

10-301/601: Introduction to Machine Learning Lecture 7 – Perceptron

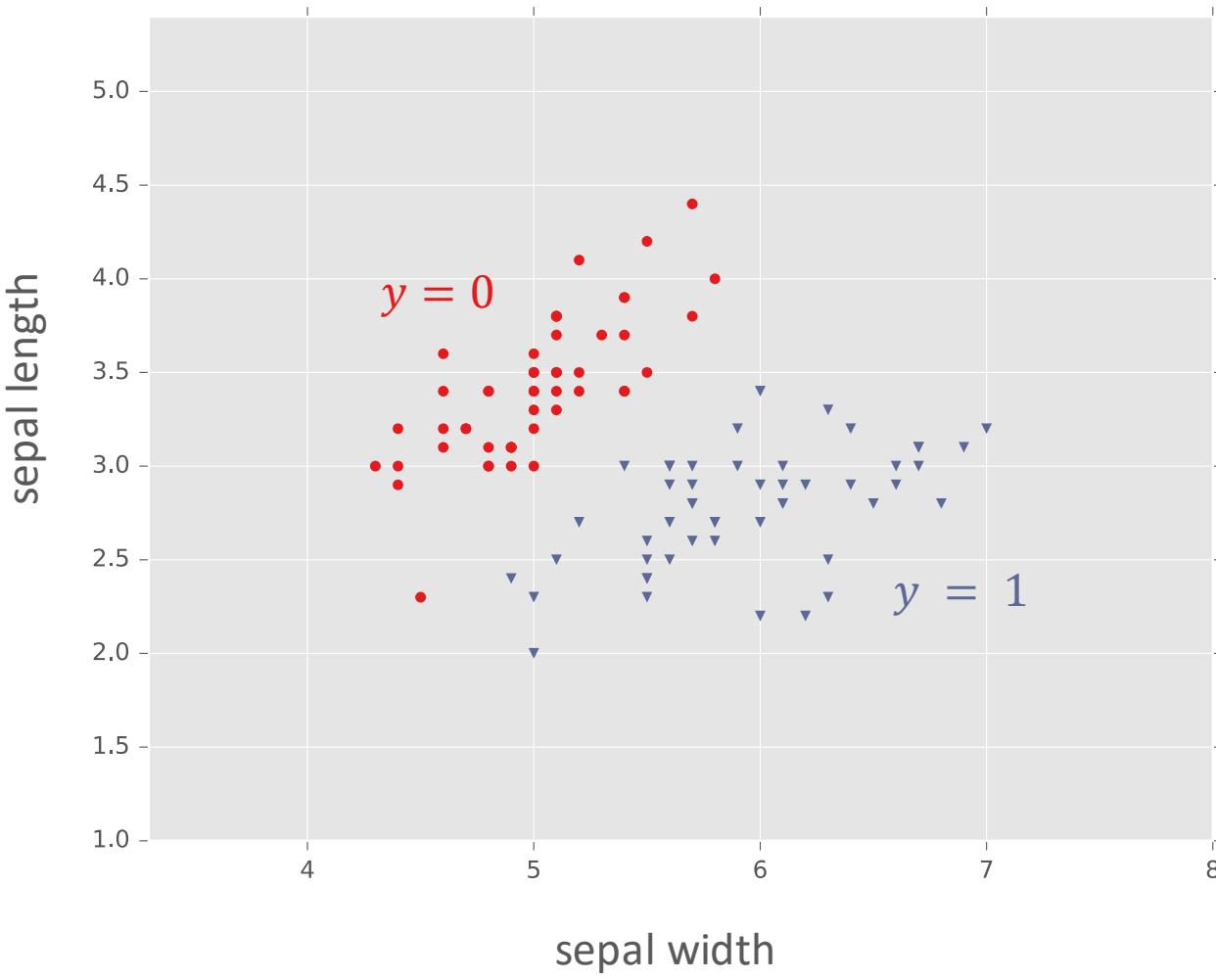
Henry Chai

5/15/25

Front Matter

- Announcements:
 - HW1 released on 5/13, due 5/16 (tomorrow!) at 11:59 PM
 - HW2 to be released 5/16 (tomorrow!), due 5/20 at 11:59 PM
 - Quiz 1 on 5/16 (tomorrow!) at 11:00 AM in BH A36 (here)
 - Recitation (immediately after today's lecture) will be a review of this week's material to help you prepare for tomorrow's quiz

Recall: Fisher Iris Dataset



Linear Algebra Review

- Notation: in this class vectors will be assumed to be column vectors by default, i.e.,

$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_D \end{bmatrix} \text{ and } \mathbf{a}^T = [a_1 \quad a_2 \quad \cdots \quad a_D]$$

- The dot product between two D -dimensional vectors is

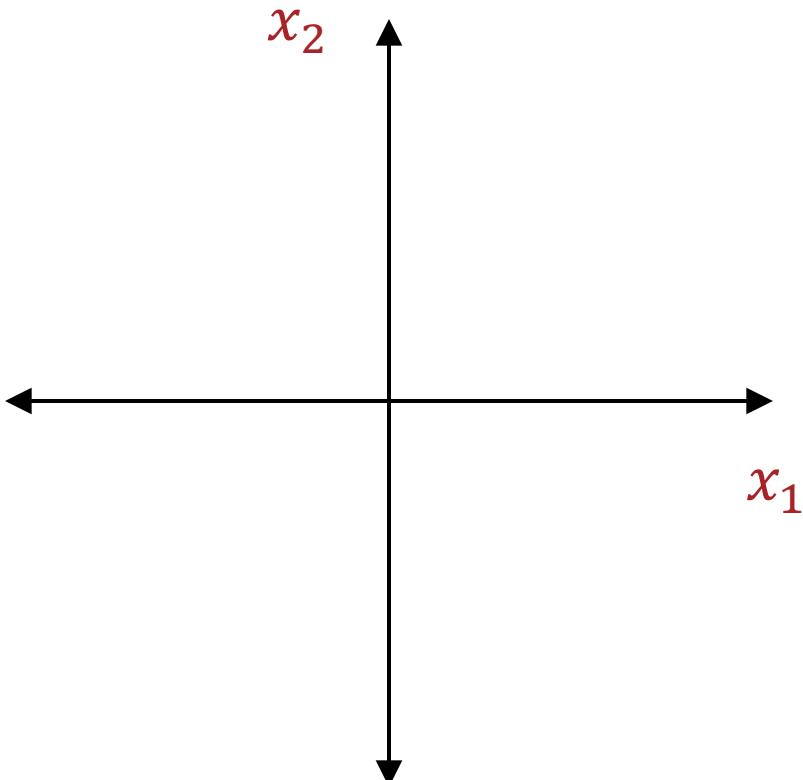
$$\mathbf{a}^T \mathbf{b} = [a_1 \quad a_2 \quad \cdots \quad a_D] \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_D \end{bmatrix} = \sum_{d=1}^D a_d b_d$$

