ2

)
for scale parameter σ ≥ 0 and x ≥ 0.

(a) Math: Write the log-likelihood ℓ(σ) of a noise vector x obtained from one
image. Report your answer in terms of the variables xi, i, N, σ, the function
exp(·), and any constants you may need. For full credit you must push the log
through to remove as many multiplications/divisions as possible.

ℓ(σ) =
N∑
i=1

[
log xi − 2 log σ − x2

i

2σ2

]

(b) Math: Report the maximum likelihood estimator of the scale parameter, σ,
for a single image’s noise vector x.
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0 =
∂

∂σ

N∑
i=1

log p(xi | σ) =
N∑
i=1

−2
σ

+
x2
i

σ3

=⇒ σ̂ =

[
1

2N

N∑
i=1

x2
i

] 1
2
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5.2. Suppose a random variable k follows a Poisson distribution with unknown rate
parameter λ:

p(k | λ) = λke−λ

k!
k = 1, 2, . . .

The Poisson distribution is used for modeling the number of times an event oc-
curs within a fixed time interval given a mean occurrence rate assuming that the
occurrences are independent.

A conjugate prior for the rate parameter in a Poisson likelihood is a gamma dis-
tribution with shape parameter α and rate parameter β:

f(λ | α, β) = βα

Γ(α)
λα−1e−βλ λ > 0

where Γ is some normalizing constant that does not depend on λ.

(a) Math: Suppose we receive a set of N observations of k: D = {k1, k2, . . . , kN};
assume the observations are independent and identically distributed. Using
the Poisson distribution and gamma prior with parameters α and β, derive an
expression for the unnormalized log posterior of λ i.e. the sum of the log prior
and the log likelihood of D.

Express your answer in terms of α, β, λ, k1, k2, . . . , kN , N and Γ; simplify your
answer as much as possible.

log p(λ | α, β) + log
N∏
i=1

P (ki | λ) = log

(
βα

Γ(α)
λα−1e−βλ

)
+

N∑
i=1

log

(
λkie−λ

ki!

)

= α log β + (α− 1) log λ− βλ− log Γ(α)−Nλ+
N∑
i=1

ki log λ− log(ki!)
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(b) Math: Take the partial derivative of the expression you derived in the previous
part with respect to λ.

Express your answer in terms of α, β, λ, k1, k2, . . . , kN , and N ; simplify your
answer as much as possible.

α− 1

λ
− β −N +

N∑
i=1

ki
λ

(c) Math: Finally, compute the MAP estimate of λ given D by setting the partial
derivative you computed in the previous part equal to 0 and solving for λ.

Express your answer in terms of α, β, k1, k2, . . . , kN , and N ; simplify your
answer as much as possible.
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α− 1

λ̂
− β −N +

N∑
i=1

ki

λ̂
= 0

→ α− 1 +
N∑
i=1

ki = (β +N)λ̂

→ λ̂ =
α− 1 +

∑N
i=1 ki

β +N

Intuitively, the MLE estimate for λ is the empirical mean of D. The β and
α parameters of the gamma distribution can be interpreted as the number of
“pseudo-samples” previously observed and the total number of “hits” observed
in those pseudo-samples respectively.

5.3. True or False: A random variable x follows a probability distribution with a single,
real-valued parameter, θ. In the limit of infinitely many samples of x, the MAP
estimate of θ will always approach the MLE estimate, regardless of your choice of
prior on θ. Briefly justify your answer in 1-2 sentences.

False: if the prior does not have support over the entire domain (e.g., a uniform
prior over just the range [0,1]) and the MLE estimate falls outside the prior, then
the MAP estimate will approach the boundary nearest to the MLE, not the MLE
estimate itself.
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6 Logistic Regression and Regularization (0 points)

6.1. Math: A generalization of logistic regression to a multiclass settings involves ex-
pressing the per-class probabilities P (y = c | x) as the softmax function

exp(wT
c x)∑

d∈C exp(wT
d x)

,

where c is some class from the set of all classes C.

