

10-301/601: Introduction to Machine Learning Lecture 5 – KNNs

Henry Chai

5/14/25

Front Matter

- Announcements:
 - HW1 released on 5/13, due 5/16 at 11:59 PM
 - You will submit your homework to Gradescope
 1. Submit your code to the “programming” submission slot
 2. Submit a PDF with your answers to the questions “written” submission slot
 - **You must use LaTeX to typeset your responses!**

Real-valued Features

Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers from 3 different species: Iris setosa (0), Iris virginica (1), Iris versicolor (2) collected by Anderson (1936)

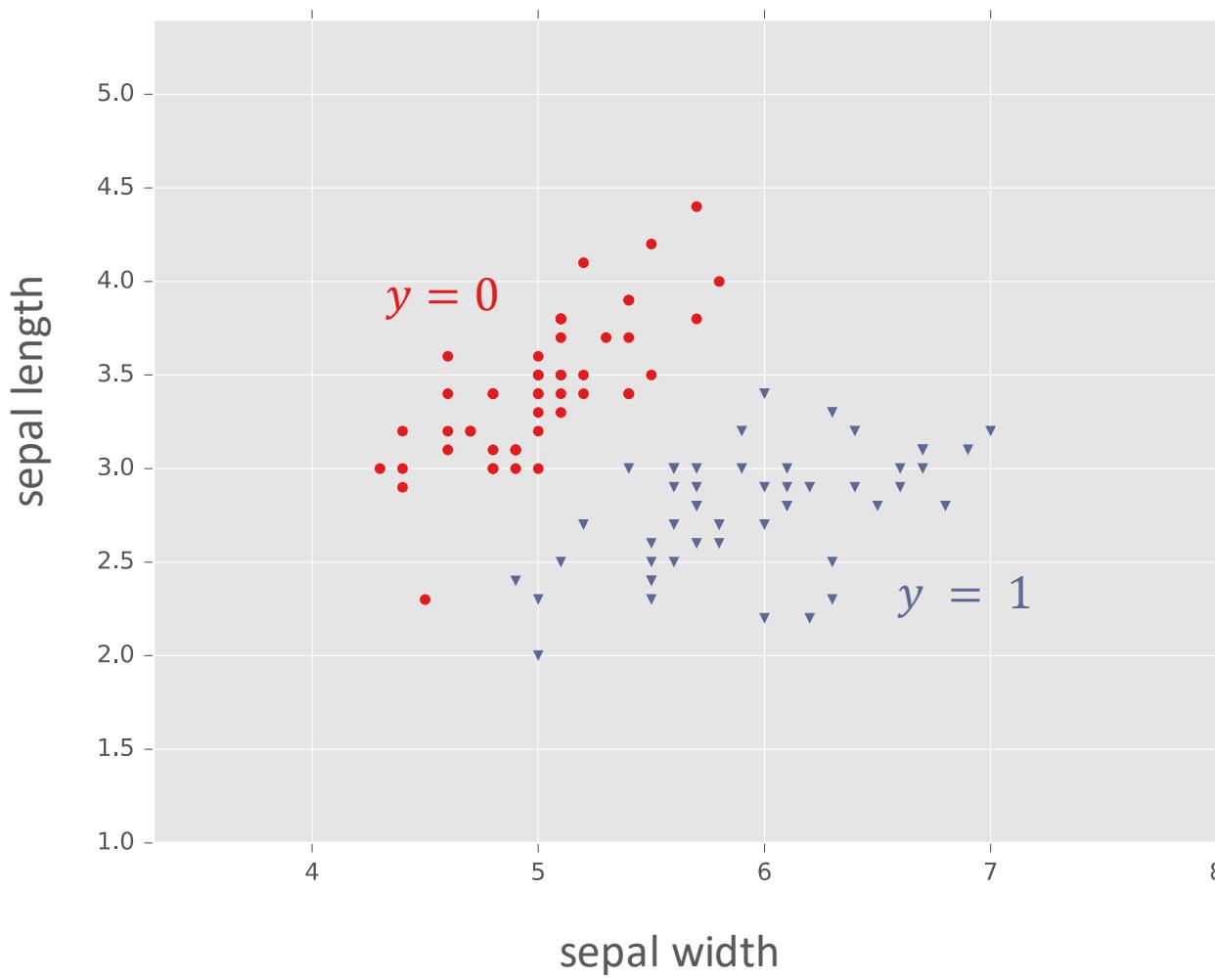
Species	Sepal Length	Sepal Width	Petal Length	Petal Width
0	4.3	3.0	1.1	0.1
0	4.9	3.6	1.4	0.1
0	5.3	3.7	1.5	0.2
1	4.9	2.4	3.3	1.0
1	5.7	2.8	4.1	1.3
1	6.3	3.3	4.7	1.6
1	6.7	3.0	5.0	1.7

Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers from 3 different species: Iris setosa (0), Iris virginica (1), Iris versicolor (2) collected by Anderson (1936)

Species	Sepal Length	Sepal Width
0	4.3	3.0
0	4.9	3.6
0	5.3	3.7
1	4.9	2.4
1	5.7	2.8
1	6.3	3.3
1	6.7	3.0

Fisher Iris Dataset



WIKIPEDIA
The Free Encyclopedia

[Main page](#)
[Contents](#)
[Featured content](#)
[Current events](#)
[Random article](#)

[Article](#) [Talk](#)

Duck test

From Wikipedia, the free encyclopedia

For the use of "the duck test" within the Wikipedia community, see [Wikipedia:DUCK](#).

The **duck test** is a form of [abductive reasoning](#). This is its usual expression:

If it looks like a duck, swims like a duck, and quacks like a duck, then it probably *is* a duck.

The Duck Test

The Duck Test for Machine Learning

- Classify a point as the label of the “most similar” training point
- Idea: given real-valued features, we can use a distance metric to determine how similar two data points are
- A common choice is Euclidean distance:

$$d(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \mathbf{x}'\|_2 = \sqrt{\sum_{d=1}^D (x_d - x'_d)^2}$$

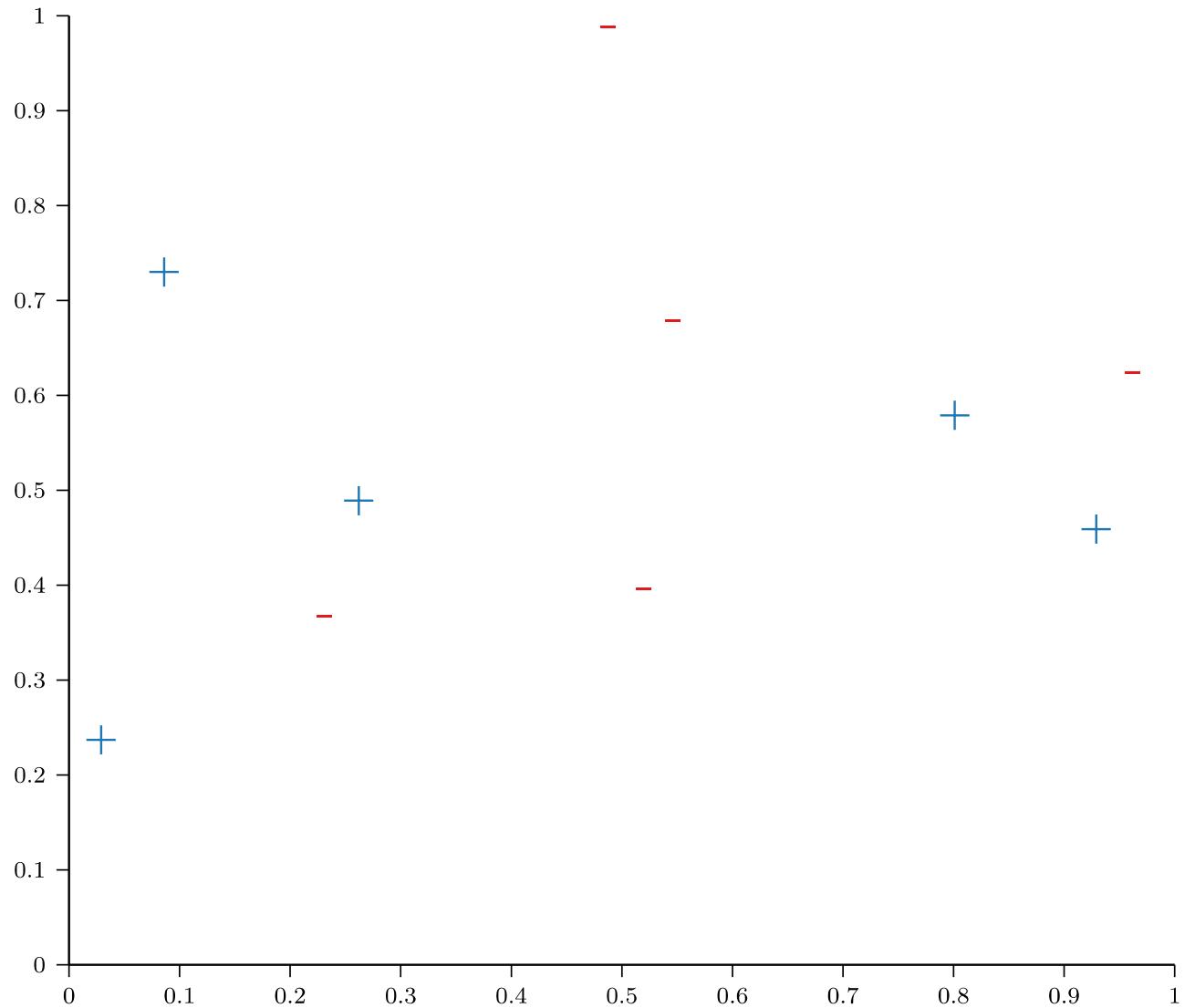
- An alternative is the Manhattan distance:

$$d(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \mathbf{x}'\|_1 = \sum_{d=1}^D |x_d - x'_d|$$

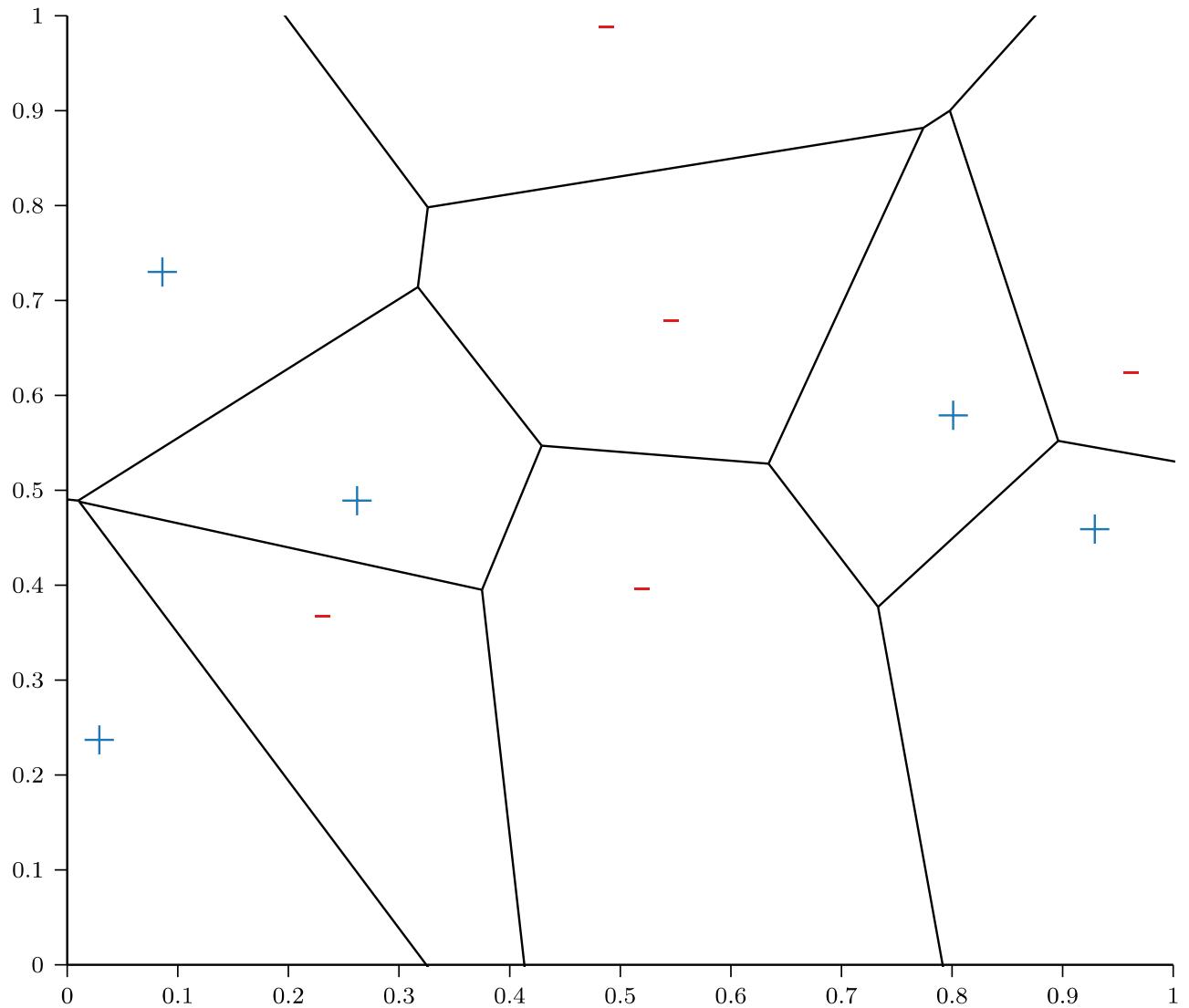
Nearest Neighbor: Pseudocode

```
def train( $\mathcal{D}$ ):  
    store  $\mathcal{D}$   
def predict( $\mathbf{x}'$ ):  
    find the nearest neighbor to  $\mathbf{x}'$  in  $\mathcal{D}$ ,  $\mathbf{x}^{(i)}$   
    return  $y^{(i)}$ 
```