- The L2-norm of $\mathbf{a} = \|\mathbf{a}\|_2 = \sqrt{\mathbf{a}^T \mathbf{a}}$
- Two vectors are *orthogonal* iff

$$\mathbf{a}^T \mathbf{b} = 0$$

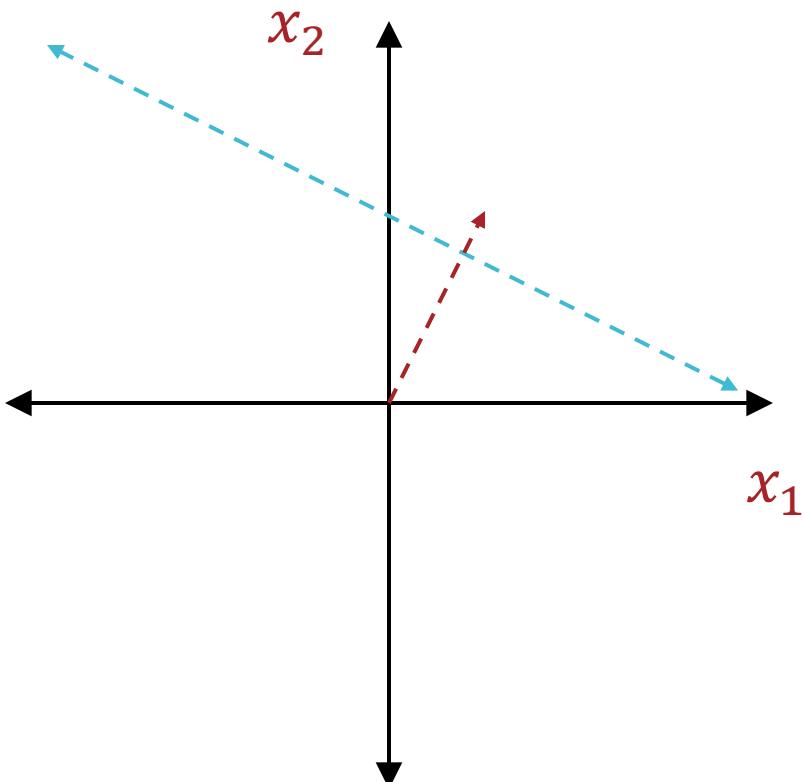
Geometry Warm-up

1. On the axes below, draw the region corresponding to
 $w_1x_1 + w_2x_2 + b > 0$
where $w_1 = 1$, $w_2 = 2$ and $b = -4$.
2. Then draw the vector $w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$



Geometry Warm-up

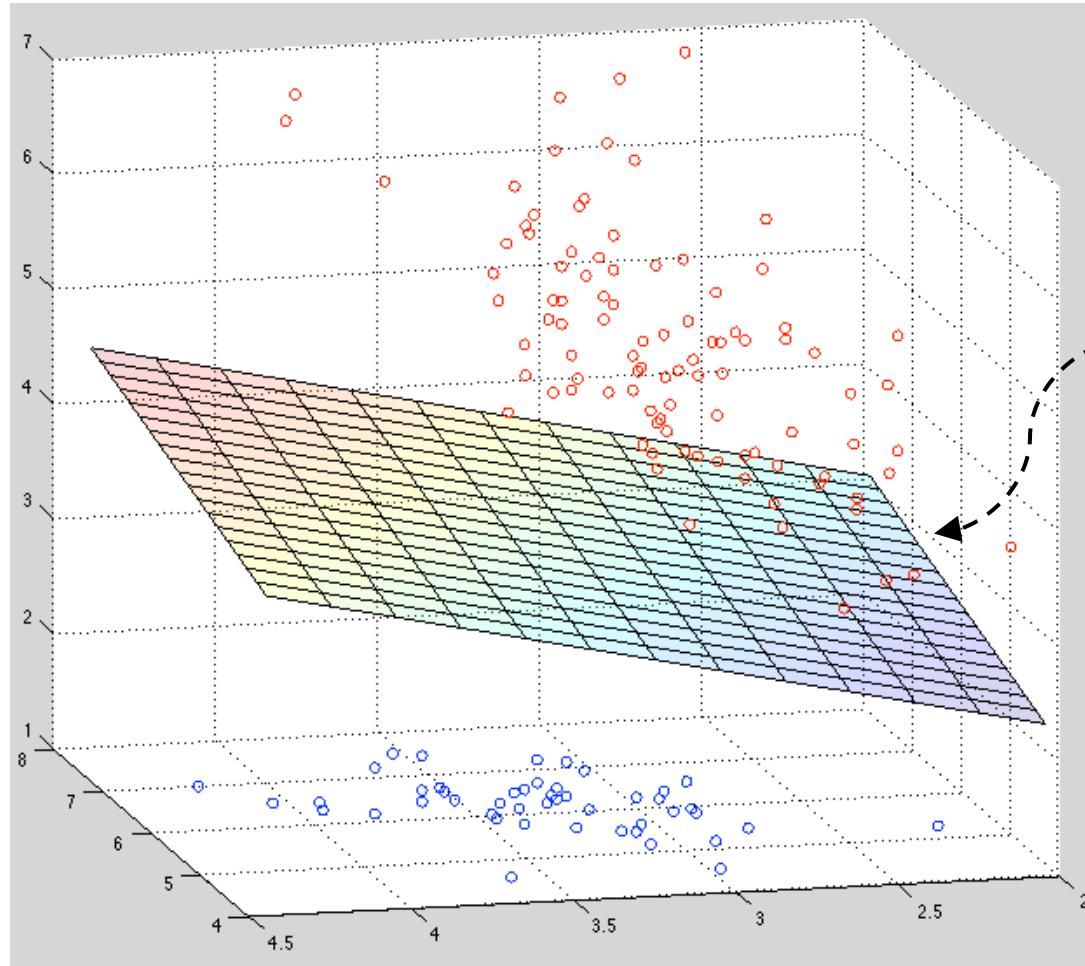
1. On the axes below, draw the region corresponding to
 $w_1x_1 + w_2x_2 + b > 0$
where $w_1 = 1$, $w_2 = 2$ and $b = -4$.
2. Then draw the vector $w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$



Linear Decision Boundaries

- In 2 dimensions, $w_1x_1 + w_2x_2 + b = 0$ defines a *line*
- In 3 dimensions, $w_1x_1 + w_2x_2 + w_3x_3 + b = 0$ defines a *plane*
- In 4+ dimensions, $\mathbf{w}^T \mathbf{x} + b = 0$ defines a *hyperplane*
 - The vector \mathbf{w} is always orthogonal to this hyperplane and always points in the direction where $\mathbf{w}^T \mathbf{x} + b > 0$!
- A hyperplane creates two *halfspaces*:
 - $\mathcal{S}_+ = \{\mathbf{x}: \mathbf{w}^T \mathbf{x} + b > 0\}$ or all \mathbf{x} s.t. $\mathbf{w}^T \mathbf{x} + b$ is positive
 - $\mathcal{S}_- = \{\mathbf{x}: \mathbf{w}^T \mathbf{x} + b < 0\}$ or all \mathbf{x} s.t. $\mathbf{w}^T \mathbf{x} + b$ is negative

Linear Decision Boundaries: Example



Goal: learn
classifiers of the
form $h(\mathbf{x}) =$
 $\text{sign}(\mathbf{w}^T \mathbf{x} + b)$
(assuming
 $y \in \{-1, +1\}$)

Key question:
how do we learn
the *parameters*,
 \mathbf{w} and b ?