Consider a 2-class problem with labels 0 or 1. Rewrite the above expression for this
situation to derive the expressions for P (Y = 1|x) and P (Y = 0|x) that we have
already seen in class for binary logistic regression.

P (y = 1|x) = exp(wT
1 x)

exp(wT
0 x)+exp(wT

1 x)
= exp((w1−w0)

T x)
1+exp((w1−w0)T x)

= exp(wT x)
1+exp(wT x)

= p

Therefore, 1− p = 1
1+exp(wT x)

6.2. Short answer: Given 3 data points (1, 1), (1, 0), (0, 0) with labels 0, 1, 0 respec-
tively, consider 2 models that define p(y = 1 | x):

Model 1: σ(w1x1 + w2x2)

Model 2: σ(w0 + w1x1 + w2x2)

As usual, σ(z) is the sigmoid function 1
1+e−z . Using the given dataset, suppose

we learn parameters for both models, ŵ1 and ŵ2, by maximizing the conditional
log-likelihood.

If we switched (0, 0) to label 1 instead of label 0, would the parameters we learn for
Model 1 change? What about Model 2?



10-601 Machine Learning Practice Problems - Page 29 of 52 -

The parameters for Model 1 wouldn’t change because w1x1 + w2x2 = 0 for (0, 0).
Hence p = 0.5 irrespective of the labels or the values of w.

Model 2 has a bias term which remains non-zero for (0, 0), and can thus change the
model depending on the label assigned.

6.3. Given a training dataset D = {(x(1), y(1)), . . . , (x(N), y(N))} where x(i) ∈ Rd is a
feature vector and yi ∈ {0, 1} is a binary label, we want to find the parameters ŵ
that maximize the likelihood of the training dataset, assuming a parametric model
of the form

p(y = 1 | x;w) =
1

1 + exp(−wTx)
.

The conditional log likelihood of D is

ℓ(w) =
n∑

i=1

yi log p(yi | xi;w) + (1− yi) log(1− p(yi | xi;w)),

and the gradient is

∇ℓ(w) =
N∑
i=1

(yi − p(yi | xi;w))xi.

(a) Short answer: Is it possible to solve for the optimal parameters ŵ in closed
form? If yes, explain how and if no, describe how you would compute ŵ in
practice?

There is no closed form expression for maximizing the conditional log likelihood.
One has to consider iterative optimization methods, such as gradient descent,
to compute ŵ.

(b) Math: For a binary logistic regression model, we predict y = 1 when p(y =
1 | x) ≥ 0.5. Show that this is a linear classifier in x.
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Using the parametric form for p(y = 1 | x):

p(y = 1 | x) ≥ 1

2
=⇒ 1

1 + exp(−wTx)
≥ 1

2

=⇒ 1 + exp(−wTx) ≤ 2

=⇒ exp(−wTx) ≤ 1

=⇒ −wTx ≤ 0

=⇒ wTx ≥ 0,

so we predict ŷ = 1 if wTx ≥ 0, which precisely defines a linear function of x.



10-601 Machine Learning Practice Problems - Page 31 of 52 -

(c) Consider the case where all features are binary, i.e, x ∈ {0, 1}d. Furthermore,
suppose feature x1 is rare and just happens to take on value 1 in the training
set only when the label is also 1.

What is ŵ1 i.e. the optimal weight on the first feature? Is the gradient ever
zero for any finite value of w1?

If a binary feature fired for only label 1 in the training set then, by maximizing
the conditional log likelihood, we will make the weight associated to that feature
be infinite; this implies that the gradient will never be zero: we can always
improve the solution by increasing the weight. This is because, when this
feature is observed in the training set, we will want to predict 1 irrespective
of everything else. This is an undesired behavior from the point of view of
generalization performance, as most likely we do not believe this rare feature
to have that much information about class 1. Most likely, it is a spurious
co-occurrence. Controlling the norm of the weight vector will prevent these
pathological cases.

