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Front Matter
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* Announcements:

* HW1 released on 5/13, due 5/16 at 11:59 PM
* You will submit your homework to Gradescope

1. Submit your code to the “programming”

submission slot

2. Submit a PDF with your answers to the

guestions “written” submission slot

* You must use LaTeX to typeset your

responses!






Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris virginica

), Iris versicolor (2) collected by Anderson (1936)

Sepal Sepal Petal Petal
Length Width Length Width

Fisher Iris )
Dataset 0 4.9 3.6 1.4 0.1
0 5.3 3.7 1.5 0.2
1 4.9 2.4 3.3 1.0
1 5.7 2.8 4.1 1.3
1 6.3 3.3 4.7 1.6
1 6.7 3.0 5.0 1.7

Henry Chai - 5/14/25 Source: https://en.wikipedia.org/wiki/Iris_flower data_set
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Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris virginica
(1), Iris versicolor (2) collected by Anderson (1936)

Sepal Sepal
Length Width

Fisher Iris 0 e 3.0
D ataset 0 4.9 3.6
0 5.3 3.7
1 4.9 2.4
1 5.7 2.8
1 6.3 3.3
1 6.7 3.0

Henry Chai - 5/14/25 Source: https://en.wikipedia.org/wiki/Iris_flower data_set
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Fisher Iris

Dataset
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Figure courtesy of Matt Gormley
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Article Talk

WIKIPEDIA Duck test

The Free Encyclopedia From Wikipedia, the free encyclopedia
Main page For the use of "the duck test" within the Wikipedia community, see Wikipedia:DUCK.
Contents . . . . .

y The duck test is a form of abductive reasoning. This is its usual expression:

Featured content
Current events
Random article

| If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck.

The Duck Test

Henry Chai - 5/14/25 Source: https://en.wikipedia.org/wiki/Duck_test
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* Classify a point as the label of the “most similar”

training point

* ldea: given real-valued features, we can use a distance

metric to determine how similar two data points are

The Duck Test - A common choice is Euclidean distance:

for Machine D

Learning d(x,x) = |lx — x'l, = z(xd —x})?
NEE

* An alternative is the Manhattan distance:
D

dCe,x) = llx = ¥'lly = ) |xa - x;

d=1

Henry Chai - 5/14/25



def tr‘ain(D):

Nearest Stere D
Neighbor: def predict(x’)

Pseudocode Crnd —‘&A) doyezjr Aok F)o“ajl‘ %
7@

rt-\um >/ (O
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Nearest
Neighbor:

Example
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Nearest
Neighbor:

Example
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Nearest
Neighbor:

Example
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The Nearest
Neighbor

Model
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°* Requires no training!

* Always has zero training error!

- A data point is always its own nearest neighbor

* Always has zero training error...

13



Generalization
of Nearest
Neighbor

(Cover and
Hart, 1967)
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* Claim: under certain conditions, as N = oo, with high
probability, the true error rate of the nearest neighbor

model < 2 * the Bayes error rate (the optimal classifier)

* Interpretation: “In this sense, it may be said that half the
classification information in an infinite sample set is

contained in the nearest neighbor.”

Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1053964 14
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But why limit
ourselves to

just one
neighbor?
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* Claim: under certain conditions, as N = oo, with high
probability, the true error rate of the nearest neighbor

model < 2 * the Bayes error rate (the optimal classifier)

* Interpretation: “In this sense, it may be said that half the
classification information in an infinite sample set is

contained in the nearest neighbor.”

Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1053964 15
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k-Nearest

Neighbors
(kKNN)

Henry Chai - 5/14/25

* Classify a point as the most common label among the

labels of the k nearest training points

* Tie-breaking (in case of even k and/or more than 2 classes)

"l\
A\
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Lecture 5+ 6 Polls

0 surveys completed

0 surveys underway

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



m m_

Suppose you have a kNN model with £ > 1 and 3 possible classes. Which of the following tie-
breaking methods is guaranteed to break a tie in the majority vote? Select all that apply

Weight the votes by distance

Remove the furthest neighbor

Add another neighbor

Use a different distance metric

None of the above

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app




def train(D): Lq\ge,\ 'i—T‘t i Qx&klﬁ
k-Nearest store D /

Neighbors def predict(x’): 7
(kNN): l‘({‘urn majoﬁjﬂy,_ V’EA‘Q (l&l’ﬁ[i &C ﬂm \<

Pseudocode — recre merLnrs

/‘EU;) ' D)

CL1Yl'QAC€ "\‘(Q—-— S:m%\&:%
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kNN on
Fisher Iris

DEI
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3-Class classification (k weights = 'uniform*)
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Figure courtesy of Matt Gormley
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kNN on
Fisher Iris

DEI
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3-Class classification (k = 2, weights = 'uniform’)
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kNN on
Fisher Iris

DEI
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3-Class classification (k = 3, weights = 'uniform')
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kNN on
Fisher Iris

DEI
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3-Class classification (k = 5, weights = 'uniform')
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kNN on
Fisher Iris

DEI
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3-Class classification (k = 10, weights = 'uniform’)
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kNN on
Fisher Iris

DEI

Henry Chai - 5/14/25

3-Class classification (k = 20, weights = 'uniform’)
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kNN on
Fisher Iris

DEI
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3-Class classification (k = 30, weights = 'uniform’)

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

1.5 -

1.0 -
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kNN on
Fisher Iris

Data
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3-Class classification (k = 50, weights = 'uniform’)
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Figure courtesy of Matt Gormley

27



kNN on
Fisher Iris

DEI
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3-Class classification (k = 100, weights
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kNN on
Fisher Iris

DEI
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3-Class classification (k = 120, weights = 'uniform’)
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eights = ‘uniform’)

kNN on
Fisher Iris

DEI

Henry Chai - 5/14/25 Figure courtesy of Matt Gormley



Setting k
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* When k = 1:

- many, complicated decision boundaries

* may overfit

*When k = N:

* no decision boundaries; always predicts the most

common label in the training data

* may underfit

* k controls the complexity of the hypothesis set = k

affects how well the learned hypothesis will generalize

31



- kNNs are compatible with categorical features, either by:

1. Converting categorical features into binary ones:

Cholesterol Normal Abnormal
Cholesterol? | Cholesterol?

kNN and Morma — ) -
: Normal 1 0
CategOrICal Abnormal 0 1

Features

2. Using a distance metric that works over categorical

features e.g., the Hamming distance:

D
dx,x) = ) g £ %)
d=1

Henry Chai - 5/14/25 32



FkNN:

Inductive Bias
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° Real-valued features and decision boundaries

* Nearest neighbor model and generalization guarantees
* kNN “training” and prediction

* Effect of kK on model complexity

* kNN inductive bias

34
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