Online Learning

- So far, we've been learning in the *batch* setting, where we have access to the entire training dataset at once
- A common alternative is the *online* setting, where examples arrive gradually and we learn continuously
- Examples of online learning:
 - Predicting stock prices
 - Recommender systems
 - Medical diagnosis
 - Robotics

Online Learning: Setup

- For $t = 1, 2, 3, \dots$
 - Receive an unlabeled example, $\mathbf{x}^{(t)}$
 - Predict its label, $\hat{y} = h_{\mathbf{w}, b}(\mathbf{x}^{(t)})$
 - Observe its true label, $y^{(t)}$
 - Pay a penalty if we made a mistake, $\hat{y} \neq y^{(t)}$
 - Update the parameters, \mathbf{w} and b
- Goal: minimize the number of mistakes made

(Online) Perceptron Learning Algorithm

- Initialize the weight vector and intercept to all zeros:
 $\mathbf{w} = [0 \quad 0 \quad \cdots \quad 0]$ and $b = 0$
- For $t = 1, 2, 3, \dots$
 - Receive an unlabeled example, $\mathbf{x}^{(t)}$
 - Predict its label, $\hat{y} = \text{sign}(\mathbf{w}^T \mathbf{x} + b) = \begin{cases} +1 & \text{if } \mathbf{w}^T \mathbf{x} + b \geq 0 \\ -1 & \text{otherwise} \end{cases}$
 - Observe its true label, $y^{(t)}$
 - If we misclassified a positive example ($y^{(t)} = +1, \hat{y} = -1$):
 - $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{x}^{(t)}$
 - $b \leftarrow b + 1$
 - If we misclassified a negative example ($y^{(t)} = -1, \hat{y} = +1$):
 - $\mathbf{w} \leftarrow \mathbf{w} - \mathbf{x}^{(t)}$
 - $b \leftarrow b - 1$

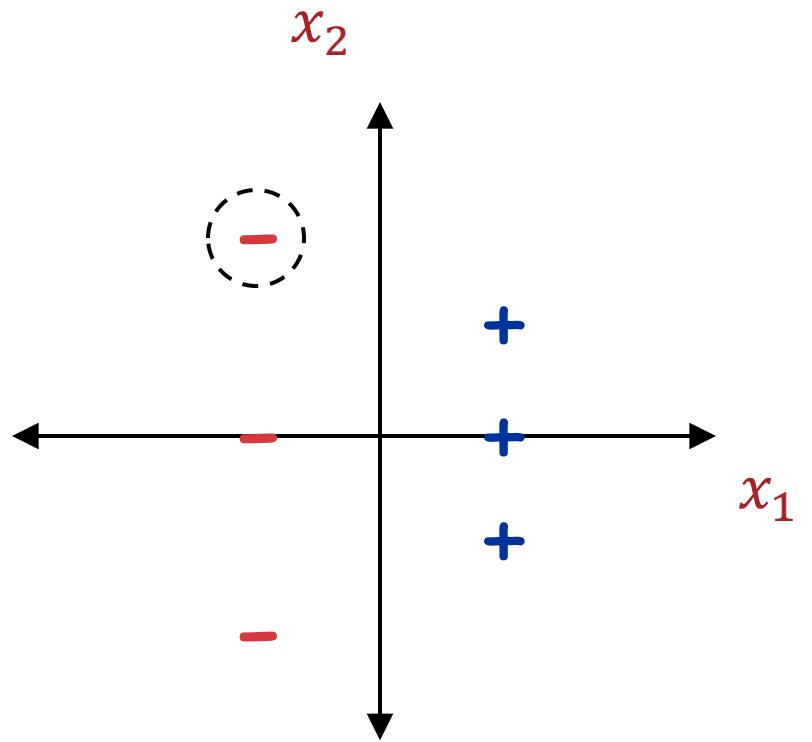
(Online) Perceptron Learning Algorithm

- Initialize the weight vector and intercept to all zeros:
 $\mathbf{w} = [0 \quad 0 \quad \cdots \quad 0]$ and $b = 0$
- For $t = 1, 2, 3, \dots$
 - Receive an unlabeled example, $\mathbf{x}^{(t)}$
 - Predict its label, $\hat{y} = \text{sign}(\mathbf{w}^T \mathbf{x} + b) = \begin{cases} +1 & \text{if } \mathbf{w}^T \mathbf{x} + b \geq 0 \\ -1 & \text{otherwise} \end{cases}$
 - Observe its true label, $y^{(t)}$
 - If we misclassified an example ($y^{(t)} \neq \hat{y}$):
 - $\mathbf{w} \leftarrow \mathbf{w} + y^{(t)} \mathbf{x}^{(t)}$
 - $b \leftarrow b + y^{(t)}$

(Online) Perceptron Learning Algorithm: Example (no Intercept)

x_1	x_2	\hat{y}	y	Mistake?
-1	2	+	-	Yes

$$\mathbf{w} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

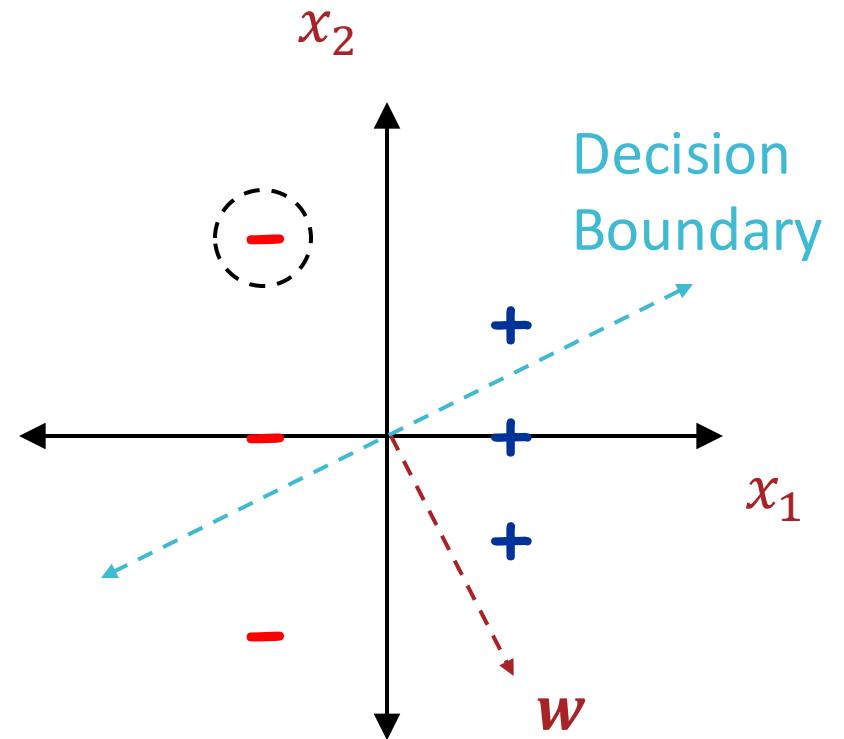


(Online) Perceptron Learning Algorithm: Example (no Intercept)

