

10-301/601: Introduction to Machine Learning Lecture 9 – Logistic Regression

Henry Chai

5/19/25

Recall: Probabilistic Learning

- Previously:
 - (Unknown) Target function, $c^* : \mathcal{X} \rightarrow \mathcal{Y}$
 - Classifier, $h : \mathcal{X} \rightarrow \mathcal{Y}$
 - Goal: find a classifier, h , that best approximates c^*
- Now:
 - (Unknown) Target *distribution*, $y \sim P^*(Y|\mathbf{x})$
 - Distribution, $P(Y|\mathbf{x})$
 - Goal: find a distribution, P , that best approximates P^*

Building a Probabilistic Classifier

1. Define a decision rule
 - Given a test data point \mathbf{x}' , predict its label \hat{y} using the *posterior distribution* $P(Y = y|X = \mathbf{x}')$
 - Common choice: $\hat{y} = \operatorname{argmax}_y P(Y = y|X = \mathbf{x}')$
2. Model the posterior distribution
 - Option 1 - Model $P(Y|X)$ directly as some function of X (today!)
 - Option 2 - Use Bayes' rule (later):
 - $P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)} \propto P(X|Y) P(Y)$

Modelling the Posterior

- Suppose we have binary labels $y \in \{0,1\}$ and D -dimensional inputs $\mathbf{x} = [1, x_1, \dots, x_D]^T \in \mathbb{R}^{D+1}$
- Assume

$$P(Y = 1|\mathbf{x}) = \text{logit}(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x})}$$

$$= \frac{\exp(\mathbf{w}^T \mathbf{x})}{\exp(\mathbf{w}^T \mathbf{x}) + 1}$$

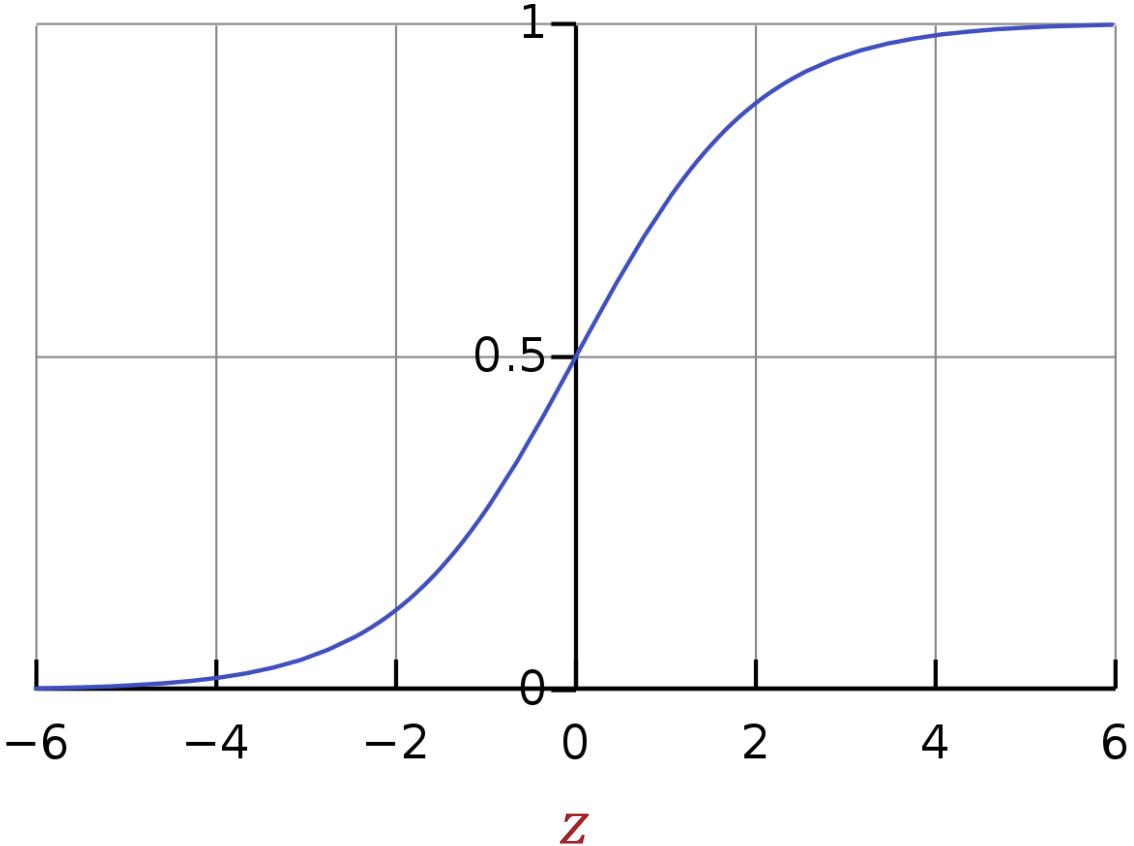
- This implies two useful facts:

$$1. P(Y = 0|\mathbf{x}) = 1 - P(Y = 1|\mathbf{x}) = \frac{1}{\exp(\mathbf{w}^T \mathbf{x}) + 1}$$

