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10-301/601: Introduction 
to Machine Learning
Lecture 9 – Logistic 
Regression



Recall: 
Probabilistic 
Learning

 Previously: 

 (Unknown) Target function, 𝑐∗: 𝒳 → 𝒴

 Classifier, ℎ ∶ 𝒳 → 𝒴

 Goal: find a classifier, ℎ, that best approximates 𝑐∗

 Now:

 (Unknown) Target distribution, 𝑦 ∼ 𝑃∗ 𝑌 𝒙

 Distribution, 𝑃 𝑌 𝒙

 Goal: find a distribution, 𝑃, that best approximates 𝑃∗
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Building a 
Probabilistic 
Classifier

1. Define a decision rule

 Given a test data point 𝒙′, predict its label ො𝑦 using the 

posterior distribution 𝑃 𝑌 = 𝑦 𝑋 = 𝒙′

 Common choice: ො𝑦 = argmax
𝑦

𝑃 𝑌 = 𝑦 𝑋 = 𝒙′

2. Model the posterior distribution

 Option 1 - Model 𝑃 𝑌 𝑋  directly as some function of 𝑋 

(today!) 

 Option 2 - Use Bayes’ rule (later):

 𝑃 𝑌 𝑋 =
𝑃(𝑋|𝑌)𝑃 𝑌

𝑃 𝑋
∝ 𝑃 𝑋 𝑌  𝑃 𝑌
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Modelling the 
Posterior
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 Suppose we have binary labels 𝑦 ∈ {0,1} and 𝐷-dimensional 
inputs 𝒙 = 1, 𝑥1, … , 𝑥𝐷

𝑇 ∈ ℝ𝐷+1

 Assume 

𝑃 𝑌 = 1 𝒙 = logit 𝒘𝑇𝒙 =
1

1 + exp −𝒘𝑇𝒙

𝑃 𝑌 = 1 𝑋 = logit 𝒘𝑇𝒙 =
exp 𝒘𝑇𝒙

exp 𝒘𝑇𝒙 + 1

 This implies two useful facts:

1. 𝑃 𝑌 = 0 𝒙 = 1 − 𝑃 𝑌 = 1 𝒙 =
1

exp 𝒘𝑇𝒙 + 1

2.
𝑃 𝑌 = 1 𝒙

𝑃(𝑌 = 0|𝒙)
= exp 𝒘𝑇𝒙 → log

𝑃 𝑌 = 1 𝒙

𝑃(𝑌 = 0|𝒙)
= 𝒘𝑇𝒙



Logistic 
Function
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 Differentiable everywhere

 logit: ℝ → 0, 1

 The decision boundary is linear in 𝒙!  
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Why use the 
Logistic 
Function?
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Logistic 
Regression 
Decision 
Boundary
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ො𝑦 = ቐ1 if 𝑃 𝑌 = 1 𝒙 ≥
1

2
0 otherwise

𝑃 𝑌 = 1 𝒙 = logit 𝒘𝑇𝒙 =
1

1 + exp −𝒘𝑇𝒙
≥

1

2

2 ≥ 1 + exp −𝒘𝑇𝒙

1 ≥ exp −𝒘𝑇𝒙

log 1 ≥ −𝒘𝑇𝒙

0 ≤ 𝒘𝑇𝒙
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Logistic 
Regression 
Decision 
Boundary
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Logistic 
Regression 
Decision 
Boundary
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Logistic 
Regression 
Decision 
Boundary
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 Define a model and model parameters

 Assume 𝑃 𝑌 = 1 𝑋 = logit 𝒘𝑇𝒙  

 Parameters: 𝒘 = 𝑤0, 𝑤1, … , 𝑤𝐷

 Write down an objective function

 Assume independent, identically distributed (iid) data

 Maximize the log conditional likelihood

 Optimize the objective w.r.t. the model parameters

 ???

