10-301/601: Introduction to Machine Learning Lecture 8 – MLE & MAP

Front Matter

- Announcements:
 - HW2 released on 5/16, due 5/20 (tomorrow!) at 11:59 PM
 - HW3 to be released on 5/20 (tomorrow!), due 5/23 at 11:59 PM

Probabilistic Learning

- Previously:
 - (Unknown) Target function, $c^*: \mathcal{X} \to \mathcal{Y}$
 - Classifier, $h: \mathcal{X} \to \mathcal{Y}$
 - Goal: find a classifier, h, that best approximates c^*
- Now:
 - (Unknown) Target distribution, $y \sim p^*(Y|x)$
 - Distribution, p(Y|x)
 - Goal: find a distribution, p, that best approximates p^*

Likelihood

- Given N independent, identically distribution (iid) samples $\mathcal{D} = \{x^{(1)}, \dots, x^{(N)}\}$ of a random variable X
 - If X is discrete with probability mass function (pmf) $p(X|\theta)$, then the *likelihood* of \mathcal{D} is

$$L(\theta) = \prod_{n=1}^{N} p(x^{(n)}|\theta)$$

• If X is continuous with probability density function (pdf) $f(X|\theta)$, then the *likelihood* of \mathcal{D} is

$$L(\theta) = \prod_{n=1}^{N} f(x^{(n)}|\theta)$$

Log-Likelihood

- Given N independent, identically distribution (iid) samples $\mathcal{D} = \{x^{(1)}, \dots, x^{(N)}\}$ of a random variable X
 - If X is discrete with probability mass function (pmf) $p(X|\theta)$, then the log-likelihood of \mathcal{D} is

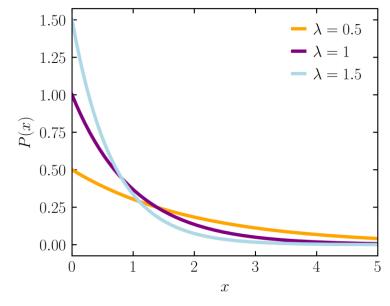
$$\ell(\theta) = \log \prod_{n=1}^{N} p(x^{(n)}|\theta) = \sum_{n=1}^{N} \log p(x^{(n)}|\theta)$$

• If X is continuous with probability density function (pdf) $f(X|\theta)$, then the log-likelihood of \mathcal{D} is

$$\ell(\theta) = \log \prod_{n=1}^{N} f(x^{(n)}|\theta) = \sum_{n=1}^{N} \log f(x^{(n)}|\theta)$$

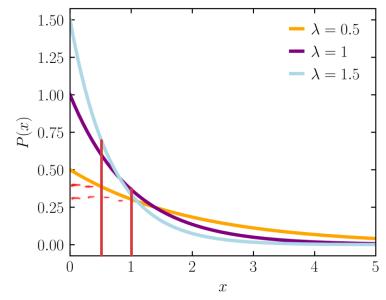
Maximum Likelihood Estimation (MLE)

- Insight: every valid probability distribution has a finite amount of probability mass as it must sum/integrate to 1
- Idea: set the parameter(s) so that the likelihood of the samples is maximized
- Intuition: assign as much of the (finite) probability mass to the observed data at the expense of unobserved data
- Example: the exponential distribution



Maximum Likelihood Estimation (MLE)

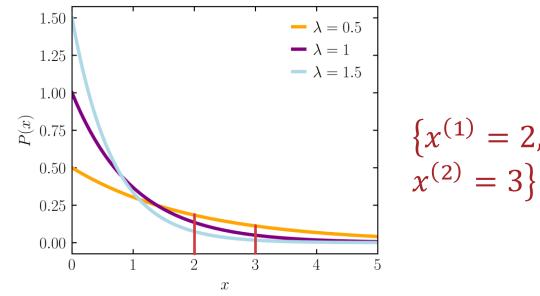
- Insight: every valid probability distribution has a finite amount of probability mass as it must sum/integrate to 1
- Idea: set the parameter(s) so that the likelihood of the samples is maximized
- Intuition: assign as much of the (finite) probability mass to the observed data at the expense of unobserved data
- Example: the exponential distribution



$$\begin{cases} x^{(1)} = 0.5, \\ x^{(2)} = 1 \end{cases}$$

Maximum Likelihood Estimation (MLE)