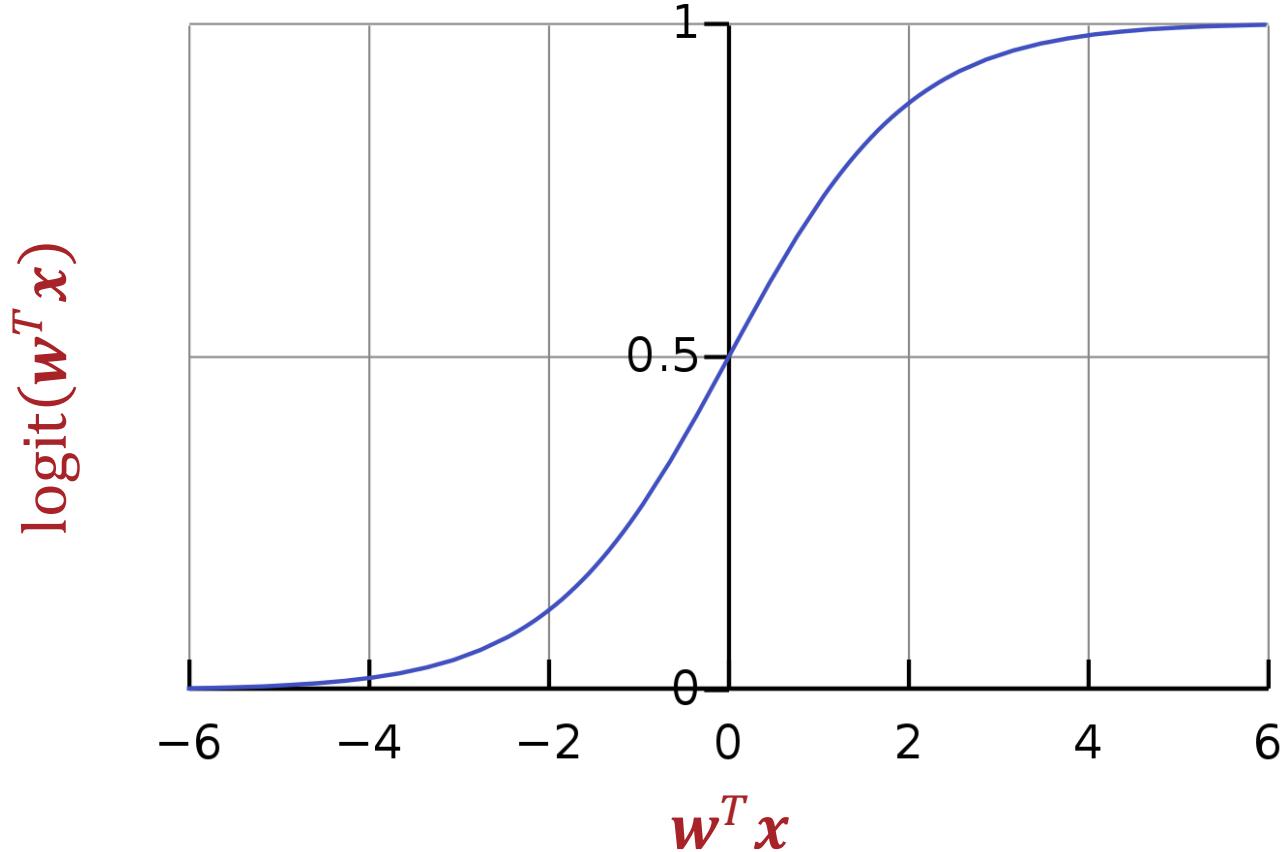
$$2. \frac{P(Y = 1|\mathbf{x})}{P(Y = 0|\mathbf{x})} = \exp(\mathbf{w}^T \mathbf{x}) \rightarrow \log \frac{P(Y = 1|\mathbf{x})}{P(Y = 0|\mathbf{x})} = \mathbf{w}^T \mathbf{x}$$

Logistic Function

$$\text{logit}(z) = \frac{1}{1 + e^{-z}}$$



Why use the Logistic Function?



- Differentiable everywhere
- $\text{logit}: \mathbb{R} \rightarrow [0, 1]$
- The decision boundary is linear in x !

Logistic Regression Decision Boundary

$$\hat{y} = \begin{cases} 1 & \text{if } P(Y = 1|\mathbf{x}) \geq \frac{1}{2} \\ 0 & \text{otherwise} \end{cases}$$

$$P(Y = 1|\mathbf{x}) = \text{logit}(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x})} \geq \frac{1}{2}$$

