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* Previously:
* (Unknown) Target function, c*: X =» Y
* Classifier, h : X = Y
Recall:
Probabilistic

* Goal: find a classifier, h, that best approximates c*

* Now:

Learning

* (Unknown) Target distribution, y ~ P*(Y|x)
- Distribution, P(Y|x)

* Goal: find a distribution, P, that best approximates P*
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1. Define a decision rule

* Given a test data point x’, predict its label y using the
posterior distribution P(Y = y|X = x')

* Common choice: § = argmax P(Y = y|X = x')

Building a y

Probabilistic 2. Model the posterior distribution

Classifier * Option 1 - Model P(Y|X) directly as some function of X
(today!)

* Option 2 - Use Bayes’ rule (later):

P(X|Y)P(Y)

oo & P(X|Y) P(Y)

- P(Y|X) =
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* Suppose we have binary labels y € {0,1} and D-dimensional
inputs x = [1, x4, ..., xp]’ € RP*!

* Assume
1
j— — 1 T —
P(Y = 1|x) = logit(w" x) T+ oxp(—w' 1)
: T
Modelling the __exp(w x)
: T
Posterior exp(w'x) + 1
* This implies two useful facts:
1
1.P(Y=0|x)=1—-P(Y =1|x) = exp (W x) + 1
P(Y = 1|x) . P(Y=1lx)
2. P(yzox)—exp(w x)—>logP(Y=O|x)—w X
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Why use the

Logistic
Function?

Henry Chai - 5/19/25

=

_
=
S 0.5
\—’
z
o0
2
6 -4 -2 0 2
wlx

* Differentiable everywhere
- logit: R — [0, 1]
* The decision boundary is linear in x!

Source:



https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Logistic_function

( 1
1if P(Y = 1]x) = =

y =1 2
0 otherwise
g P(Y = 1|x) = logit(w”x) = L -
Logistic — R e e p(—wTx) T 2
Regression
De%ision 2>1+exp(—wlx)
Boundary 1 > exp(—w'x)

log(1) > —w'x
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Logistic
Regression

Decision
Boundary
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Figure courtesy of Matt Gormley



Logistic Regression Distribution

Logistic
Regression

Decision
Boundary

Henry Chai - 5/19/25 Figure courtesy of Matt Gormley



Classification with Logistic Regression

Logistic
Regression
Decision

Boundary
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General
Recipe

for
Machine
Learning
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* Define a model and model parameters

- Write down an objective function

- Optimize the objective w.r.t. the model parameters
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Recipe

for
Logistic
Regression
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* Define a model and model parameters

- Assume independent, identically distributed (iid) data
- Assume P(Y = 1|X) = logit(w!x)
* Parameters: @ = [wy, Wy, ..., Wp ]

- Write down an objective function

. Masieizet] itionalloslikalihood

* Minimize the negative conditional log-likelihood

- Optimize the objective w.r.t. the model parameters

. 7?7
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Find @ that minimizes

N
Setting the f@ (0) = —log P(y(l), ...,y(N)|x(1), ...,x(N), 9) = —logl_[P(y(")|x("), 0)
Parameters
via Minimum
Negative

n=1

N
(n) —y M)
- —logl_[P(Y = 1xm,8)"" (P(Y = 0|xm,6))

Conditional Z
(log-)Likelihood v
Estimation - ‘;y o8 G g, g) o8PV = 0%, 6)

(MCLE)
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Find @ that minimizes

£5 (0) = —logP(y(l), ...,y(N)|x(1), ...,x(N),B) = —logl_[P(y(")|x("),0)

Setting the il .
Parameters = —tog [ P(v = 1[x,6)"" (p(r = 0], 6)

via MAP? N

Stay tur.led.for —_i () P(Y=1|x(n)'0)+l P(Y = 0[x™, )
regularization! S TLY T By = o, g) T8 T O

N
_ z y(n) o7 x() _ log (1 + exp(HTx(")))
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Minimizing the
Negative

Conditional
(log-)Likelihood
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N

'BD (9) = — Z y(n)eTx(n) — lOg (1 + eXp(BTx(n)))

n=1

Vg‘ez) (9) z y(n)v BTx(n) — VB lOg (1 + eXp(OTx(")))

Z ) _ exp(87x™)
1+ exp(67x(W)

- z x®(P(Y = 1]x™, 9) — y™)

n=1
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Gradient

Descent:
Intuition
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* An iterative method for minimizing functions

* Requires the gradient to exist everywhere
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Gradient

Descent:
Intuition
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* An iterative method for minimizing functions

* Requires the gradient to exist everywhere

- Good news: the negative conditional log-likelihood is convex!
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Gradient

Descent:
Step Direction
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* Suppose the current parameter vector is 210

- Move some distance, 1, in the “most downhill” direction, V:
L+ = o) + 3P

* The gradient points in the direction of steepest increase ...

* ... SOV is a unit vector pointing in the opposite direction:

Votp (609)

1% = —
IVoen (60)]
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Gradient

Descent:
Step Size

Small 7 Large 7
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Gradient

Descent:
Step Size
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* Use a variable n(!) instead of a fixed 1!

et ® = 1 O||Vyep (6]

: ||V9€D (B(t))” decreases as £ approaches its

minimum — n(t) (hopefully) decreases over time
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Gradient

Descent
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7 = 4O||vyep (6©)]

L9+ = g(B) 4 p(OHD

=6+ (1725 (60)]) (-

= 91 — ®y, e, (80)

Votp (61D)

IVoen (6D)]]

)
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Gradient

Descent
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‘ Input: D = {(x("),y("))},lj:l,n(o)

1. Initialize the parameters 0 andsett =0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:
Volp (6)

b. Update 8: 81*D « () — nOy p (g))

c. Incrementt:t<t+1

- Qutput: O
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* Logistic regression

* Logistic function induces a linear decision boundary

* Conditional likelihood maximization

* Gradient descent

* Effect of step size

* Termination criteria
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