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Front Matter

 Announcements: 

 HW1 released on 5/13, due 5/16 at 11:59 PM

 You will submit your homework to Gradescope

1. Submit your code to the “programming” 

submission slot

2. Submit a PDF with your answers to the 

questions “written” submission slot

 You must use LaTeX to typeset your 

responses!
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Fisher Iris 
Dataset

Fisher (1936) used 150 measurements of flowers 

from 3 different species: Iris setosa (0), Iris virginica 

(1), Iris versicolor (2) collected by Anderson (1936)
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Species Sepal 
Length

Sepal 
Width

Petal 
Length

Petal 
Width

0 4.3 3.0 1.1 0.1

0 4.9 3.6 1.4 0.1

0 5.3 3.7 1.5 0.2

1 4.9 2.4 3.3 1.0

1 5.7 2.8 4.1 1.3

1 6.3 3.3 4.7 1.6

1 6.7 3.0 5.0 1.7

Source: https://en.wikipedia.org/wiki/Iris_flower_data_set  Henry Chai - 5/14/25
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Fisher Iris 
Dataset

Fisher (1936) used 150 measurements of flowers 

from 3 different species: Iris setosa (0), Iris virginica 

(1), Iris versicolor (2) collected by Anderson (1936)

5

Species Sepal 
Length

Sepal 
Width

0 4.3 3.0

0 4.9 3.6

0 5.3 3.7

1 4.9 2.4

1 5.7 2.8

1 6.3 3.3

1 6.7 3.0

Source: https://en.wikipedia.org/wiki/Iris_flower_data_set  Henry Chai - 5/14/25

https://en.wikipedia.org/wiki/Iris_flower_data_set
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The Duck Test
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The Duck Test 
for Machine 
Learning

 Classify a point as the label of the “most similar” 

training point

 Idea: given real-valued features, we can use a distance 

metric to determine how similar two data points are

 A common choice is Euclidean distance: 

𝑑 𝒙, 𝒙′ = 𝒙 − 𝒙′
2 = ෍

𝑑=1

𝐷

𝑥𝑑 − 𝑥𝑑
′ 2

 An alternative is the Manhattan distance: 

𝑑 𝒙, 𝒙′ = 𝒙 − 𝒙′
1 = ෍

𝑑=1

𝐷

𝑥𝑑 − 𝑥𝑑
′
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Nearest 
Neighbor: 
Pseudocode
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def train(𝒟):

 store 𝒟 

def predict(𝒙′):

 find the nearest neighbor to 𝒙′ in 𝒟, 𝒙 𝑖

 return 𝑦 𝑖



Henry Chai - 5/14/25 10

Nearest 
Neighbor: 
Example
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Nearest 
Neighbor: 
Example



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-
-

--

-

Henry Chai - 5/14/25 12

Nearest 
Neighbor: 
Example



The Nearest 
Neighbor 
Model

 Requires no training!

 Always has zero training error! 

 A data point is always its own nearest neighbor

⋮

 Always has zero training error…
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Generalization 
of Nearest 
Neighbor 
(Cover and 
Hart, 1967)

 Claim: under certain conditions, as 𝑁 → ∞, with high 

probability, the true error rate of the nearest neighbor 

model ≤ 2 ∗ the Bayes error rate (the optimal classifier)

 Interpretation: “In this sense, it may be said that half the 

classification information in an infinite sample set is 

contained in the nearest neighbor.”
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But why limit 
ourselves to 
just one 
neighbor?

 Claim: under certain conditions, as 𝑁 → ∞, with high 

probability, the true error rate of the nearest neighbor 

model ≤ 2 ∗ the Bayes error rate (the optimal classifier)

 Interpretation: “In this sense, it may be said that half the 

classification information in an infinite sample set is 

contained in the nearest neighbor.”
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https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1053964


𝑘-Nearest 
Neighbors 
(𝑘NN)

 Classify a point as the most common label among the 

labels of the 𝑘 nearest training points

 Tie-breaking (in case of even 𝑘 and/or more than 2 classes) 

 Weight votes by distance

 Remove furthest neighbor

 Add next closest neighbor

 Use a different distance metric
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𝑘-Nearest 
Neighbors 
(𝑘NN):
Pseudocode
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def train(𝒟):

 store 𝒟 

def predict(𝒙′):

 return majority_vote(labels of the 𝑘 

 nearest neighbors to 𝒙′ in 𝒟)



𝑘NN on 
Fisher Iris 
Data
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𝑘NN on 
Fisher Iris 
Data
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𝑘NN on 
Fisher Iris 
Data
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𝑘NN on 
Fisher Iris 
Data
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𝑘NN on 
Fisher Iris 
Data
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𝑘NN on 
Fisher Iris 
Data
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𝑘NN on 
Fisher Iris 
Data
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𝑘NN on 
Fisher Iris 
Data
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𝑘NN on 
Fisher Iris 
Data
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𝑘NN on 
Fisher Iris 
Data
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𝑘NN on 
Fisher Iris 
Data



Setting 𝑘

 When 𝑘 = 1:

 many, complicated decision boundaries 

 may overfit

 When 𝑘 = 𝑁:

 no decision boundaries; always predicts the most 

common label in the training data 

 may underfit

 𝑘 controls the complexity of the hypothesis set ⟹ 𝑘 

affects how well the learned hypothesis will generalize
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𝑘NN and 
Categorical 
Features

 𝑘NNs are compatible with categorical features, either by:

1. Converting categorical features into binary ones:

2. Using a distance metric that works over categorical 

features e.g., the Hamming distance: 

𝑑 𝒙, 𝒙′ = ෍

𝑑=1

𝐷

𝟙 𝑥𝑑 = 𝑥𝑑
′
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 Similar points should have similar labels and all features 

are equivalently important for determining similarity

 Feature scale can dramatically influence results!

𝑘NN: 
Inductive Bias
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Key Takeaways

 Real-valued features and decision boundaries

 Nearest neighbor model and generalization guarantees

 𝑘NN “training” and prediction

 Effect of 𝑘 on model complexity

 𝑘NN inductive bias
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