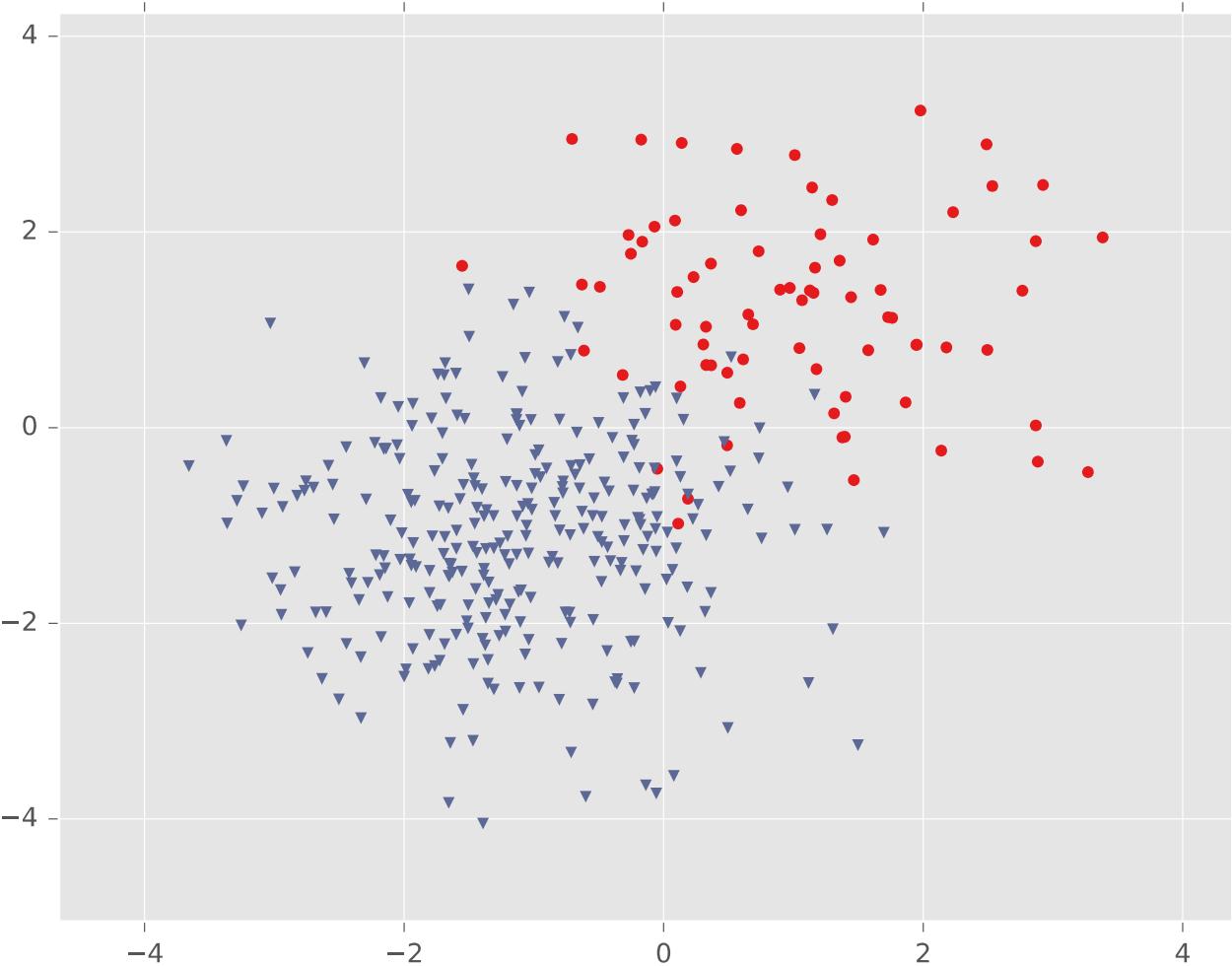
$$2 \geq 1 + \exp(-\mathbf{w}^T \mathbf{x})$$

$$1 \geq \exp(-\mathbf{w}^T \mathbf{x})$$

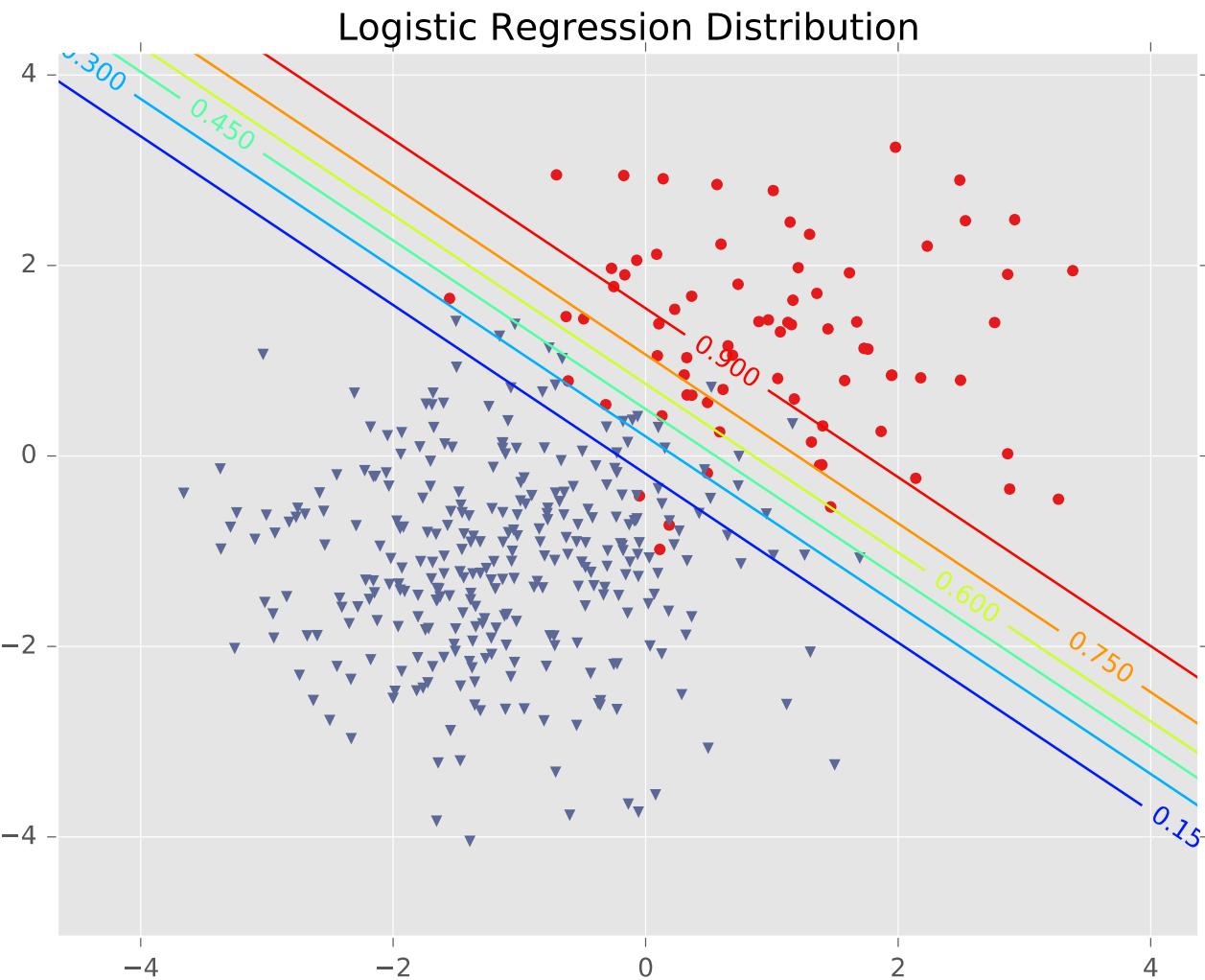
$$\log(1) \geq -\mathbf{w}^T \mathbf{x}$$

