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FkNN:

Pros and Cons
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* Pros:

* Intuitive / explainable
* No training / retraining

* Provably near-optimal in terms of true error rate

* Cons:

- Computationally expensive
* Always needs to store all data: O(ND)

* Finding the k closest points in D dimensions:
O(ND + Nlog(k))

* Can be sped up through clever use of data
structures (trades off training and test costs)

- Can be approximated using stochastic methods

- Affected by feature scale



Recall:

Setting k
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* When k = 1:

- many, complicated decision boundaries

* may overfit

*When k = N:

* no decision boundaries; always predicts the most

common label in the training data

* may underfit

* k controls the complexity of the hypothesis set = k

affects how well the learned hypothesis will generalize



* Theorem:

k(N)

* If k is some function of N s.t. k(N) — oo and — 0

as N - oo ...

* ... then (under certain assumptions) the true error of a

kNN model — the Bayes error rate

Setting k
* Practical heuristics:
= VA
k=3

* This is a question of model selection: each value of k

|II

corresponds to a different “mode
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Example: Decision Trees

- A model is a (typically * Model = set of all
infinite) set of classifiers possible trees,
that a learning algorithm potentially narrowed
searches through to find down according to the
the best one (the hyperparameters (see
"hypothesis space”) below)

- Model parameters are * Model parameters =

Model the numeric values or structure of a specific

Selection structure that are tree e.g., splits, split
selected by the learning order, predictions at leaf
algorithm nodes,

* Hyperparameters are * Hyperparameters =
the tunable aspects of splitting criterion, max-
the model that are not depth, tie-breaking
selected by the learning procedures, etc...

algorithm
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Model

Selection
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- A model is a (typically

infinite) set of classifiers
that a learning algorithm
searches through to find
the best one (the
"hypothesis space”)

- Model parameters are

the numeric values or
structure that are
selected by the learning
algorithm

* Hyperparameters are

the tunable aspects of
the model that are not
selected by the learning
algorithm

Example: kNN

* Model = set of all
possible nearest
neighbors classifiers

* Model parameters =
none! kNN is a “non-
parametric model”

* Hyperparameters = k



Model
Selection

with
Test Sets
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* Given D = D;pyin U Dypgr, SUPPOSe We have multiple

candidate models:
Hi,Hs, ..., Hy

* Learn a classifier from each model using only D¢,-gin:

hl S Hl,hz S }[2, 'hM (S }[M

* Evaluate each one using D;.¢; and choose the one with

lowest test error:

m = argmin eTT(hm; Dtest)
me{1,..,.M}



Model
Selection

with
Test Sets?
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* Given D = Dy yin U Dipogr, SUPPOSe We have multiple

candidate models:
Hi,Hs, ..., Hy

* Learn a classifier from each model using only D¢,-gin:

hl S ﬁl,hz S :]'[2, IhM S }[M

* Evaluate each one using D;,¢; and choose the one with

lowest test error:

m = argmin eTT(hm; Dtest)
me{1,..,.M}

*Is err(hs, Diost) @ good estimate of err(hy)?



Model
Selection

with
Validation Sets
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* Given D = Dyrgin U Dygp U Diogr, SUPPOSE We have

multiple candidate models:
Hi,Hs, ..., Hy

* Learn a classifier from each model using only D¢,-gin:

hl S ﬁl,hz S :]'[2, IhM S }[M

* Evaluate each one using D,,;; and choose the one with

lowest validation error:

m = argmin err(h,,, Dyq)
me{1,...M}

* Now err(hz, Deesy) is @ good estimate of err(hs)!



Hyperparameter
Optimization

with
Validation Sets
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* Given D = Dyrgin U Dygp U Diogr, SUPPOSE We have

multiple candidate hyperparameter settings:
04,6,, ...,0)

* Learn a classifier for each setting using only Dy, 4in:

hy, hy, ..., hy

* Evaluate each one using D,,;; and choose the one with

lowest validation error:

m = argmin err(h,,, Dyq)
me{1,...M}

* Now err(hz, Deesy) is @ good estimate of err(hs)!
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Setting k
for kNN

with
Validation Sets
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kNN train and validation errors on Fisher Iris data

07- ® train
v validation
0.6 -

10° 101 102

Figure courtesy of Matt Gormley




How should

we partition
our dataset?
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0.7 -

kNN train and validation errors on Fisher Iris data

e train
v validation

0.6 -

10°

f

101 102

Figure courtesy of Matt Gormley




K-fold

cross-validation
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* Given D, split D into K equally sized datasets or folds:

D,,D,, ..., Dk

* Use each one as a validation set once:

* Let h_; be the classifier learned using
> Fold 1 D_; = D\D; (all folds other than D;)

Fold 2 and let e; = err(h_;,D;)

bg
> Fold 3
b

err, = — €;
Fold 4 I ¢ Z '
1=

* The K-fold cross validation error is

13



K-fold

cross-validation
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* Given D, split D into K equally sized datasets or folds:

D,,D,, ..., Dk

* Use each one as a validation set once:

* Let h_; be the classifier learned using
Fold 1 D_; = D\D; (all folds other than D;)

and let e; = err(h_;,D;)