6.4. Math: Given the following dataset, D, and a fixed parameter vector, w, write an
expression for the conditional likelihood of a binary logistic regression model on this
dataset.

D = {(x(1), y(1) = 0), (x(2), y(2) = 0), (x(3), y(3) = 1), (x(4), y(4) = 1)}

• Write your answer in terms of w, x(1), x(2), x(3), and x(4).

• Do not include y(1), y(2), y(3), or y(4) in your answer.

• Do not try to simplify your expression.
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(
1− 1

1+e−wT x1

)(
1− 1

1+e−wT x2

)
1

1+e−wT x3
1

1+e−wT x4
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6.5. Suppose we apply feature engineering to a two-dimensional input, x1 ∈ R and

x2 ∈ R, mapping it to a new input vector: x =

 1
x1

2

x2
2


(a) Write an expression for the decision boundary of binary logistic regression with

this feature vector x and the corresponding parameter vector θ = [b, w1, w2]
T .

Assume that the decision boundary occurs when P (Y = 1 | x,θ) = P (Y = 0 |
x,θ). Write your answer in terms of x1, x2, b, w1, and w2.

Decision boundary expression:

0 = b+ w1x
2
1 + w2x

2
2.

(b) Assume that w1 > 0, w2 > 0, and b < 0. What is the geometric shape defined
by this equation?

An ellipse

(c) If we add an L2 regularization term when learning [w1, w2]
T , what happens to

the parameters as we increase the λ that scales this regularization term?

The magnitude of the parameters will decrease.

(d) If we add an L2 regularization term when learning [w1, w2]
T , what happens to

the decision boundary shape as we increase the λ that scales this regular-
ization term?

The parameters shrink, so the ellipse will get bigger.
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7 Linear Regression (0 points)

7.1. Select all that apply: For some function f : R→ R, suppose the unique argmax
of f is x∗. Which of the following functions are guaranteed to have the same argmax
as f?

2 g(x) = f(x) + 2

2 g(x) = 2f(x)

2 g(x) = f(x)2

2 g(x) = 2f(x)

2 None of the above.

A, B, and D

C is not guaranteed to have the same argmax because the square operation inverts
negation e.g., if f is always negative, then its argmax is the location where f is
closest to zero but the argmax of g would be the location where f is furthest from
zero.

7.2. Consider linear regression on 1-dimensional data i.e., x, y ∈ R. We apply linear
regression in both directions on this data: we first fit a model to predict y using
x and get y = m1x + b1 as the fitted line that minimizes the mean squared error,
then we fit a model to predict x using y and get x = m2y + b2.

True or False: It is always the case that m2 =
1
m1

.

⃝ True

⃝ False

False: this is only true when the data lie on a perfect line; can verify this empirically
with non-linear data.

7.3. Select all that apply: Which of the following statements about the gradient of a
function is/are true?

2 The gradient is the same dimensionality as the function’s output.

2 The gradient points in the direction of steepest descent.

2 The gradient of a function always exists everywhere.

2 The gradient is the limit of the slope between two points on the function
as the distance between the points approaches ∞.

2 None of the above.

None of the above
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7.4. Instead of mean squared error, suppose instead that you fit a linear regression model
by minimizing the mean cubed error:

J(θ) =
1

N

N∑
i=1

(
θTx(i) − y(i)

)3
(a) Math: What is the gradient of the mean cubed error with respect to the

parameter vector θ?

∇θJ(θ) =
3
N

∑N
i=1

(
θTx(i) − y(i)

)2
x(i)

(b) True or False: This loss function is more sensitive to outliers than the mean
squared error.

⃝ True

⃝ False

True

(c) Short answer: In 1-2 concise sentences, briefly describe the primary issue
with this objective function for regression?

This loss function is not strictly non-negative. Therefore, we could have un-
derestimations canceling out overestimations, resulting in a poorly fit model.