$$0 \leq \mathbf{w}^T \mathbf{x}$$

Logistic Regression Decision Boundary



Logistic Regression Decision Boundary



Logistic Regression Decision Boundary



General Recipe for Machine Learning

- Define a model and model parameters
- Write down an objective function
- Optimize the objective w.r.t. the model parameters

Recipe for Logistic Regression

- Define a model and model parameters
 - Assume independent, identically distributed (iid) data
 - Assume $P(Y = 1|X) = \text{logit}(\mathbf{w}^T \mathbf{x})$
 - Parameters: $\boldsymbol{\theta} = [w_0, w_1, \dots, w_D]$
- Write down an objective function
 - ~~Maximize the conditional log-likelihood~~
 - Minimize the negative conditional log-likelihood
- Optimize the objective w.r.t. the model parameters
 - ???

Setting the Parameters via Minimum Negative Conditional (log-)Likelihood Estimation (MCLE)

Find $\boldsymbol{\theta}$ that minimizes

$$\begin{aligned}\ell_{\mathcal{D}}(\boldsymbol{\theta}) &= -\log P(y^{(1)}, \dots, y^{(N)} | \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}, \boldsymbol{\theta}) = -\log \prod_{n=1}^N P(y^{(n)} | \mathbf{x}^{(n)}, \boldsymbol{\theta}) \\ &= -\log \prod_{n=1}^N P(Y = 1 | \mathbf{x}^{(n)}, \boldsymbol{\theta})^{y^{(n)}} \left(P(Y = 0 | \mathbf{x}^{(n)}, \boldsymbol{\theta}) \right)^{1-y^{(n)}} \\ &= -\sum_{i=1}^N y^{(n)} \log P(Y = 1 | \mathbf{x}^{(n)}, \boldsymbol{\theta}) + (1 - y^{(n)}) \log P(Y = 0 | \mathbf{x}^{(n)}, \boldsymbol{\theta}) \\ &= -\sum_{i=1}^N y^{(n)} \log \frac{P(Y = 1 | \mathbf{x}^{(n)}, \boldsymbol{\theta})}{P(Y = 0 | \mathbf{x}^{(n)}, \boldsymbol{\theta})} + \log P(Y = 0 | \mathbf{x}^{(n)}, \boldsymbol{\theta}) \\ &= -\sum_{i=1}^N y^{(n)} \boldsymbol{\theta}^T \mathbf{x}^{(n)} - \log \left(1 + \exp(\boldsymbol{\theta}^T \mathbf{x}^{(n)}) \right)\end{aligned}$$

Setting the
Parameters
via MAP?

Stay tuned for
regularization!

Find $\boldsymbol{\theta}$ that minimizes

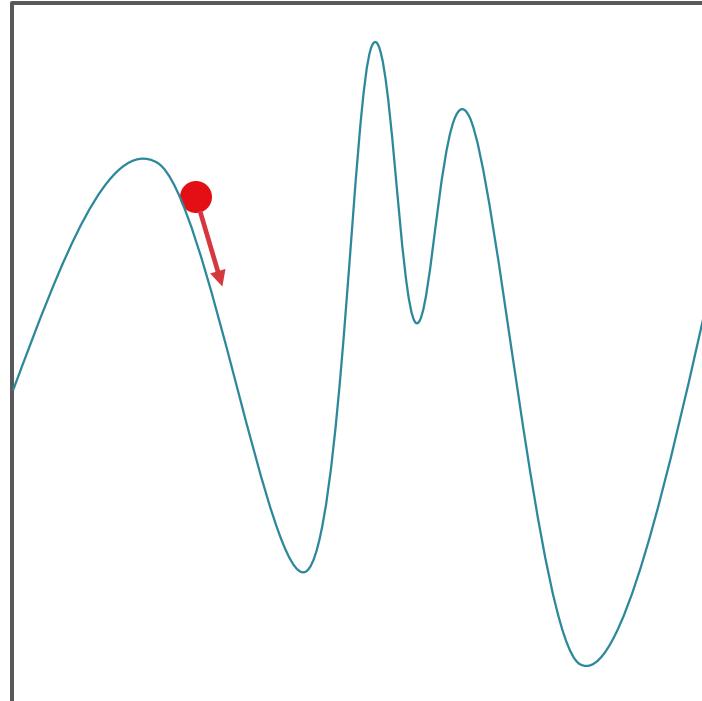
$$\begin{aligned}\ell_{\mathcal{D}}(\boldsymbol{\theta}) &= -\log P(y^{(1)}, \dots, y^{(N)} | \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}, \boldsymbol{\theta}) = -\log \prod_{n=1}^N P(y^{(n)} | \mathbf{x}^{(n)}, \boldsymbol{\theta}) \\ &= -\log \prod_{n=1}^N P(Y = 1 | \mathbf{x}^{(n)}, \boldsymbol{\theta})^{y^{(n)}} \left(P(Y = 0 | \mathbf{x}^{(n)}, \boldsymbol{\theta}) \right)^{1-y^{(n)}} \\ &= -\sum_{i=1}^N y^{(n)} \log P(Y = 1 | \mathbf{x}^{(n)}, \boldsymbol{\theta}) + (1 - y^{(n)}) \log P(Y = 0 | \mathbf{x}^{(n)}, \boldsymbol{\theta}) \\ &= -\sum_{i=1}^N y^{(n)} \log \frac{P(Y = 1 | \mathbf{x}^{(n)}, \boldsymbol{\theta})}{P(Y = 0 | \mathbf{x}^{(n)}, \boldsymbol{\theta})} + \log P(Y = 0 | \mathbf{x}^{(n)}, \boldsymbol{\theta}) \\ &= -\sum_{i=1}^N y^{(n)} \boldsymbol{\theta}^T \mathbf{x}^{(n)} - \log \left(1 + \exp(\boldsymbol{\theta}^T \mathbf{x}^{(n)}) \right)\end{aligned}$$