x_1	x_2	\hat{y}	y	Mistake?
-1	2	+	-	Yes

$$\mathbf{w} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

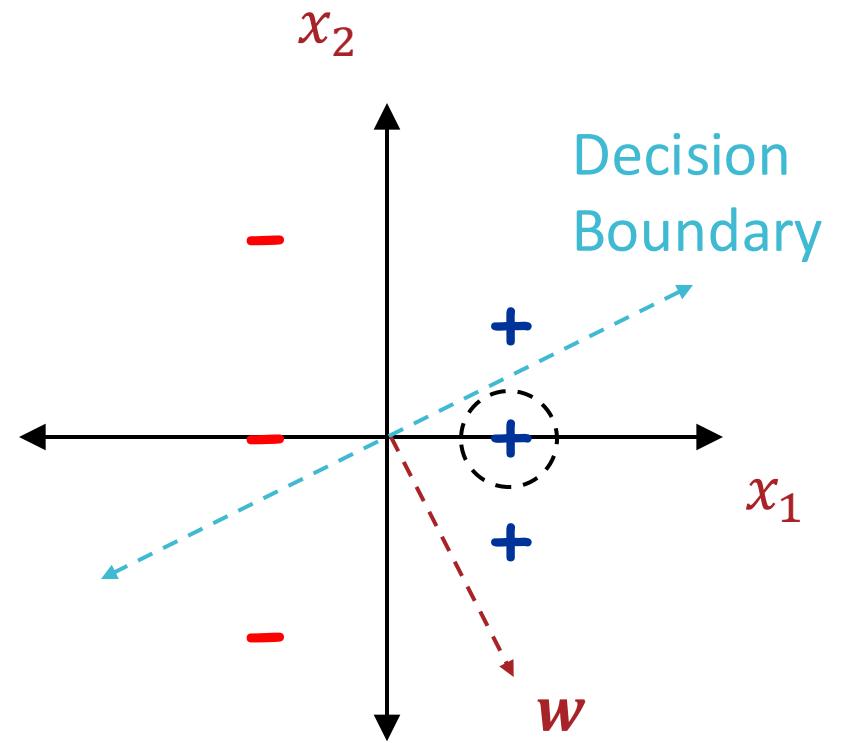
$$\mathbf{w} \leftarrow \mathbf{w} + y^{(1)} \mathbf{x}^{(1)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} - \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$



(Online) Perceptron Learning Algorithm: Example (no Intercept)

$$\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

x_1	x_2	\hat{y}	y	Mistake?
-1	2	+	-	Yes
1	0	+	+	No

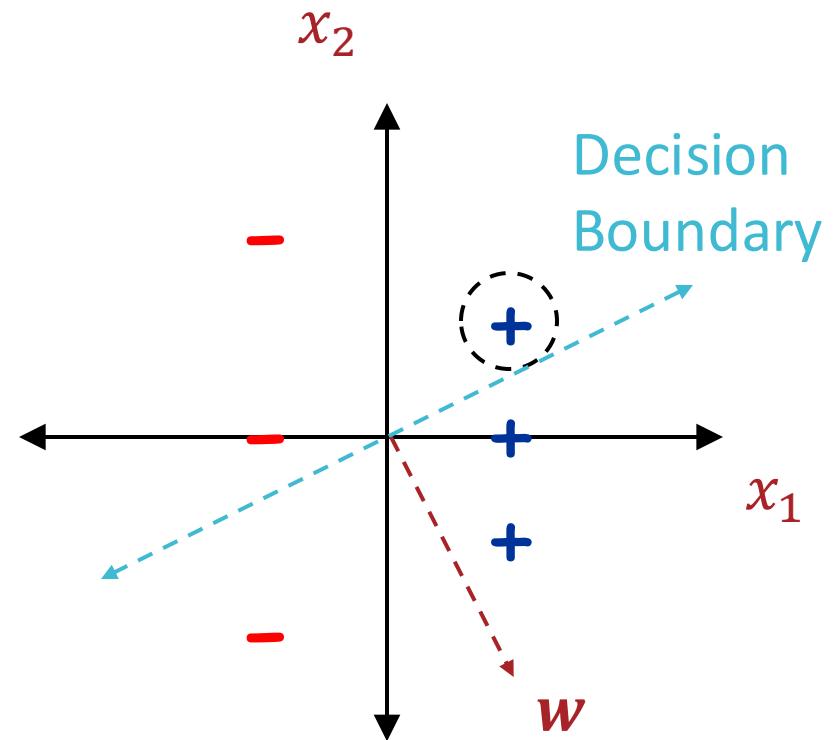


(Online) Perceptron Learning Algorithm: Example (no Intercept)

x_1	x_2	\hat{y}	y	Mistake?
-1	2	+	-	Yes
1	0	+	+	No
1	1	-	+	Yes

$$\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

$$\mathbf{w} \leftarrow \mathbf{w} + y^{(3)} \mathbf{x}^{(3)} = \begin{bmatrix} 1 \\ -2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

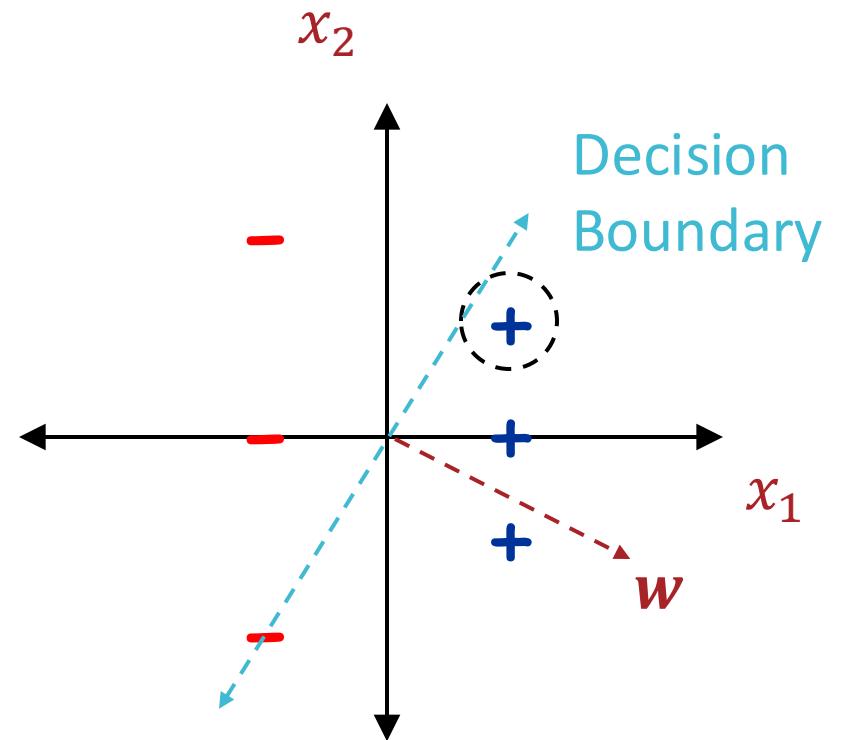


(Online) Perceptron Learning Algorithm: Example (no Intercept)