7.5. True or False: Consider a linear regression model with only one parameter, the
intercept, i.e., y = b. Then, given N data points (x(i), y(i)) (where x(i) is the feature
and y(i) is the target), minimizing the sum of squared errors results in b being the
median of the y(i) values. Briefly justify your answer

⃝ True

⃝ False

False.
∑N

i=1(y
(i)− b)2 is the training loss, which when differentiated and set to zero

gives b =
∑N

i=1 y
(i)

N
, the mean of the y(i) values.
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7.6. You decide to optimize the function f(x) = x2 with respect to x using gradient
descent. You initialize x(0) to −1 and use a step size of η(0) = 1.5.

(a) Fill in the blanks: Fill in the table below with the results you get from
running gradient descent in this setting for two iterations; most of the 0th

iteration has been filled in on your behalf; you should fill in the missing element
in this line along with all the other missing elements.

t x(t) f(x(t)) ∇xf(x
(t))

0 -1 1

1

2

t x(t) f(x(t)) ∇xf(x
(t))

0 -1 1 -2

1 2 4 4

2 -4 16 -8

3 8 64 16

(b) Select all that apply: Based on your findings from the previous part, which
of the following changes could help you achieve better results?

2 Decreasing the step size.

2 Running gradient descent for more iterations.

2 Moving the initial value x(0) further from the origin.

2 Negating the function and running gradient ascent.

2 None of the above.

A; This step size is too large so decreasing it to anything < 1 would improve
the results.

7.7. Math: Your friend accidentally solved linear regression using the wrong objective
function for mean squared error; specifically, they used the following objective func-
tion that contains two mistakes: 1) they forgot the 1/N and 2) they have one sign
error.
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J(w, b) =
N∑
i=1

(
y(i) −

(
M∑
j=1

wjx
(i)
j − b

))2

You realize that you can still use the parameters that they learned, w and b, to com-
pute the minimizer of the mean squared error. Write the equation that implements
this corrected prediction function h(x,w, b) using your friend’s learned parameters,
w and b.

h(x,w, b) = wTx− b
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8 Optimization (0 points)

8.1. (a) Select all that apply: Determine if the following 1-D functions are convex.
Assume that the domain of each function is R. The definition of a convex
function is as follows:

f(x) is convex ⇐⇒ f(αx+(1−α)z) ≤ αf(x)+(1−α)f(z),∀α ∈ [0, 1] and ∀x, z.

2 f(x) = x+ b for any b ∈ R

2 f(x) = c2x for any c ∈ R

2 f(x) = ax2 + b for any a ∈ R and any b ∈ R

2 f(x) = 0

2 None of the above

A, B, D

C is nonconvex for a < 0

(b) Select all that apply: Suppose we are trying to minimize the convex function
f(z) = z2 using gradient descent. Let α be the learning rate and assume that
we use an inital value of z(0) = 1.

For which values of α will graident descent converge to the optimal value,
x∗ = 0?

2 α = 0

2 α = 1
2

2 α = 1

2 α = 2

2 None of the above

α = 1
2

α = 1 causes gradient descent to bounce between 1 and −1 while α = 2 causes
gradient descent to diverge.

8.2. Fill in the Blanks: Complete the following sentence by circling the best option
in each square (options are separated by “/”s):

The mean squared error objective function for linear regression is

non-convex / convex / strictly convex which means that gradient descent will con-

verge to a global minimum / local minimum which might not be a global minimum if it

converges; however, a global minimum does not / does always exist.
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The mean squared error objective function for linear regression is convex which
means that gradient descent will converge to a global minimum; however, a global
minimum does always exist.



10-601 Machine Learning Practice Problems - Page 40 of 52 -

8.3. Select all that apply: Which of the following statements about gradient descent
(GD) and stochastic gradient descent (SGD) are correct?

2 Each update step in SGD pushes the parameter vector closer to the pa-
rameter vector that minimizes the objective function.

2 The gradient computed in SGD is, in expectation, equal to the gradient
computed in GD.

2 The gradient computed in GD has a higher variance than that computed
in SGD, which is why in practice SGD converges faster in time than GD.

2 Both SGD and GD are guaranteed to converge if and only if the objective
function is strictly convex.

2 None of the above.

B.