- Insight: every valid probability distribution has a finite amount of probability mass as it must sum/integrate to 1
- Idea: set the parameter(s) so that the likelihood of the samples is maximized
- Intuition: assign as much of the (finite) probability mass to the observed data at the expense of unobserved data
- Example: the exponential distribution



General Recipe for Machine Learning

Define a model and model parameters

Write down an objective function

Optimize the objective w.r.t. the model parameters

Recipe for **MLE**

 Define a model and model parameters - specify the generative story of D i.e. pick the distribution we're going

- Write down an objective function
 - maximise the log-likelihood of D

 as a function of O $L(O) = \sum_{i=1}^{\infty} log p(x^{(n)})O$ imize the objective
- Optimize the objective w.r.t. the model parameters

Solve "in closed form using the critical point method

Exponential Distribution MLE

The pdf of the exponential distribution is

$$f(x|\lambda) = \lambda e^{-\lambda x}$$

• Given
$$N$$
 iid samples $\{x^{(1)}, ..., x^{(N)}\}$, the likelihood is
$$L(\lambda) = \prod_{N=1}^{N} \lambda_{e} - \lambda_{x}(\lambda)$$

log(a.bc) = loga + logb + logc

Exponential Distribution MLE

• The pdf of the exponential distribution is

$$f(x|\lambda) = \lambda e^{-\lambda x}$$

• Given N iid samples $\{x^{(1)}, ..., x^{(N)}\}$, the log-likelihood is

$$L(\lambda) = \sum_{n=1}^{\infty} \log \left(\lambda e^{-\lambda x^{(n)}}\right)$$

$$= \sum_{n=1}^{\infty} \log \lambda + \left(-\lambda x^{(n)}\right)$$

$$=$$

Bernoulli Distribution MLE

- A Bernoulli random variable takes value 1 with probability ϕ and value 0 with probability $1-\phi$
- The pmf of the Bernoulli distribution is

$$p(x|\phi) = \phi^x (1-\phi)^{1-x}$$

log (abod) = losab+ losad = 6 loga + 2 log c Coin **Flipping** MLE

- A Bernoulli random variable takes value 1 (or heads) with probability ϕ and value 0 (or tails) with probability $1-\phi$
- The pmf of the Bernoulli distribution is $p(x|\phi) = \phi^x (1-\phi)^{1-x}$
- Given N iid samples $\{x^{(1)}, ..., x^{(N)}\}$, the log-likelihood is $\mathcal{L}(\phi) = \sum_{n=1}^{\infty} \log \left(\phi^{\chi(n)}(1-\phi)^{1-\chi(n)}\right)$ $= \sum_{i=1}^{N} x_{(N)} \left(o^2 \otimes + \left(1 - x_{(V)} \right) \right) \left(o^2$ = N, log \$ + No log (1-\$) $N_j = \text{# of } j(s) \text{ in my}$ $\text{deteset } \{x^{(i)}, x^{(N)}\}$

Coin Flipping MLE

- A Bernoulli random variable takes value 1 (or heads) with probability ϕ and value 0 (or tails) with probability $1-\phi$
- The pmf of the Bernoulli distribution is $p(x|\phi) = \phi^x (1-\phi)^{1-x}$
- The partial derivative of the log-likelihood is $\ell(\phi) = N_1 \log \phi + N_0 \log (1-\phi)$