Minimizing the Negative Conditional (log-)Likelihood

$$\begin{aligned}\ell_{\mathcal{D}}(\boldsymbol{\theta}) &= - \sum_{n=1}^N y^{(n)} \boldsymbol{\theta}^T \mathbf{x}^{(n)} - \log(1 + \exp(\boldsymbol{\theta}^T \mathbf{x}^{(n)})) \\ \nabla_{\boldsymbol{\theta}} \ell_{\mathcal{D}}(\boldsymbol{\theta}) &= - \sum_{n=1}^N y^{(n)} \nabla_{\boldsymbol{\theta}} \boldsymbol{\theta}^T \mathbf{x}^{(n)} - \nabla_{\boldsymbol{\theta}} \log(1 + \exp(\boldsymbol{\theta}^T \mathbf{x}^{(n)})) \\ &= - \sum_{n=1}^N y^{(n)} \mathbf{x}^{(n)} - \frac{\exp(\boldsymbol{\theta}^T \mathbf{x}^{(n)})}{1 + \exp(\boldsymbol{\theta}^T \mathbf{x}^{(n)})} \mathbf{x}^{(n)} \\ &= \sum_{n=1}^N \mathbf{x}^{(n)} (P(Y=1|\mathbf{x}^{(n)}, \boldsymbol{\theta}) - y^{(n)})\end{aligned}$$

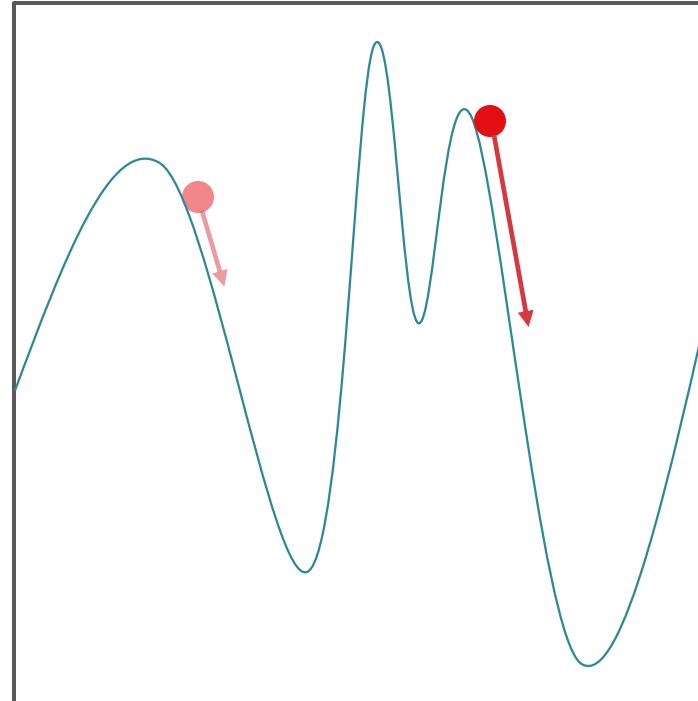
Gradient Descent: Intuition

- An iterative method for minimizing functions
- Requires the gradient to exist everywhere