A is incorrect, SGD updates are high in variance and may not go in the direction
of the true gradient. C is incorrect, for the same reason. D is incorrect because GD
can converge if the function is convex but not strictly convex.

8.4. True or False: For a given dataset and objective function, one epoch of stochastic
gradient descent (i.e., one pass through the entire dataset) will always have the
same big-O computational cost as one iteration of gradient descent.

⃝ True

⃝ False

True
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9 Feature Engineering and Regularization (0 points)

9.1. Suppose you have D-dimensional data points x = [x1, x2, . . . , xD]
T and you want

to apply a 2-dimensional polynomial feature expansion to them, ϕ2. This feature
expansion contains all first-order terms as well as all possible second-order terms,
including combinations of features i.e.

{x4, x
2
1, x2x3} ⊂ ϕ2(x)

(a) Math: What is the dimensionality of ϕ2(x)? Express you answer in terms of
D, the dimensionality of x.

D first order terms + D squared terms +
(
D
2

)
combination terms = D(D+3)

2

(b) Math: Given a dataset consisting of N data points, suppose a unique closed-
form solution exists for linear regression using the ϕ2-transformation. What
is the big-O computational cost of computing (ΦTΦ)−1, where Φ is the design
matrix of the transformed data points i.e.,

Φ =


1 ϕ2(x

(1))
1 ϕ2(x

(2))
...

...
1 ϕ2(x

(N))


Express you answer in terms N and D.

Hint: don’t forget about the computational costs associated with the bias or
intercept parameters.

O

(
N
(

D(D+3)
2

+ 1
)2

+
(

D(D+3)
2

+ 1
)3)

= O(ND4 +D6)
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9.2. Model Complexity: In this question we will consider the effect of increasing
the model complexity, while keeping the size of the training dataset fixed. To
be concrete, consider a classification task on the real line R with some unknown
distribution over data points D and unknown target function c∗ : R→ {±1}.

Suppose we have a randomly sampled dataset S of size N , drawn i.i.d. from D. For
each degree d, let ϕd be the feature map given by ϕd(x) = (1, x, x2, . . . , xd) that
maps points on the real line to (d+ 1)-dimensional space.

Now consider the learning algorithm that first applies the feature map ϕd to all the
training data points and then runs logistic regression. A new example is classified
by first applying the feature map ϕd and then using the learned classifier.

(a) For a given dataset S, is it possible for the training error to increase when we
increase the degree d of the feature map? Briefly justify your answer in 1 to 2
sentences.

No. Every linear separator using the feature map ϕd can also be expressed
using the feature map ϕd+1, since we are only adding new features. It follows
that the training error will not increase for any given sample S.

(b) Suppose we plot the true error of our algorithm as a function of d: we observe
that it initially decreases and then increases as we increase the degree d. Briefly
explain this trend in 2 to 3 sentences.

When the dimension d is small, the true error is high because the target function
is not well approximated by any linear separator in the ϕd feature space. As
we increase d, our ability to approximate c∗ improves, so the true error drops.
But, as we continue to increase d, we begin to overfit the data and the true
error increases again.
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9.3. Short Answer: Your friend is training a logistic regression model with ridge reg-
ularization, where λ is the regularization constant. They run cross-validation for
λ = [0.01, 0.1, 1, 10] and compare train, validation and test errors. They choose
λ = 0.01 because that had the lowest test error.

However, you observe that the test error linearly increases from λ = 0.01 to 10 and
thus, there exists a value of λ < 0.01 that gives a lower test error. You tell your
friend that they should run the cross-validation for λ = [0.0001, 0.001, 0.01] to get
the optimal model.

Do you think you did the right thing by giving your friend this suggestion? Briefly
justify your answer in 1 to 2 concise sentences.

