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Recall:
Probabilistic

Learning
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* Previously:

* (Unknown) Target function, c*: X =» Y
* Classifier, h : X = Y

* Goal: find a classifier, h, that best approximates c*

* Now:

* (Unknown) Target distribution, y ~ P*(Y|x)
- Distribution, P(Y|x)

* Goal: find a distribution, P, that best approximates P*
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Building a
Probabilistic

Classifier
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1. Define a decision rule

* Given a test data point x’, predict its label y using the

posterior distribution_

* Common choice: § = argmax P(Y = y|X = x')
y

2. Model the posterior distribution
* Option 1 - Model P(Y|X) directly as some function of X
(today!)
* Option 2 - Use Bayes’ rule (later):

P(X|Y)P(Y)

oo & P(X|Y) P(Y)

- P(Y|X) =
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* Suppose we have binary labels y € {0,1} and D-dimensional
inputs x = [1, x4, ..., xp]" € RP*!

* Assume

1
j— — 1 T —
P(Y = 1|x) = logit(w" x) T+ oxp(—w' 1)
: T
Modelling the __exp(w x)
Posterior exp(Wix) + 1
* This implies two useful facts: e; %

__?C\(:o\i) = |- P(Y-1 \f’) = - o1 )
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Logistic
Function
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Source:
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Logistic
Regression

Decision
Boundary
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Logistic
Regression

Decision
Boundary
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Figure courtesy of Matt Gormley
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Logistic
Regression

Decision
Boundary
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Logistic Regression Distribution
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Figure courtesy of Matt Gormley
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Classification with Logistic Regression

Logistic
Regression
Decision

Boundary
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General
Recipe

for
Machine
Learning

Henry Chai - 5/19/25

* Define a model and model parameters

- Write down an objective function

- Optimize the objective w.r.t. the model parameters
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Recipe

for
Logistic
Regression
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* Define a model and model parameters
ededt, iderfieal

— Assume  dcke G"\NSCS et 0 \\
) ? A&SE’\ Cné)/
— Assuma r?(«(...\\jz) = Log (:-—')T—%)

~ P EDLJU,ND‘]T

* Write down an obJectlve function

— Maximi2e e mtﬁné’*mﬂp»v Laj»- ~ L.,o.;l
4
— Min M2 A np_3c__5cwt. Cun&sﬁmc\‘ ) Lj "‘\ LLL“J

- Optimize the objective w.r.t. the model parameters

<Y

45



Find @ that minimizes
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Gradient

Descent:
Intuition
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* An iterative method for minimizing functions

* Requires the gradient to exist everywhere
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Gradient

Descent:
Intuition
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* An iterative method for minimizing functions

* Requires the gradient to exist everywhere

- Good news: the negative conditional log-likelihood is convex!
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Gradient

Descent:
Step Direction
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* Suppose the current parameter vector is 210

- Move some distance, 1, in the “most downhill” direction, V:
L+ = o) + 3P

* The gradient points in the direction of steepest increase ...

* ... SOV is a unit vector pointing in the opposite direction:

Votp (609)

1% = —
IVoen (60)]
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Gradient

Descent:
Step Size

Small 7 Large 7
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Gradient

Descent:
Step Size
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* Use a variable n(!) instead of a fixed 1!

et ® = 1 O||Vyep (6]

: ||V9€D (B(t))” decreases as £ approaches its

minimum — n(t) (hopefully) decreases over time
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Gradient

Descent
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7 = 4O||vyep (6©)]
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Gradient

Descent
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‘ Input: D = {(x("),y("))},lj:l,n(o)

1. Initialize the parameters 0 andsett =0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:
Volp (6)

b. Update 8: 81*D « () — nOy p (g))

c. Incrementt:t<t+1

- Qutput: O
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* Logistic regression

* Logistic function induces a linear decision boundary

* Conditional likelihood maximization

* Gradient descent

* Effect of step size

* Termination criteria
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