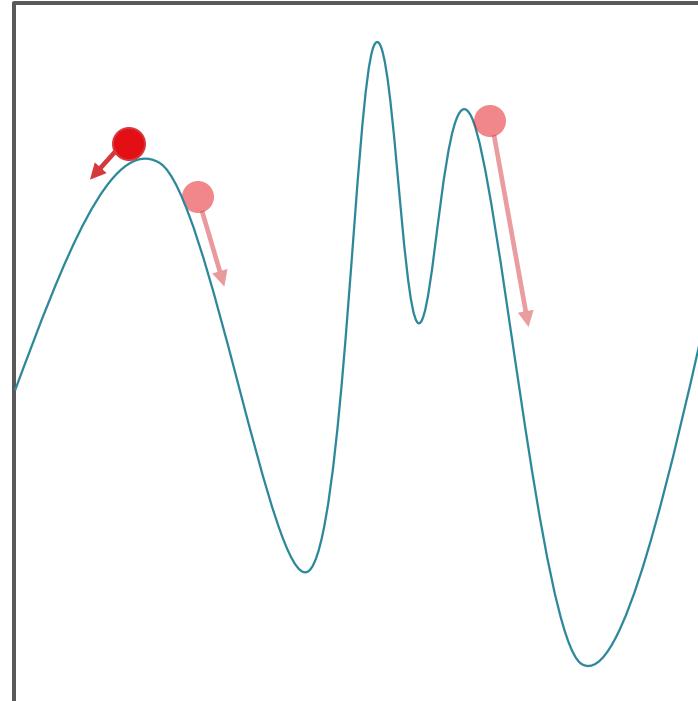
Gradient Descent: Intuition

- An iterative method for minimizing functions
- Requires the gradient to exist everywhere



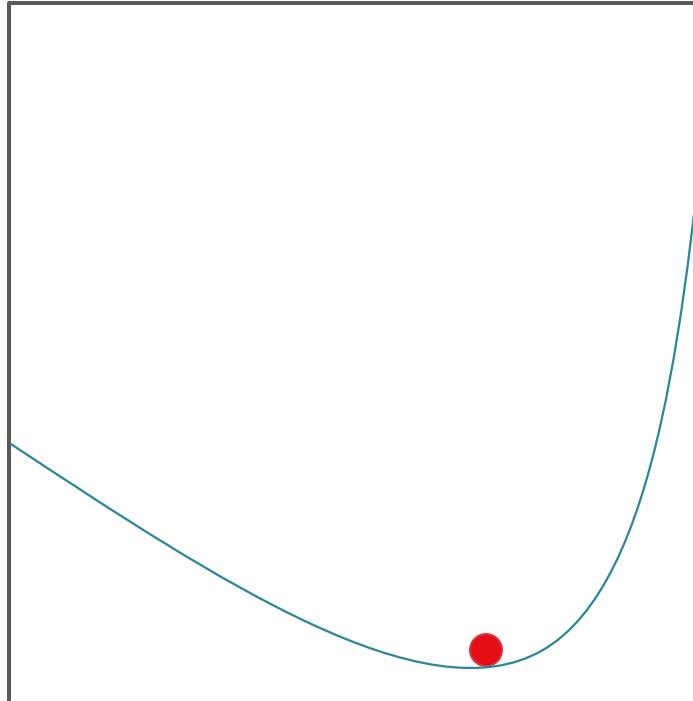
Gradient Descent: Intuition

- An iterative method for minimizing functions
- Requires the gradient to exist everywhere



Gradient Descent: Intuition

- An iterative method for minimizing functions
- Requires the gradient to exist everywhere



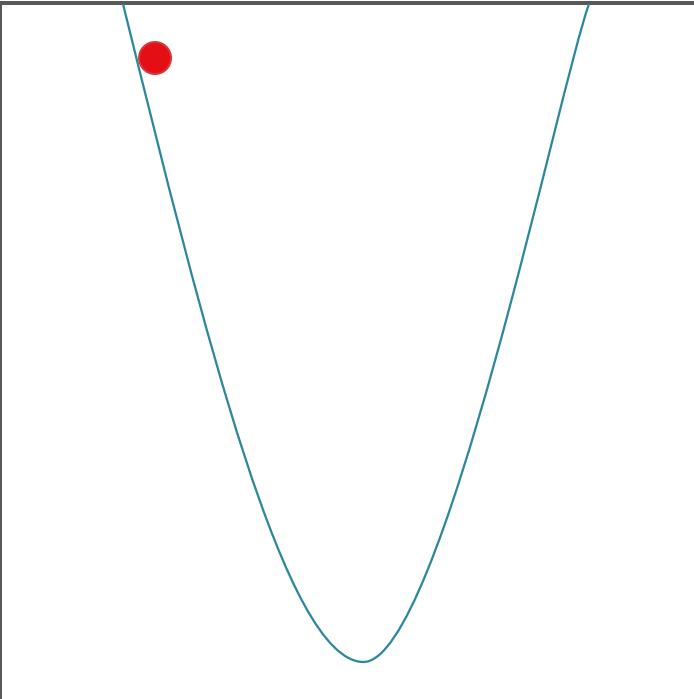
- Good news: the negative conditional log-likelihood is *convex*!

Gradient Descent: Step Direction

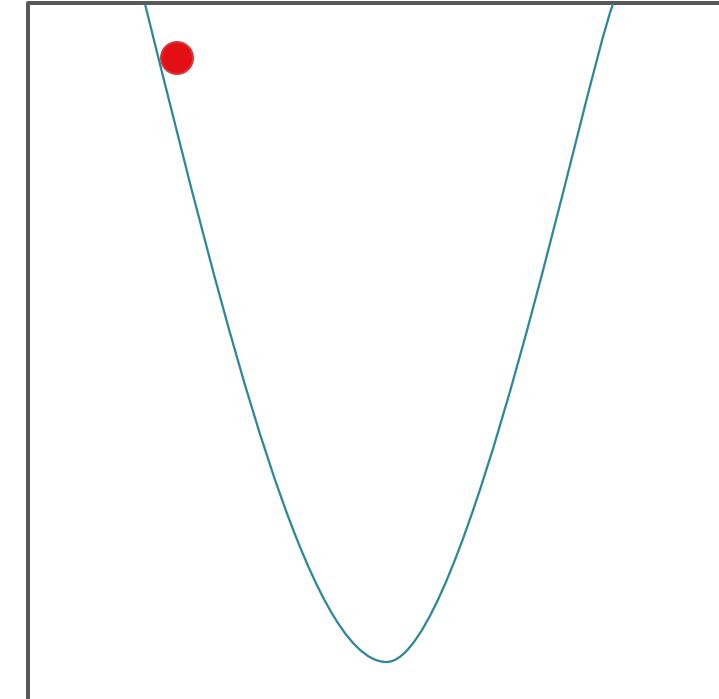
- Suppose the current parameter vector is $\boldsymbol{\theta}^{(t)}$
- Move some distance, η , in the “most downhill” direction, $\hat{\boldsymbol{v}}$:
$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \eta \hat{\boldsymbol{v}}$$
- The gradient points in the direction of steepest *increase* ...
- ... so $\hat{\boldsymbol{v}}$ is a unit vector pointing in the opposite direction:

$$\hat{\boldsymbol{v}}^{(t)} = - \frac{\nabla_{\boldsymbol{\theta}} \ell_{\mathcal{D}}(\boldsymbol{\theta}^{(t)})}{\|\nabla_{\boldsymbol{\theta}} \ell_{\mathcal{D}}(\boldsymbol{\theta}^{(t)})\|}$$

Gradient Descent: Step Size

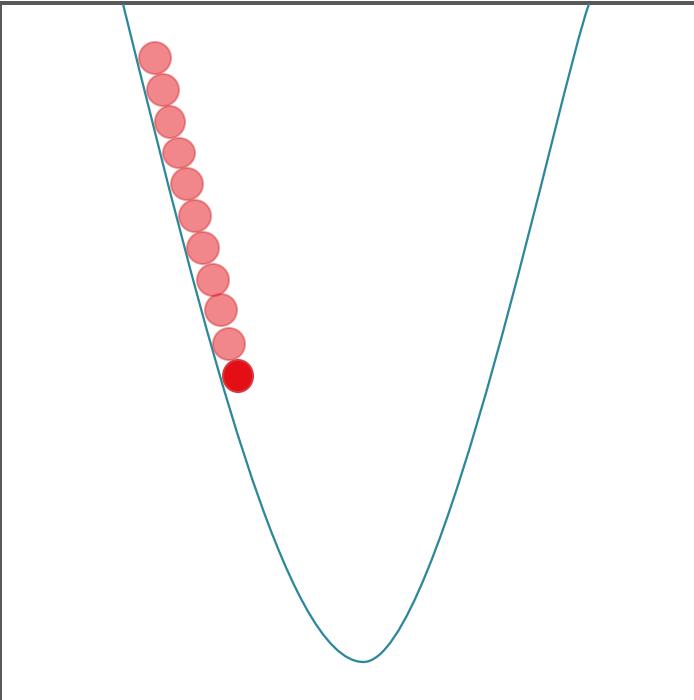


Small η



Large η

Gradient Descent: Step Size

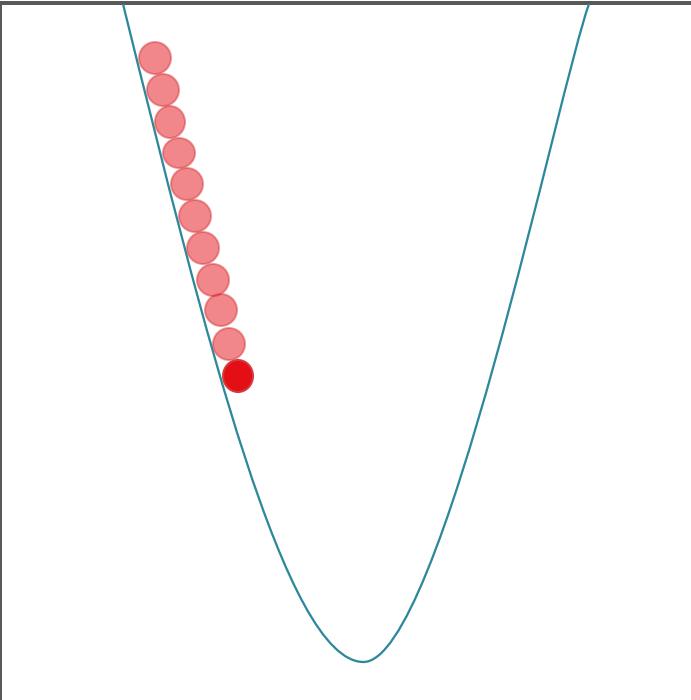


Small η

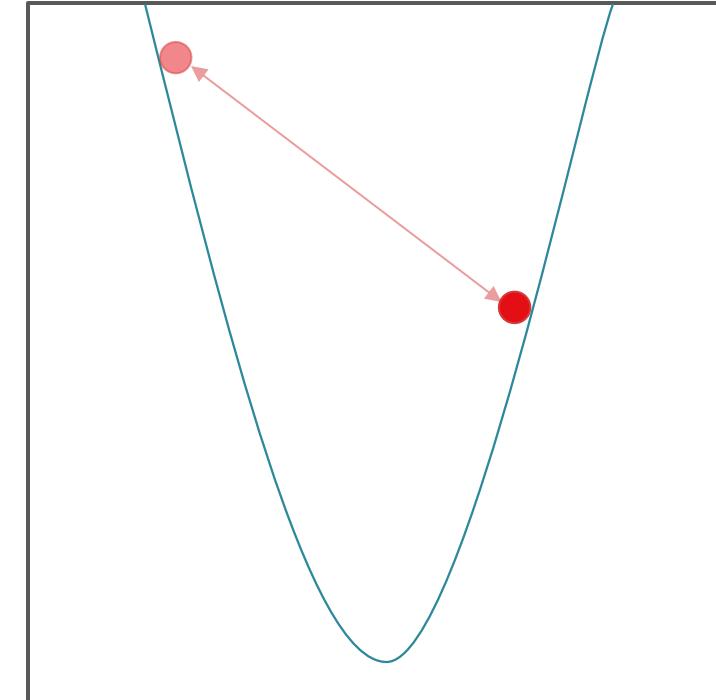


Large η

Gradient Descent: Step Size



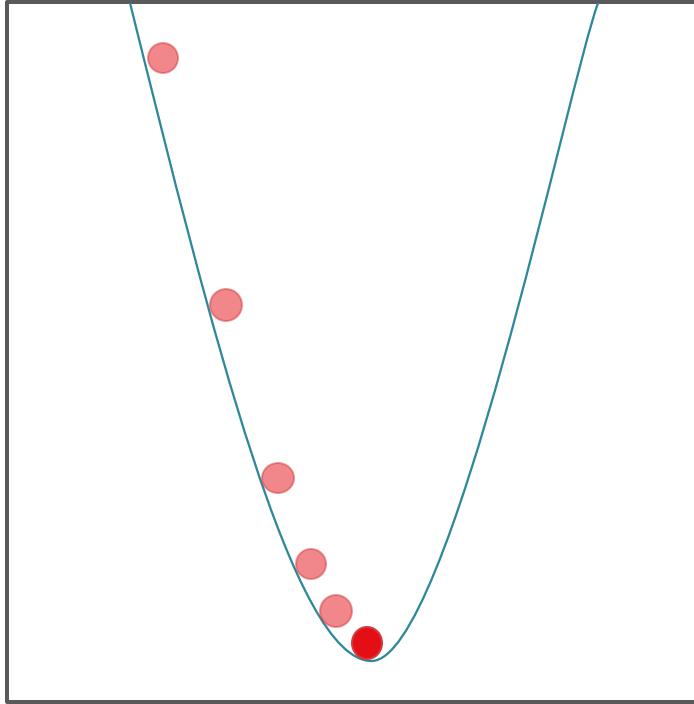
Small η



Large η

Gradient Descent: Step Size

- Use a variable $\eta^{(t)}$ instead of a fixed η !



- Set $\eta^{(t)} = \eta^{(0)} \|\nabla_{\theta} \ell_{\mathcal{D}}(\theta^{(t)})\|$
- $\|\nabla_{\theta} \ell_{\mathcal{D}}(\theta^{(t)})\|$ decreases as $\ell_{\mathcal{D}}$ approaches its minimum $\rightarrow \eta^{(t)}$ (hopefully) decreases over time

Gradient Descent

- $\hat{\mathbf{v}}^{(t)} = - \frac{\nabla_{\boldsymbol{\theta}} \ell_{\mathcal{D}}(\boldsymbol{\theta}^{(t)})}{\|\nabla_{\boldsymbol{\theta}} \ell_{\mathcal{D}}(\boldsymbol{\theta}^{(t)})\|}$
- $\eta^{(t)} = \eta^{(0)} \|\nabla_{\boldsymbol{\theta}} \ell_{\mathcal{D}}(\boldsymbol{\theta}^{(t)})\|$