No. because we should not be using test error at all in making any model selection
decisions.
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10 Neural Networks (0 points)

10.1. Matching: Match the corresponding neural network component to its role in the
neural network.

(a) Cross-Entropy

(b) Identity

(c) Mean Absolute Error

(d) Mean Squared Error

(e) ReLU

(f) Sigmoid

(g) Softmax

(h) Stochastic Gradient Descent

(i) Tanh

Activation Function

Loss Function

Optimizer

Activation function: Identity, ReLU, Sigmoid, Tanh, Softmax; Loss function: Cross-
entropy, Mean Absolute Error, Mean Squared Error; Optimizer: Stochastic Gradi-
ent Descent
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Figure 3: Neural Network

10.2. Consider the neural network architecture shown above for a binary classification
problem. The values for the weights are shown in the figure. We define:

a1 = w11x1 + b11

a2 = w12x1 + b12

a3 = w21z1 + w22z2 + b21

z1 = ReLU(a1)

z2 = ReLU(a2)

z3 = σ(a3), σ(x) =
1

1+e−x

where ReLU(x) = max(0, x).

(a) Math: For x1 = 0.3, compute z3 in terms of e.

z3 =
1

1+e−0.15

(b) Select one: Which class does the network predict for the data point x1 = 0.3,
assuming that ŷ = 1 if z3 >

1
2
and otherwise, ŷ = 0.

⃝ 1
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⃝ 0

ŷ(x1 = 0.3) = 1

(c) Math: Perform backpropagation on the bias term b21 by deriving the expres-
sion for the gradient of the loss function L(y, z3) with respect to the bias term
b21,

∂L
∂b21

.

Express your answer in terms of partial derivatives of the form ∂α
∂β
, where α

and β can be any of L, zi, ai, bij, wij, x1 for all valid values of i, j. Your back-
propagation algorithm should be as explicit as possible — that is, make sure
each partial derivative ∂α

∂β
cannot be decomposed further into simpler partial

derivatives. Do not evaluate the partial derivatives.

∂L
∂b21

= ∂L
∂z3

∂z3
∂a3

∂a3
∂b21

(d) Math: Perform backpropagation on the bias term b12 by deriving the expres-
sion for the gradient of the loss function L(y, z3) with respect to the bias term
b12,

∂L
∂b12

.

Express your answer in terms of partial derivatives of the form ∂α
∂β
, where α

and β can be any of L, zi, ai, bij, wij, x1 for all valid values of i, j. Your back-
propagation algorithm should be as explicit as possible — that is, make sure
each partial derivative ∂α

∂β
cannot be decomposed further into simpler partial

derivatives. Do not evaluate the partial derivatives.

∂L
∂b12

= ∂L
∂z3

∂z3
∂a3

∂a3
∂z2

∂z2
∂a2

∂a2
∂b12
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10.3. In this problem we will use a neural network to distinguish the crosses (×) from the
circles (◦) in the simple data set shown in Figure 4a. Even though the crosses and
circles are not linearly separable, we can break the examples into three groups, S1,
S2, and S3 (shown in Figure 4a) so that S1 is linearly separable from S2 and S2 is
linearly separable from S3. We will exploit this fact to design weights for the neural
network shown in Figure 4b in order to correctly classify this training dataset. For
all nodes, we will use the threshold activation function

ϕ(z) =

{
1 z > 0
0 z ≤ 0.
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(a) The data set with groups S1, S2, and S3.
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(b) The neural network architecture
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(c) Set S1, S2 and S3

Figure 5: NN classification.
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(a) First we will set the parameters w11, w12 and b1 of the neuron labeled h1 so that
its output h1(x) = ϕ(w11x1 + w12x2 + b1) forms a linear separator between the
sets S2 and S3.

i. On Fig 5a, draw a linear decision boundary that separates S2 and S3.

0 1 2 3 4 5
0

1

2

3

4

5

x1

x
2

ii. Write down a possible setting of the weights w11, w12, and b1 such that
h1(x) = 0 for all points in S3 and h1(x) = 1 for all points in S2.

w11 = −1, w12 = 0, b1 = 3

(b) Next we will set the parameters w21, w22 and b2 of the neuron labeled h2 so that
its output h2(x) = ϕ(w21x1 + w22x2 + b2) forms a linear separator between the
sets S1 and S2.

i. On Fig 5b, draw a linear decision boundary that separates S1 and S2.