General 
Recipe 
for 
Machine 
Learning
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 Define a model and model parameters

  Assume independent, identically distributed (iid) data 

  Assume 𝑃 𝑌 = 1 𝑋 = logit 𝒘𝑇𝒙  

  Parameters: 𝜽 = 𝑤0, 𝑤1, … , 𝑤𝐷

 Write down an objective function

  Maximize the conditional log-likelihood

  Minimize the negative conditional log-likelihood

 Optimize the objective w.r.t. the model parameters

 ???

Recipe 
for 
Logistic
Regression
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Setting the 
Parameters
via Minimum 
Negative 
Conditional 
(log-)Likelihood 
Estimation 
(MCLE)
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Find 𝜽 that minimizes

−ℓ𝒟 𝜽 = −log 𝑃 𝑦 1 , … , 𝑦 𝑁 𝒙 1 , … , 𝒙 𝑁 , 𝜽 = −log ෑ

𝑛=1

𝑁

𝑃 𝑦 𝑛 𝒙 𝑛 , 𝜽

−ℓ𝒟 𝒘 = −log ෑ

𝑛=1

𝑁

𝑃 𝑌 = 1 𝒙 𝑛 , 𝜽
𝑦 𝑛

𝑃 𝑌 = 0 𝒙 𝑛 , 𝜽
1−𝑦 𝑛

−ℓ𝒟 𝒘 = − ෍

𝑖=1

𝑁

𝑦 𝑛 log 𝑃 𝑌 = 1 𝒙 𝑛 , 𝜽 + 1 − 𝑦 𝑛 log 𝑃 𝑌 = 0 𝒙 𝑛 , 𝜽

−ℓ𝒟 𝒘 = − ෍

𝑖=1

𝑁

𝑦 𝑛 log
𝑃 𝑌 = 1 𝒙 𝑛 , 𝜽

𝑃 𝑌 = 0 𝒙 𝑛 , 𝜽
+ log 𝑃 𝑌 = 0 𝒙 𝑛 , 𝜽

−ℓ𝒟 𝒘 = − ෍

𝑖=1

𝑁

𝑦 𝑛 𝜽𝑇𝒙 𝑛 − log 1 + exp 𝜽𝑇𝒙 𝑛



Setting the 
Parameters   
via MAP?

Stay tuned for 
regularization!
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Find 𝜽 that minimizes

−ℓ𝒟 𝜽 = −log 𝑃 𝑦 1 , … , 𝑦 𝑁 𝒙 1 , … , 𝒙 𝑁 , 𝜽 = −log ෑ

𝑛=1

𝑁

𝑃 𝑦 𝑛 𝒙 𝑛 , 𝜽

−ℓ𝒟 𝒘 = −log ෑ

𝑛=1

𝑁

𝑃 𝑌 = 1 𝒙 𝑛 , 𝜽
𝑦 𝑛

𝑃 𝑌 = 0 𝒙 𝑛 , 𝜽
1−𝑦 𝑛

−ℓ𝒟 𝒘 = − ෍

𝑖=1

𝑁

𝑦 𝑛 log 𝑃 𝑌 = 1 𝒙 𝑛 , 𝜽 + 1 − 𝑦 𝑛 log 𝑃 𝑌 = 0 𝒙 𝑛 , 𝜽

−ℓ𝒟 𝒘 = − ෍

𝑖=1

𝑁

𝑦 𝑛 log
𝑃 𝑌 = 1 𝒙 𝑛 , 𝜽

𝑃 𝑌 = 0 𝒙 𝑛 , 𝜽
+ log 𝑃 𝑌 = 0 𝒙 𝑛 , 𝜽

−ℓ𝒟 𝒘 = − ෍

𝑖=1

𝑁

𝑦 𝑛 𝜽𝑇𝒙 𝑛 − log 1 + exp 𝜽𝑇𝒙 𝑛



Minimizing the
Negative 
Conditional 
(log-)Likelihood
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∇𝜽ℓ𝒟 𝜽 = − ෍