x_1	x_2	\hat{y}	y	Mistake?
-1	2	+	-	Yes
1	0	+	+	No
1	1	-	+	Yes

$$\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

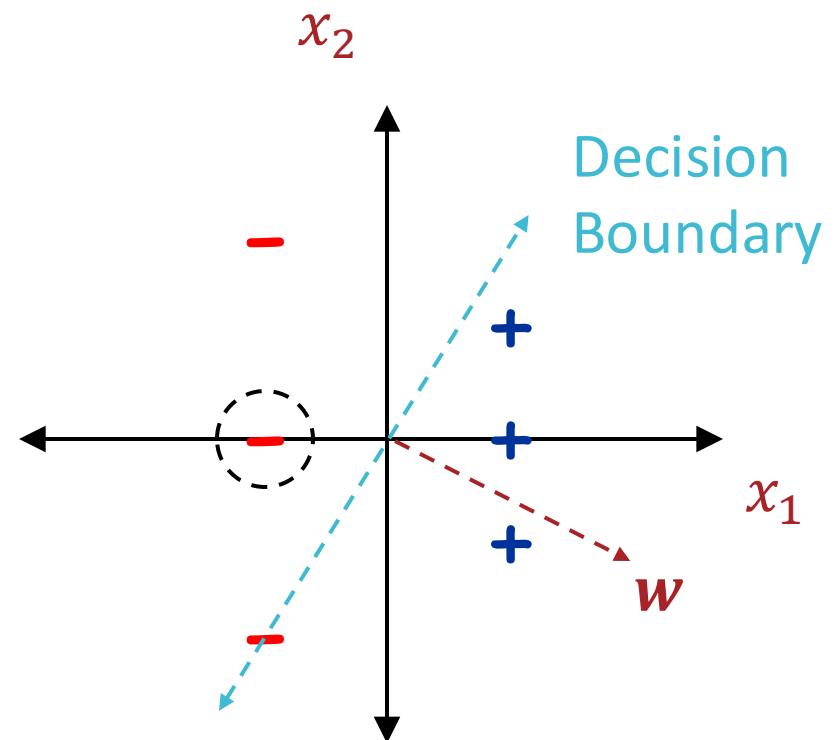
$$\mathbf{w} \leftarrow \mathbf{w} + y^{(3)} \mathbf{x}^{(3)} = \begin{bmatrix} 1 \\ -2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$



(Online) Perceptron Learning Algorithm: Example (no Intercept)

$$\mathbf{w} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

x_1	x_2	\hat{y}	y	Mistake?
-1	2	+	-	Yes
1	0	+	+	No
1	1	-	+	Yes
-1	0	-	-	No

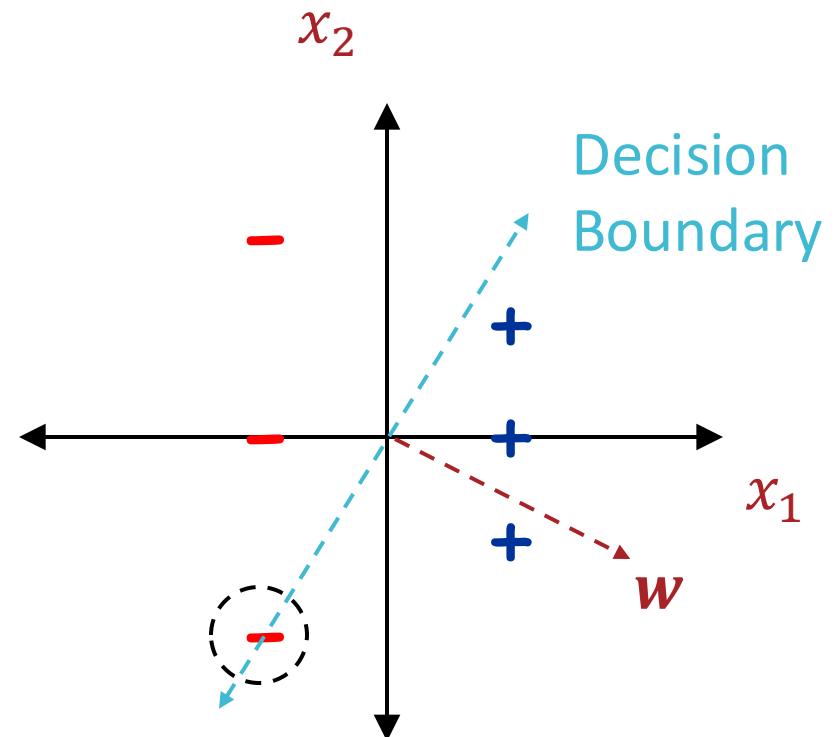


(Online) Perceptron Learning Algorithm: Example (no Intercept)

x_1	x_2	\hat{y}	y	Mistake?
-1	2	+	-	Yes
1	0	+	+	No
1	1	-	+	Yes
-1	0	-	-	No
-1	-2	+	-	Yes

$$\mathbf{w} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

$$\mathbf{w} \leftarrow \mathbf{w} + y^{(5)} \mathbf{x}^{(5)} = \begin{bmatrix} 2 \\ -1 \end{bmatrix} - \begin{bmatrix} -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

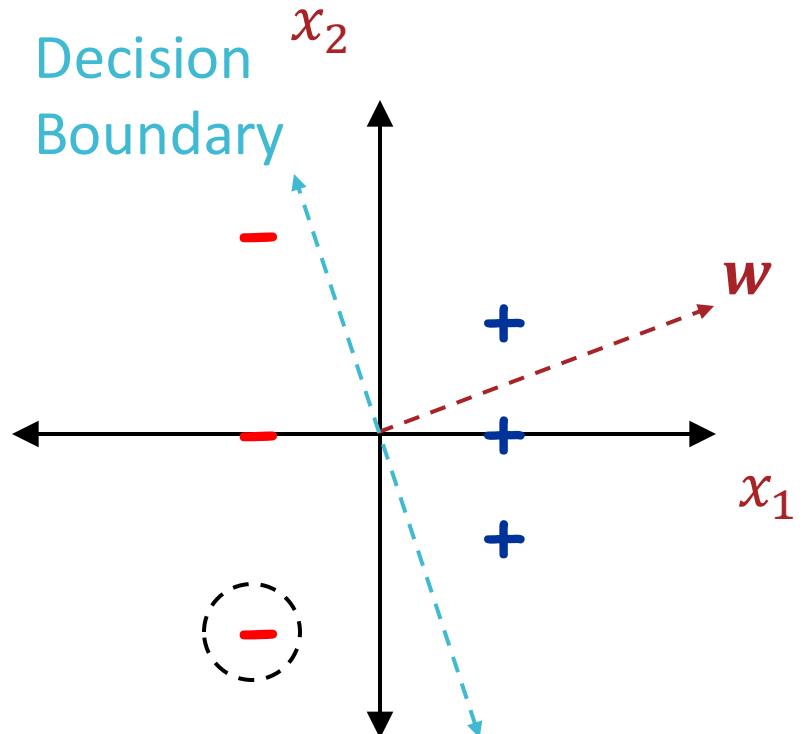


(Online) Perceptron Learning Algorithm: Example (no Intercept)