- $$\begin{aligned} \boldsymbol{\theta}^{(t+1)} &= \boldsymbol{\theta}^{(t)} + \eta^{(t)} \hat{\mathbf{v}}^{(t)} \\ &= \boldsymbol{\theta}^{(t)} + (\eta^{(0)} \|\nabla_{\boldsymbol{\theta}} \ell_{\mathcal{D}}(\boldsymbol{\theta}^{(t)})\|) \left(-\frac{\nabla_{\boldsymbol{\theta}} \ell_{\mathcal{D}}(\boldsymbol{\theta}^{(t)})}{\|\nabla_{\boldsymbol{\theta}} \ell_{\mathcal{D}}(\boldsymbol{\theta}^{(t)})\|} \right) \\ &= \boldsymbol{\theta}^{(t)} - \eta^{(0)} \nabla_{\boldsymbol{\theta}} \ell_{\mathcal{D}}(\boldsymbol{\theta}^{(t)}) \end{aligned}$$

Gradient Descent

- Input: $\mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^N, \eta^{(0)}$
- 1. Initialize the parameters $\boldsymbol{\theta}^{(0)}$ and set $t = 0$
- 2. While TERMINATION CRITERION is not satisfied
 - a. Compute the gradient:
$$\nabla_{\boldsymbol{\theta}} \ell_{\mathcal{D}} (\boldsymbol{\theta}^{(t)})$$
 - b. Update $\boldsymbol{\theta}$: $\boldsymbol{\theta}^{(t+1)} \leftarrow \boldsymbol{\theta}^{(t)} - \eta^{(0)} \nabla_{\boldsymbol{\theta}} \ell_{\mathcal{D}} (\boldsymbol{\theta}^{(t)})$
 - c. Increment t : $t \leftarrow t + 1$
- Output: $\boldsymbol{\theta}^{(t)}$

Key Takeaways

- Logistic regression
 - Logistic function induces a linear decision boundary
 - Conditional likelihood maximization
- Gradient descent
 - Effect of step size
 - Termination criteria