𝑛=1

𝑁

𝑦 𝑛 ∇𝜽𝜽𝑇𝒙 𝑛 − ∇𝜽 log 1 + exp 𝜽𝑇𝒙 𝑛

∇𝒘ℓ𝒟 𝒘 = − ෍

𝑛=1

𝑁

𝑦 𝑛 𝒙 𝑛 −
exp 𝜽𝑇𝒙 𝑛

1 + exp 𝜽𝑇𝒙 𝑛
𝒙 𝑛

∇𝒘ℓ𝒟 𝒘 = ෍

𝑛=1

𝑁

𝒙 𝑛 𝑃 𝑌 = 1 𝒙 𝑛 , 𝜽 − 𝑦 𝑛

ℓ𝒟 𝜽 = − ෍

𝑛=1

𝑁

𝑦 𝑛 𝜽𝑇𝒙 𝑛 − log 1 + exp 𝜽𝑇𝒙 𝑛



Gradient 
Descent:
Intuition

 An iterative method for minimizing functions 

 Requires the gradient to exist everywhere
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Gradient 
Descent:
Intuition
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 An iterative method for minimizing functions 

 Requires the gradient to exist everywhere
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 An iterative method for minimizing functions 

 Requires the gradient to exist everywhere

 



Gradient 
Descent:
Intuition
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 An iterative method for minimizing functions 

 Requires the gradient to exist everywhere

 Good news: the negative conditional log-likelihood is convex! 



Gradient 
Descent:
Step Direction

 Suppose the current parameter vector is 𝜽 𝑡

 Move some distance, 𝜂, in the “most downhill” direction, ෝ𝒗:

𝜽 𝑡+1 = 𝜽 𝑡 + 𝜂ෝ𝒗

 The gradient points in the direction of steepest increase …

 … so ෝ𝒗 is a unit vector pointing in the opposite direction:

ෝ𝒗 𝑡 = −
∇𝜽ℓ𝒟 𝜽 𝑡

∇𝜽ℓ𝒟 𝜽 𝑡
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Gradient 
Descent: 
Step Size
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Small 𝜂 Large 𝜂
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Gradient 
Descent: 
Step Size

Small 𝜂 Large 𝜂
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Gradient 
Descent: 
Step Size

Small 𝜂 Large 𝜂



 Use a variable 𝜂 𝑡  instead of a fixed 𝜂!

 Set 𝜂 𝑡 = 𝜂 0 ∇𝜽ℓ𝒟 𝜽 𝑡  

 ∇𝜽ℓ𝒟 𝜽 𝑡  decreases as ℓ𝒟 approaches its 

minimum → 𝜂 𝑡  (hopefully) decreases over time
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Gradient 
Descent: 
Step Size
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 ෝ𝒗 𝑡 = −
∇𝜽ℓ𝒟 𝜽 𝑡

∇𝜽ℓ𝒟 𝜽 𝑡

 𝜂 𝑡 = 𝜂 0 ∇𝜽ℓ𝒟 𝜽 𝑡  

 𝜽 𝑡+1 = 𝜽 𝑡 + 𝜂 𝑡 ෝ𝒗 𝑡

 𝒘 𝑡+1 = 𝜽 𝑡 + 𝜂 0 ∇𝜽ℓ𝒟 𝜽 𝑡 −
∇𝜽ℓ𝒟 𝜽 𝑡

∇𝜽ℓ𝒟 𝜽 𝑡

 𝒘 𝑡+1 = 𝜽 𝑡 − 𝜂 0 ∇𝜽ℓ𝒟 𝜽 𝑡

Gradient 
Descent
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Gradient 
Descent

 Input: 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
, 𝜂 0

1. Initialize the parameters 𝜽 0  and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

∇𝜽ℓ𝒟 𝜽 𝑡 = 2𝑋𝑇𝑋𝒘 − 2𝑋𝑇𝒚

b. Update 𝜽: 𝜽 𝑡+1 ← 𝜽 𝑡 − 𝜂 0 ∇𝜽ℓ𝒟 𝜽 𝑡

c. Increment 𝑡: 𝑡 ← 𝑡 + 1 

 Output: 𝜽 𝑡
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Key Takeaways
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 Logistic regression

 Logistic function induces a linear decision boundary

 Conditional likelihood maximization

 Gradient descent

 Effect of step size

 Termination criteria
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