x_1	x_2	\hat{y}	y	Mistake?
-1	2	+	-	Yes
1	0	+	+	No
1	1	-	+	Yes
-1	0	-	-	No
-1	-2	+	-	Yes

$$\mathbf{w} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

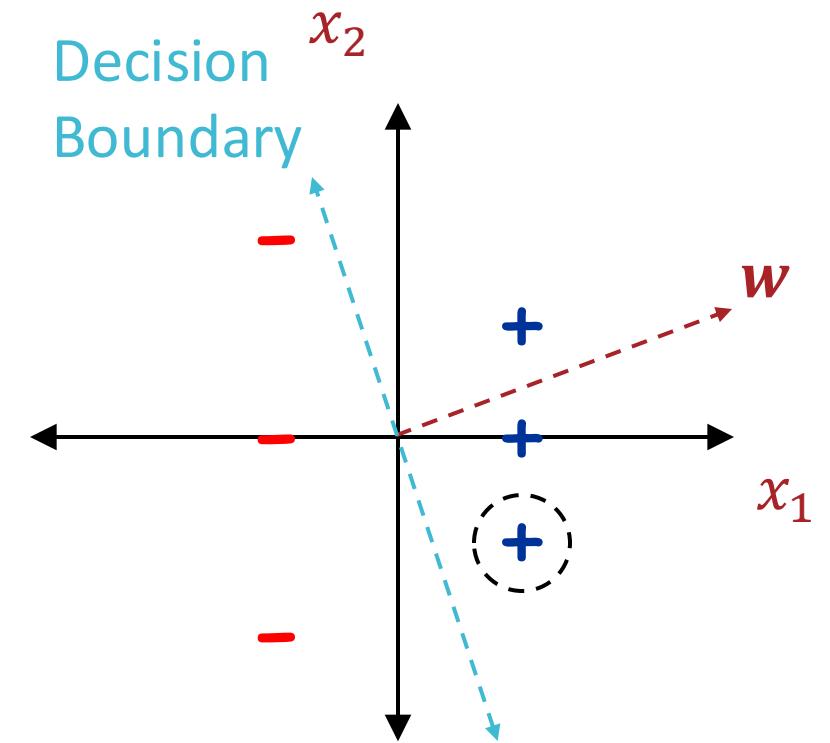
$$\mathbf{w} \leftarrow \mathbf{w} + y^{(5)} \mathbf{x}^{(5)} = \begin{bmatrix} 2 \\ -1 \end{bmatrix} - \begin{bmatrix} -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$



(Online) Perceptron Learning Algorithm: Example (no Intercept)

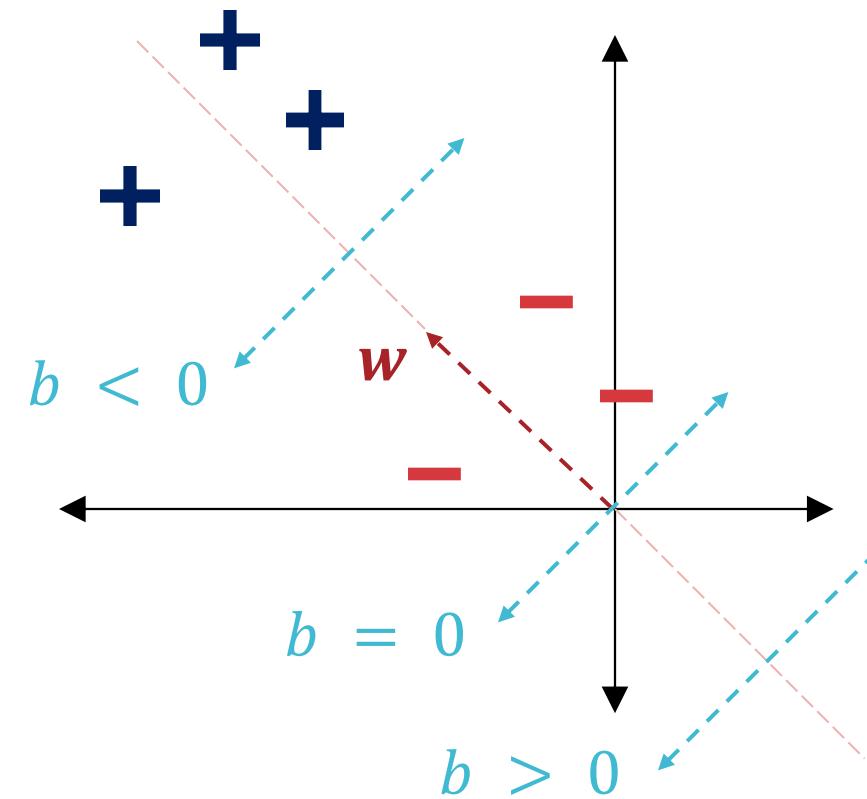
$$\mathbf{w} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

x_1	x_2	\hat{y}	y	Mistake?
-1	2	+	-	Yes
1	0	+	+	No
1	1	-	+	Yes
-1	0	-	-	No
-1	-2	+	-	Yes
1	-1	+	+	No



Updating the Intercept

- The intercept shifts the decision boundary off the origin
 - Increasing b shifts the decision boundary towards the negative side
 - Decreasing b shifts the decision boundary towards the positive side



Notational Hack

- If we add a 1 to the beginning of every example e.g.,

$$\mathbf{x}' = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ \vdots \\ x_D \end{bmatrix} \dots$$

- ... we can just fold the intercept into the weight vector!

$$\boldsymbol{\theta} = \begin{bmatrix} b \\ w_1 \\ w_2 \\ \vdots \\ w_D \end{bmatrix} \rightarrow \boldsymbol{\theta}^T \mathbf{x}' = \mathbf{w}^T \mathbf{x} + b$$