\/J

Fold 2

bg
> Fold 3
b

err, = — €;
Fold 4 I ¢ Z '
1=

* The K-fold cross validation error is
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* Given D, split D into K equally sized datasets or folds:
Dq,D,, ..., Dg

- Use each one as a validation set once:

* Let h_; be the classifier learned using
D_; = D\D; (all folds other than D;)
and let e; = err(h_;,D;)

K-fold

* The K-fold cross validation error is

K
1
eTTevy =7 ) €
i=1

cross-validation
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* Given D, split D into K equally sized datasets or folds:
Dq,D,, ..., Dg

- Use each one as a validation set once:

* Let h_; be the classifier learned using
D_; = D\D; (all folds other than D;)
and let e; = err(h_;,D;)

K-fold

* The K-fold cross validation error is

K
1
eTTevy =7 ) €
i=1

cross-validation
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K-fold

cross-validation
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* Given D, split D into K equally sized datasets or folds:

D,,D,, ..., Dk

* Use each one as a validation set once:

* Let h_; be the classifier learned using
Fold 1 D_; = D\D; (all folds other than D;)

and let e; = err(h_;,D;)

\/J

Fold 2

bg
> Fold 3
b

err, = — €;
Fold 4 I ¢ Z '
1=

* The K-fold cross validation error is
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K-fold

cross-validation
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* Given D, split D into K equally sized datasets or folds:

Dy, Dy, ..., Dy

* Use each one as a validation set once:

° Let h_; be the classifier learned using
> Fold 1 D_; = D\D; (all folds other than D;)

> fold 2 and let e; = err(h_;, D;)
- The K-fold cross validation error is
> Fold 3

K
1
> Fold 4 CMevi = EZ i
=

* Special case when K = N: Leave-one-out cross-validation

* Choosing between m candidates requires training mK times

18



Summary
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Training

Hyperparameter
Optimization

Cross-Validation

Testing

training dataset
hyperparameters

training dataset
validation dataset

training dataset
validation dataset

test dataset
classifier

best model
parameters

best
hyperparameters

cross-validation
error

test error
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* Given D = Dyygin U Dygr U Dypst, SUPPOSE We have

multiple candidate hyperparameter settings:

01,0, ...,0y
* Learn a classifier for each setting using only D¢y gin:
hy, hy, ..., hy
Hyperparameter
Optimization * Evaluate each one using D,4; and choose the one with

lowest validation error:

m = argmin eTT(hm;Dval)
me{1,..,.M}

* Now err(h}, Diest) is a good estimate of err(h;)!

Henry Chai - 5/14/25 20



Pro tip: train
your final model
using both

training and
validation
datasets
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* Given D = Dyygin U Dygr U Dypst, SUPPOSE We have

multiple candidate hyperparameter settings:
64,05, ...,0y

* Learn a classifier for each setting using only D¢, 4in:

hy Ry, o) hy

* Evaluate each one using D,,,; and choose the one with

lowest validation error:

m = argmin eTT(hm;Dval)
me{1,..,.M}

. . . +
Train a new model on Dygin U Dy using O, hs

* Now err(h}, Diest) is a good estimate of err(h;)!

21



How do we pick

hyperparameter
settings to try?
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* Given D = Dyygin U Dygr U Dypst, SUPPOSE We have

multiple candidate hyperparameter settings:
04,0,,...,0y

* Learn a classifier for each setting using only D¢, 4in:

hy Ry, o) hy

* Evaluate each one using D,,,; and choose the one with

lowest validation error:

m = argmin eTT(hm;Dval)
me{1,..,.M}

. . . +
Train a new model on Dygin U Dy using O, hs

* Now err(h}, Diest) is a good estimate of err(h;)!
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General
Methods for

Hyperparameter
Optimization
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* ldea: set the hyperparameters to optimize some

performance metric of the model

* Issue: if we have many hyperparameters that can all

take on lots of different values, we might not be able to
test all possible combinations

* Commonly used methods:

* Grid search
* Random search

* Bayesian optimization (used by Google DeepMind
to optimize the hyperparameters of AlphaGo:
https://arxiv.org/pdf/1812.06855v1.pdf)

* Evolutionary algorithms

* Graduate-student descent
23
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Grid Search vs.
Random

Search
(Bergstra and
Bengio, 2012)
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Grid Layout

Random Layout

24


https://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf

Grid Search vs.
Random

Search
(Bergstra and
Bengio, 2012)
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Grid Layout Random Layout
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Grid and random search of nine trials for optimizing a function
f(x,y) = g(x) + h(y) = g(x) with low effective dimensionality.
Above each square g(x) is shown in green, and left of each square
h(y) is shown in yellow. With grid search, nine trials only test g(x)
in three distinct places. With random search, all nine trials explore
distinct values of g. This failure of grid search is the rule rather than
the exception in high dimensional hyper-parameter optimization.

Source: https://jmlr.csail.mit.edu/papers/volumea3/bergstrai2a/bergstrai2a.pdf 25
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* Differences between training, validation and test

datasets in the model selection process
* Cross-validation for model selection

* Relationship between training, hyperparameter

optimization and model selection

* Grid search vs. random search for hyperparameter

optimization

26
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