0 surveys completed

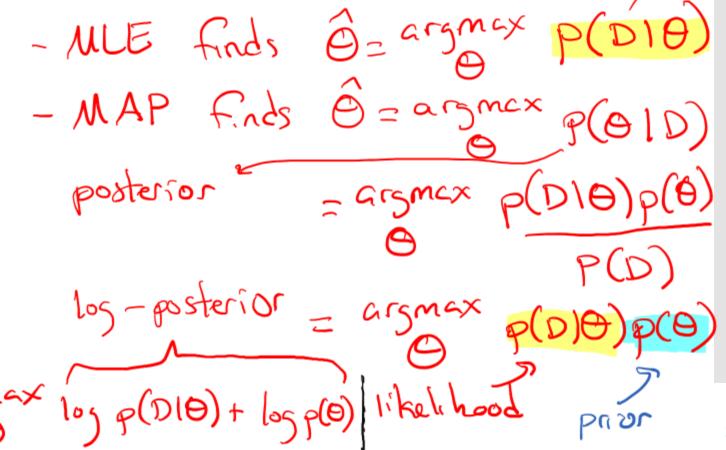
0 surveys underway

Given the result of your 5 coin flips, what is the MLE of ϕ for your coin?

0/5 1/5 2/5 3/5 4/5 5/5 6({ x (1) x (5) ...) x (10) 3 (0)

Maximum a Posteriori (MAP) Estimation

- Insight: sometimes we have *prior* information we want to incorporate into parameter estimation
- Idea: use Bayes rule to reason about the *posterior* distribution over the parameters



Recipe for MAP

Define a model and model parameters

Write down an objective function

$$L_{MAP}(\Theta) = \sum_{n=1}^{N} \log_{p}(x^{(n)} 10)$$

$$+ \log_{p}(\Theta)$$

Optimize the objective w.r.t. the model parameters

Coin Flipping MAP

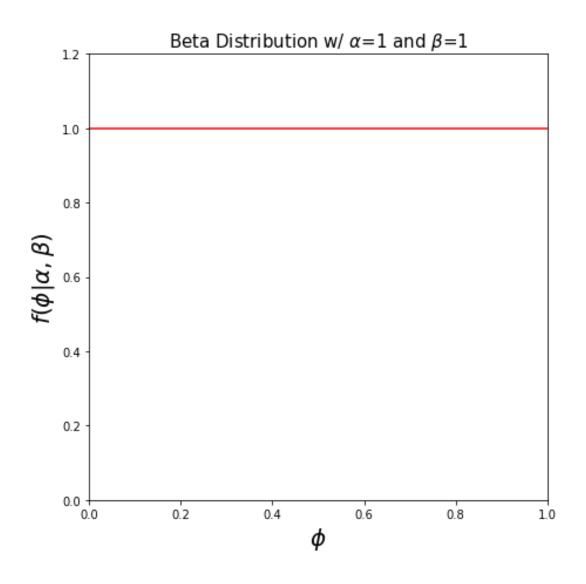
- A Bernoulli random variable takes value 1 (or heads) with probability ϕ and value 0 (or tails) with probability $1-\phi$
- The pmf of the Bernoulli distribution is