0 1 2 3 4 5
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4

5

x1

x
2

i

ii. Write down a possible setting of the weights w21, w22, and b2 such that
h2(x) = 0 for all points in S1 and h2(x) = 1 for all points in S2.

w21 = 3, w22 = 1, b2 = −7

(c) Now we have two classifiers h1 (to classify S2 from S3) and h2 (to classify S1

from S2). We will set the weights of the final neuron of the neural network
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based on the results from h1 and h2 to classify the crosses from the circles. Let
h3(x) = ϕ

(
w31h1(x) + w32h2(x) + b3

)
.

i. Write down a possible setting of the weights w31, w32, b3 such that h3(x)
correctly classifies the entire data set.

w31 = 1, w32 = 1, b3 = −1.5

ii. Draw your decision boundary in Fig 5c.
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10.4. Consider the following neural network for a 2-D input, x1 ∈ R and x2 ∈ R where:

Figure 9: Neural Network

• All occurrences of the function g are the same arbitrary non-linear activation
function with no parameters

• ℓ(y, ŷ) is an arbitrary loss function with no parameters, and:

z1 = wAx1 + wBx2, a1 = g(z1)

z2 = wCa1, a2 = g(z2)

z3 = wDa1, a3 = g(z3)

z4 = wEa2 + wFa3, ŷ = g(z4)

Note: There are no bias terms in this network.

(a) What is the chain of partial derivatives needed to calculate the derivative ∂ℓ
∂wE

?

Your answer should be in the form: ∂ℓ
∂wE

= ∂?
∂?

∂?
∂?

. . . Make sure each partial

derivative ∂?
∂?

in your answer cannot be decomposed further into simpler partial
derivatives. Do not evaluate the derivatives. Be sure to specify the correct
subscripts in your answer.

∂ℓ
∂wE

=

∂ℓ
∂wE

= ∂ℓ
∂ŷ

∂ŷ
∂z4

∂z4
∂wE
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(b) The network diagram from above is repeated here for convenience: What is the

Figure 10: Neural Network

chain of partial deriviatives needed to calculate the derivative ∂ℓ
∂wC

?
Your answer should be in the form:

∂ℓ

∂wC

=
∂?

∂?

∂?

∂?
...

Make sure each partial derivative ∂?
∂?

in your answer cannot be decomposed fur-
ther into simpler partial derivatives. Do not evaluate the derivatives. Be
sure to specify the correct superscripts in your answer.

∂ℓ
∂wC

=

∂ℓ
∂wC

= ∂ℓ
∂ŷ

∂ŷ
∂z4

∂z4
∂a2

∂a2
∂z2

∂z2
∂wC

(c) We want to modify our neural network objective function to add an L2 regu-
larization term on the weights. The new objective is:

ℓ(y, ŷ) + λ
1

2
∥w∥22

where λ (lambda) is the regularization hyperparamter andw is all of the weights
in the neural network stacked into a single vector,w = [wA, wB, wC , wD, wE, wF ]

T .

Write the right-hand side of the new gradient descent update step for weight
wC given this new objective function. You may use ∂ℓ

∂wC
in your answer.

Update: wC ← ...

Update for wC : wC ← wC − α
(

∂ℓ
∂wC

+ λwC

)



10-601 Machine Learning Practice Problems - Page 52 of 52 -

10.5. Define a function floor : Rn → Rn such that

floor(z) =
[
⌊zi⌋ for 0 ≤ i ≤ D

]T
or essentially, a function that produces an output vector by applying ⌊·⌋ element-
wise to the input vector.

Neural wants to use this function as an activation function to train his neural
network. Is this possible? Explain why or why not.

Yes, it is possible. Since the function is piecewise, we will not be able to use auto-
matic differentiation to solve the gradients, but we can still use the finite difference
method to approximate the gradient and train the model.
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