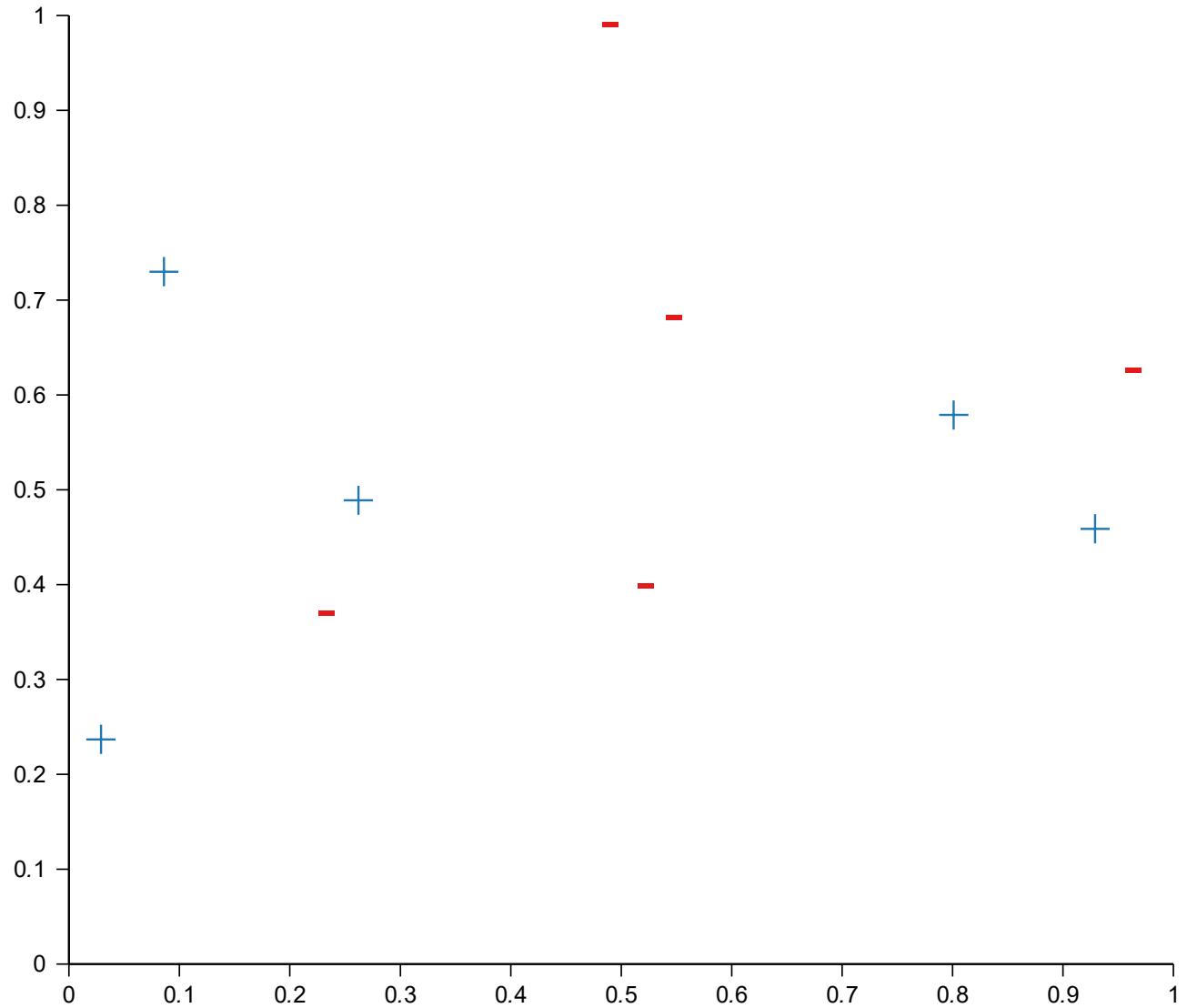
Nearest Neighbor: Example



Nearest Neighbor: Example



Nearest Neighbor: Example



The Nearest Neighbor Model

- Requires no training!
- Always has zero training error!
 - *A data point is always its own nearest neighbor*
-
- Always has zero training error...