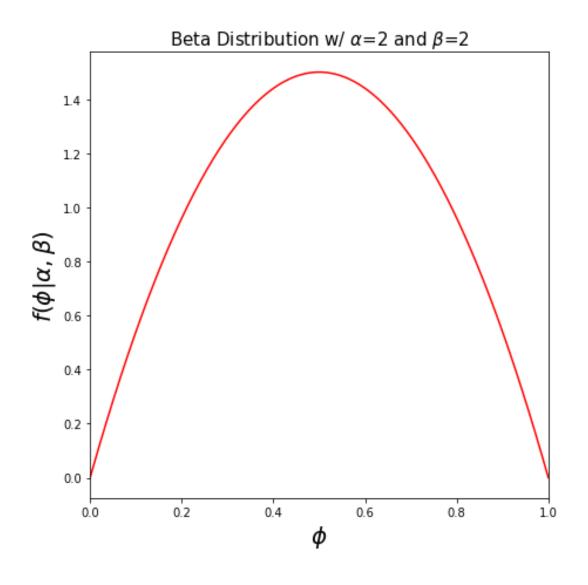
$$p(x|\phi) = \phi^x (1-\phi)^{1-x}$$

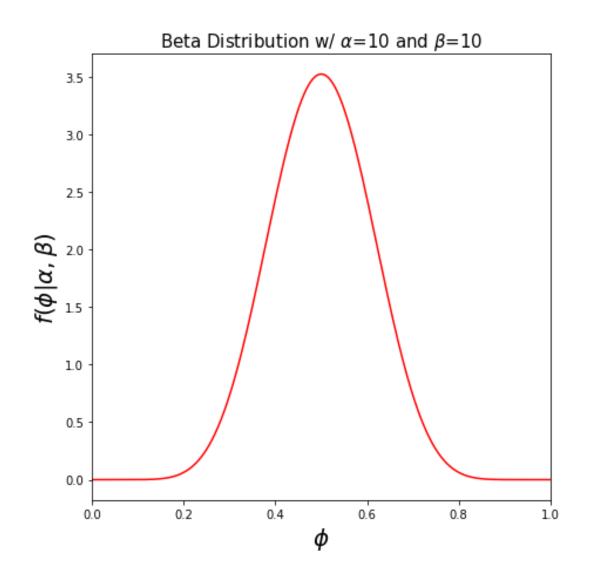
• Assume a Beta prior over the parameter ϕ , which has pdf

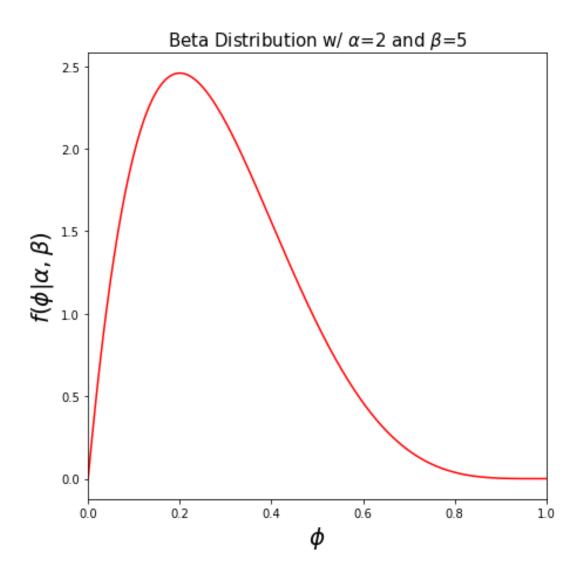
$$f(\phi|\alpha,\beta) = \frac{\phi^{\alpha-1}(1-\phi)^{\beta-1}}{B(\alpha,\beta)}$$

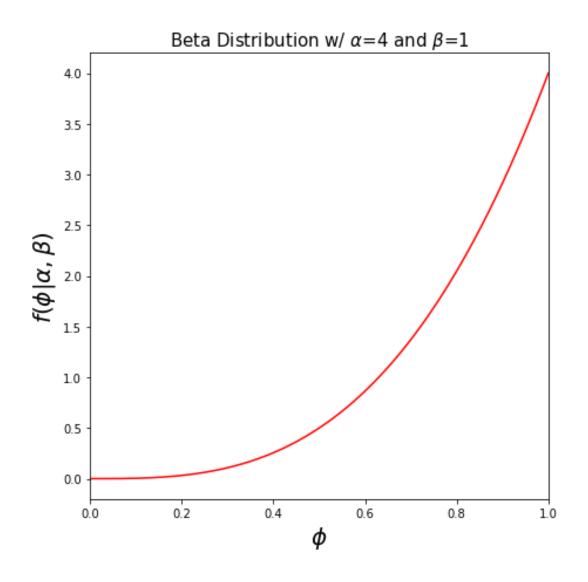
where $B(\alpha, \beta) = \int_0^1 \phi^{\alpha-1} (1-\phi)^{\beta-1} d\phi$ is a normalizing constant to ensure the distribution integrates to 1