(Online) Perceptron Learning Algorithm

- Initialize the weight vector and intercept to all zeros:
 $\mathbf{w} = [0 \quad 0 \quad \cdots \quad 0]$ and $b = 0$
- For $t = 1, 2, 3, \dots$
 - Receive an unlabeled example, $\mathbf{x}^{(t)}$
 - Predict its label, $\hat{y} = \text{sign}(\mathbf{w}^T \mathbf{x} + b) = \begin{cases} +1 & \text{if } \mathbf{w}^T \mathbf{x} + b \geq 0 \\ -1 & \text{otherwise} \end{cases}$
 - Observe its true label, $y^{(t)}$
 - If we misclassified an example ($y^{(t)} \neq \hat{y}$):
 - $\mathbf{w} \leftarrow \mathbf{w} + y^{(t)} \mathbf{x}^{(t)}$
 - $b \leftarrow b + y^{(t)}$

(Online) Perceptron Learning Algorithm

- Initialize the parameters to all zeros:

$$\boldsymbol{\theta} = [0 \quad 0 \quad \dots \quad 0]$$

1 prepended
to $\mathbf{x}^{(t)}$

- For $t = 1, 2, 3, \dots$

- Receive an unlabeled example, $\mathbf{x}^{(t)}$
- Predict its label, $\hat{y} = \text{sign}(\boldsymbol{\theta}^T \mathbf{x}'^{(t)}) = \begin{cases} +1 & \text{if } \boldsymbol{\theta}^T \mathbf{x}'^{(t)} \geq 0 \\ -1 & \text{otherwise} \end{cases}$
- Observe its true label, $y^{(t)}$
- If we misclassified an example ($y^{(t)} \neq \hat{y}$):
 - $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + y^{(t)} \mathbf{x}'^{(t)}$

Automatically handles
updating the intercept!

Perceptron Learning Algorithm (Intuition)

- Suppose $(\mathbf{x}, y) \in \mathcal{D}$ is a misclassified training example and $y = +1$
 - $\theta^T \mathbf{x}$ is negative
 - After updating $\theta_{new} = \theta + y\mathbf{x}$:
$$\theta_{new}^T \mathbf{x} = (\theta + y\mathbf{x})^T \mathbf{x} = \theta^T \mathbf{x} + y\mathbf{x}^T \mathbf{x}$$
which is less negative than $\theta^T \mathbf{x}$
 - Because $y > 0$ and $\mathbf{x}^T \mathbf{x} > 0$
 - Our prediction for \mathbf{x} “improved”!
- A similar argument holds if $y = -1$

(Online) Perceptron Learning Algorithm: Inductive Bias

- The decision boundary is linear and *recent mistakes are more important than older ones* (and should be corrected immediately)

(Online) Perceptron Learning Algorithm

- Initialize the parameters to all zeros:

$$\boldsymbol{\theta} = [0 \quad 0 \quad \dots \quad 0]$$

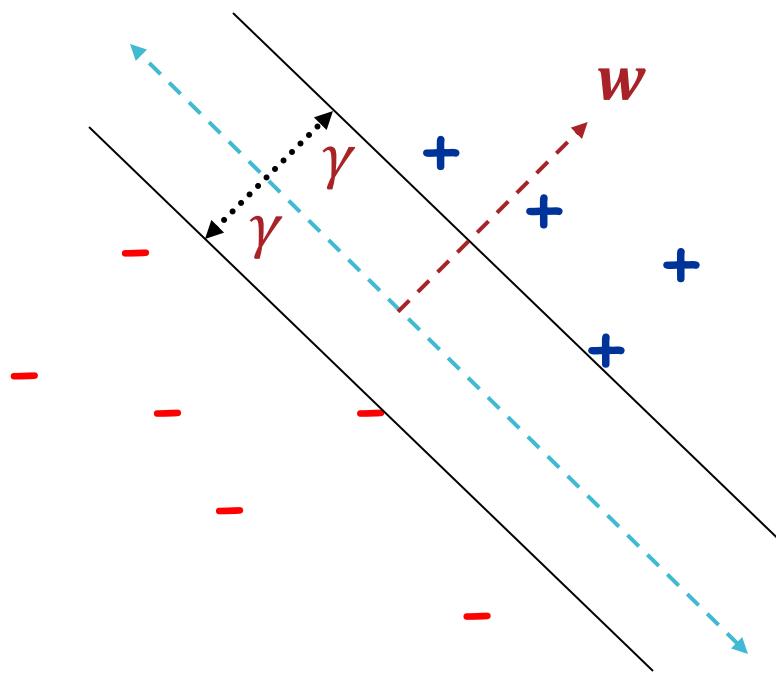
- For $t = 1, 2, 3, \dots$
 - Receive an unlabeled example, $\mathbf{x}^{(t)}$
 - Predict its label, $\hat{y} = \text{sign}(\boldsymbol{\theta}^T \mathbf{x}^{(t)})$
 - Observe its true label, $y^{(t)}$
 - If we misclassified an example ($y^{(t)} \neq \hat{y}$):
 - $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + y^{(t)} \mathbf{x}^{(t)}$

(Batch) Perceptron Learning Algorithm

- Input: $\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots, (\mathbf{x}^{(N)}, y^{(N)})\}$
- Initialize the parameters to all zeros:
$$\boldsymbol{\theta} = [0 \quad 0 \quad \dots \quad 0]$$
- While NOT CONVERGED
 - For $t \in \{1, \dots, N\}$
 - Predict the label of $\mathbf{x}'^{(t)}$, $\hat{y} = \text{sign}(\boldsymbol{\theta}^T \mathbf{x}'^{(t)})$
 - Observe its true label, $y^{(t)}$
 - If we misclassified $\mathbf{x}'^{(t)}$ ($y^{(t)} \neq \hat{y}$):
 - $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + y^{(t)} \mathbf{x}'^{(t)}$

Perceptron Mistake Bound

- Definitions:
 - A dataset \mathcal{D} is *linearly separable* if \exists a linear decision boundary that perfectly classifies the examples in \mathcal{D}
 - The margin, γ , of a dataset \mathcal{D} is the greatest possible distance between a linear separator and the closest example in \mathcal{D} to that linear separator



Perceptron Mistake Bound

- Theorem: if the examples seen by the Perceptron Learning Algorithm (online and batch)
 1. lie in a ball of radius R (centered around the origin)
 2. have a margin of γ