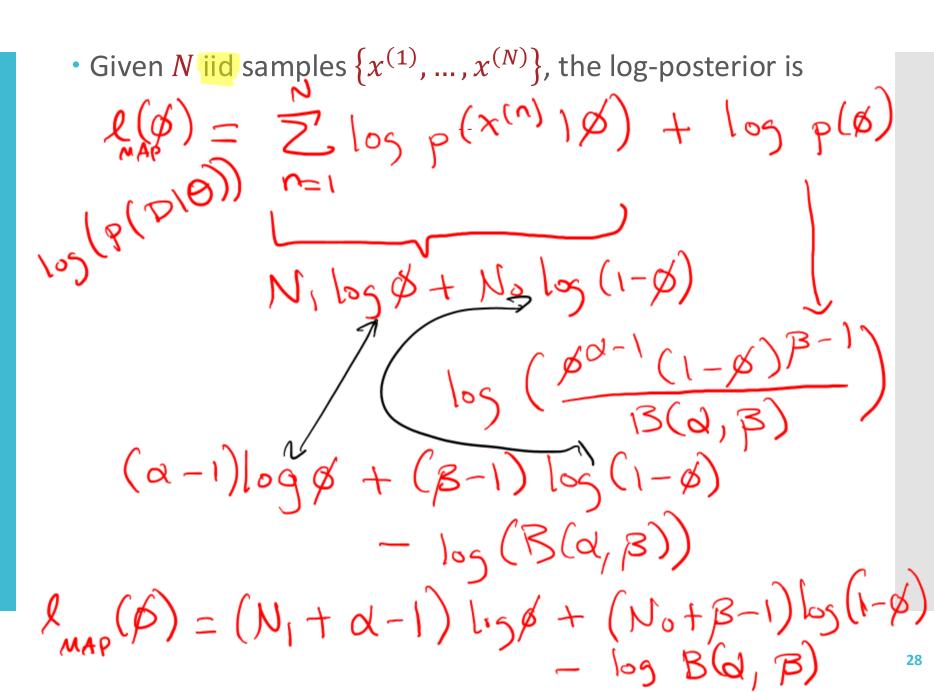








Coin Flipping MAP



Coin Flipping MAP

• Given N iid samples $\{x^{(1)}, ..., x^{(N)}\}$, the partial derivative of the log-posterior is

the log-posterior is
$$l_{MAP}(\phi) = (N_1 + \alpha - 1) l_{MS} + (N_0 + \beta - 1) l_{MS} + (N_0 + \beta$$

$$\frac{\partial l_{MRP}}{\partial \phi} = \frac{N_1 + \alpha - 1}{\phi} - \frac{N_0 + \beta - 1}{1 - \phi}$$

$$\hat{\beta} = \frac{N_1 + \alpha - 1}{(N_1 + \alpha - 1) + (N_0 + \beta - 1)}$$

$$(\alpha - 1) \omega (\beta - 1) \text{ ar pseudocounts" of heads tails}$$

Coin Flipping MAP: Example

• Suppose $\mathcal D$ consists of ten 1's or heads ($N_1=10$) and two 0's or tails ($N_0=2$):

$$\phi_{MLE} = \frac{10}{10+2} = \frac{10}{12}$$

• Using a Beta prior with $\alpha=2$ and $\beta=5$, then

Coin Flipping MAP: Example

• Suppose \mathcal{D} consists of ten 1's or heads ($N_1 = 10$) and two 0's or tails ($N_0 = 2$):

$$\phi_{MLE} = \frac{10}{10+2} = \frac{10}{12}$$

• Using a Beta prior with $\alpha=101$ and $\beta=101$, then

$$\rho_{MAP} = \frac{110}{10+102} = \frac{110}{212} \approx 0.5$$

Coin Flipping MAP: Example

• Suppose $\mathcal D$ consists of ten 1's or heads ($N_1=10$) and two 0's or tails ($N_0=2$):

$$\phi_{MLE} = \frac{10}{10+2} = \frac{10}{12}$$

• Using a Beta prior with $\alpha = 1$ and $\beta = 1$, then

Key Takeaways

- Probabilistic learning tries to learn a probability distribution as opposed to a classifier
- Two ways of estimating the parameters of a probability distribution given samples of a random variable:
 - Maximum likelihood estimation maximize the (log-)likelihood of the observations
 - Maximum a posteriori estimation maximize the (log-)posterior of the parameters conditioned on the observations
 - Requires a prior distribution, drawn from background knowledge or domain expertise