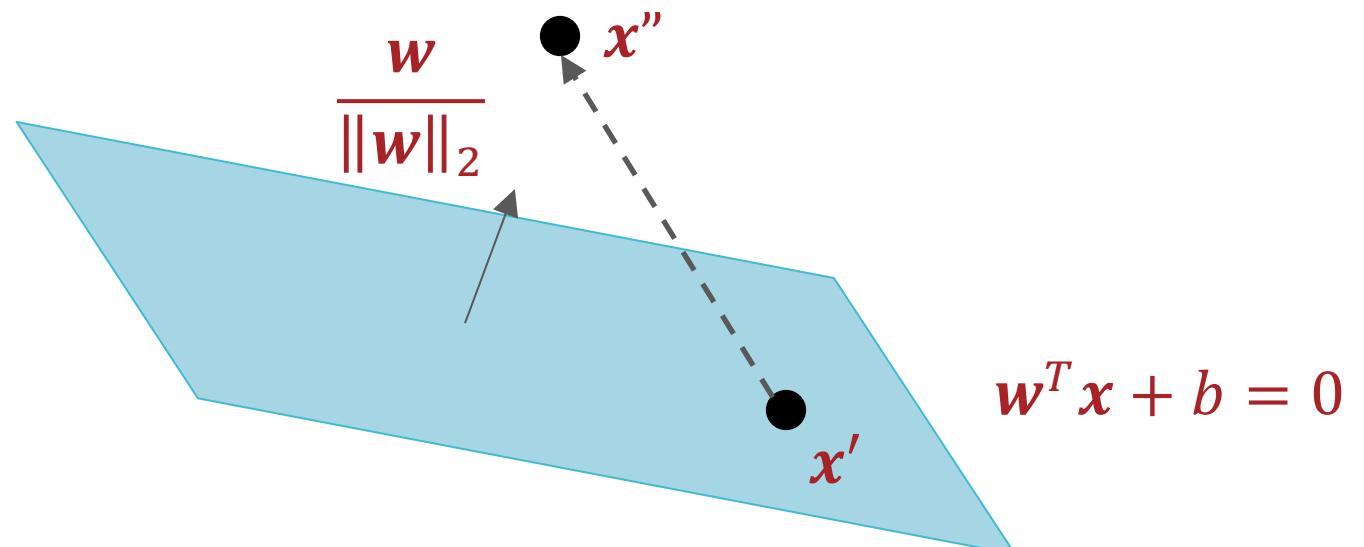
then the algorithm makes at most $(R/\gamma)^2$ mistakes!

- Key Takeaway: if the training dataset is linearly separable, the batch Perceptron Learning Algorithm will converge (i.e., stop making mistakes on the training dataset or achieve 0 training error) in a finite number of steps!

Computing the Margin (Bonus Content)

- Let \mathbf{x}' be an arbitrary point on the hyperplane $\mathbf{w}^T \mathbf{x} + b = 0$ and let \mathbf{x}'' be an arbitrary point
- The distance between \mathbf{x}'' and $\mathbf{w}^T \mathbf{x} + b = 0$ is equal to

the magnitude of the projection of $\mathbf{x}'' - \mathbf{x}'$ onto $\frac{\mathbf{w}}{\|\mathbf{w}\|_2}$,
the unit vector orthogonal to the hyperplane



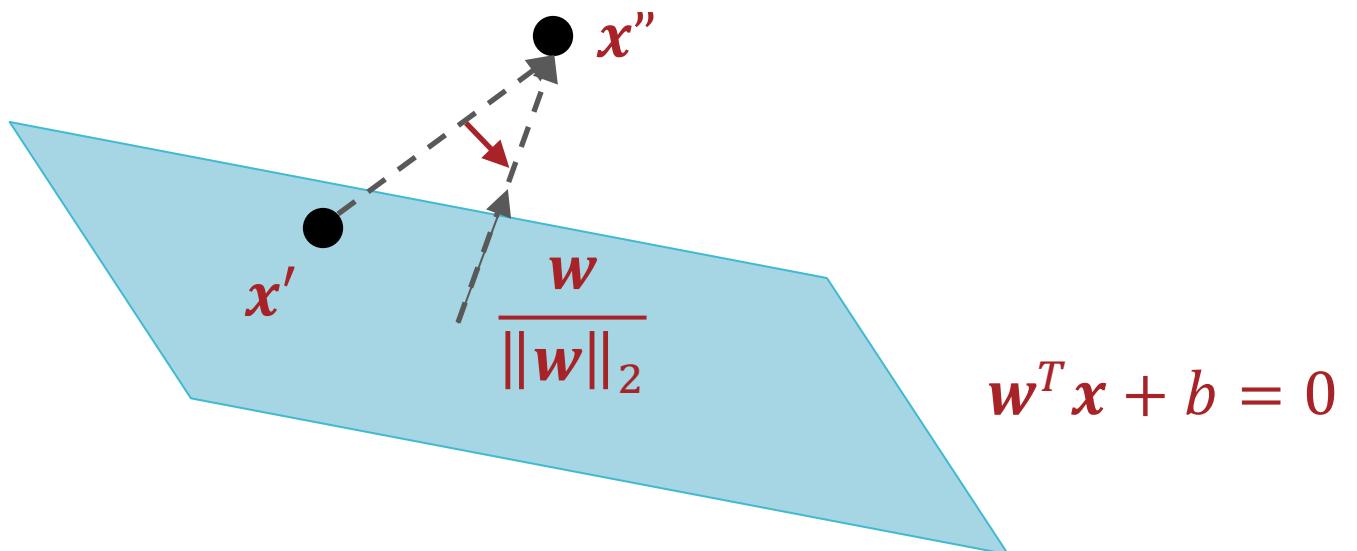
Computing the Margin (Bonus Content)

- Let \mathbf{x}' be an arbitrary point on the hyperplane $\mathbf{w}^T \mathbf{x} + b = 0$ and let \mathbf{x}'' be an arbitrary point
- The distance between \mathbf{x}'' and $\mathbf{w}^T \mathbf{x} + b = 0$ is equal to the magnitude of the projection of $\mathbf{x}'' - \mathbf{x}'$ onto $\frac{\mathbf{w}}{\|\mathbf{w}\|_2}$, the unit vector orthogonal to the hyperplane



Computing the Margin (Bonus Content)

- Let \mathbf{x}' be an arbitrary point on the hyperplane $\mathbf{w}^T \mathbf{x} + b = 0$ and let \mathbf{x}'' be an arbitrary point
- The distance between \mathbf{x}'' and $\mathbf{w}^T \mathbf{x} + b = 0$ is equal to the magnitude of the projection of $\mathbf{x}'' - \mathbf{x}'$ onto $\frac{\mathbf{w}}{\|\mathbf{w}\|_2}$, the unit vector orthogonal to the hyperplane



Computing the Margin (Bonus Content)

- Let \mathbf{x}' be an arbitrary point on the hyperplane and let \mathbf{x}'' be an arbitrary point
- The distance between \mathbf{x}'' and $\mathbf{w}^T \mathbf{x} + b = 0$ is equal to the magnitude of the projection of $\mathbf{x}'' - \mathbf{x}'$ onto $\frac{\mathbf{w}}{\|\mathbf{w}\|_2}$, the unit vector orthogonal to the hyperplane

$$\left| \frac{\mathbf{w}^T (\mathbf{x}'' - \mathbf{x}')}{\|\mathbf{w}\|_2} \right| = \frac{|\mathbf{w}^T \mathbf{x}'' - \mathbf{w}^T \mathbf{x}'|}{\|\mathbf{w}\|_2} = \frac{|\mathbf{w}^T \mathbf{x}'' + b|}{\|\mathbf{w}\|_2}$$

Key Takeaways

- Batch vs. online learning
- Perceptron learning algorithm for binary classification
- Impact of the bias term in perceptron
- Inductive bias of perceptron
- Convergence properties, guarantees and limitations for the batch Perceptron learning algorithm