Generalization of Nearest Neighbor (Cover and Hart, 1967)

- Claim: under certain conditions, as $N \rightarrow \infty$, with high probability, the true error rate of the nearest neighbor model $\leq 2 * \text{the Bayes error rate (the optimal classifier)}$
- Interpretation: “In this sense, it may be said that half the classification information in an infinite sample set is contained in the nearest neighbor.”

But why limit ourselves to just one neighbor?

- Claim: under certain conditions, as $N \rightarrow \infty$, with high probability, the true error rate of the nearest neighbor model $\leq 2 * \text{the Bayes error rate (the optimal classifier)}$
- Interpretation: “In this sense, it may be said that half the classification information in an infinite sample set is contained in the nearest neighbor.”

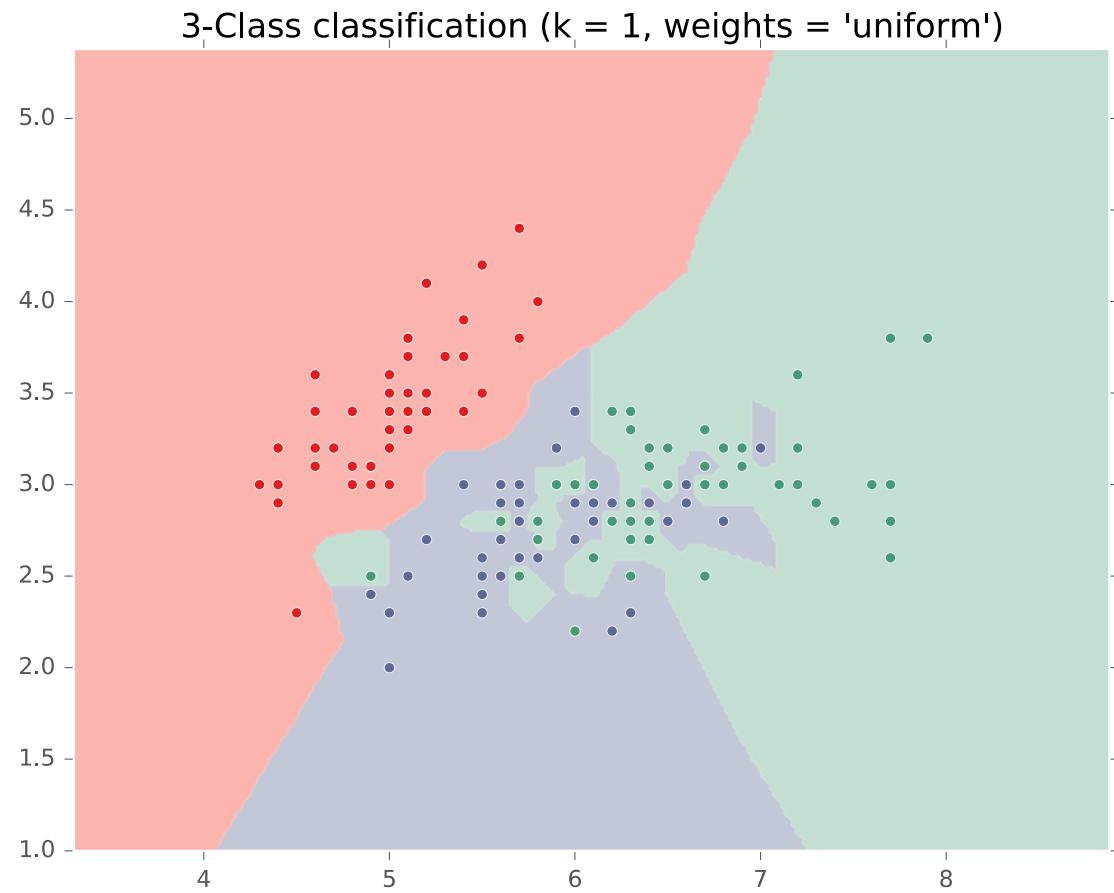
k -Nearest Neighbors (k NN)

- Classify a point as the most common label among the labels of the k nearest training points
- Tie-breaking (in case of even k and/or more than 2 classes)
 - Weight votes by distance
 - Remove furthest neighbor
 - Add next closest neighbor
 - Use a different distance metric

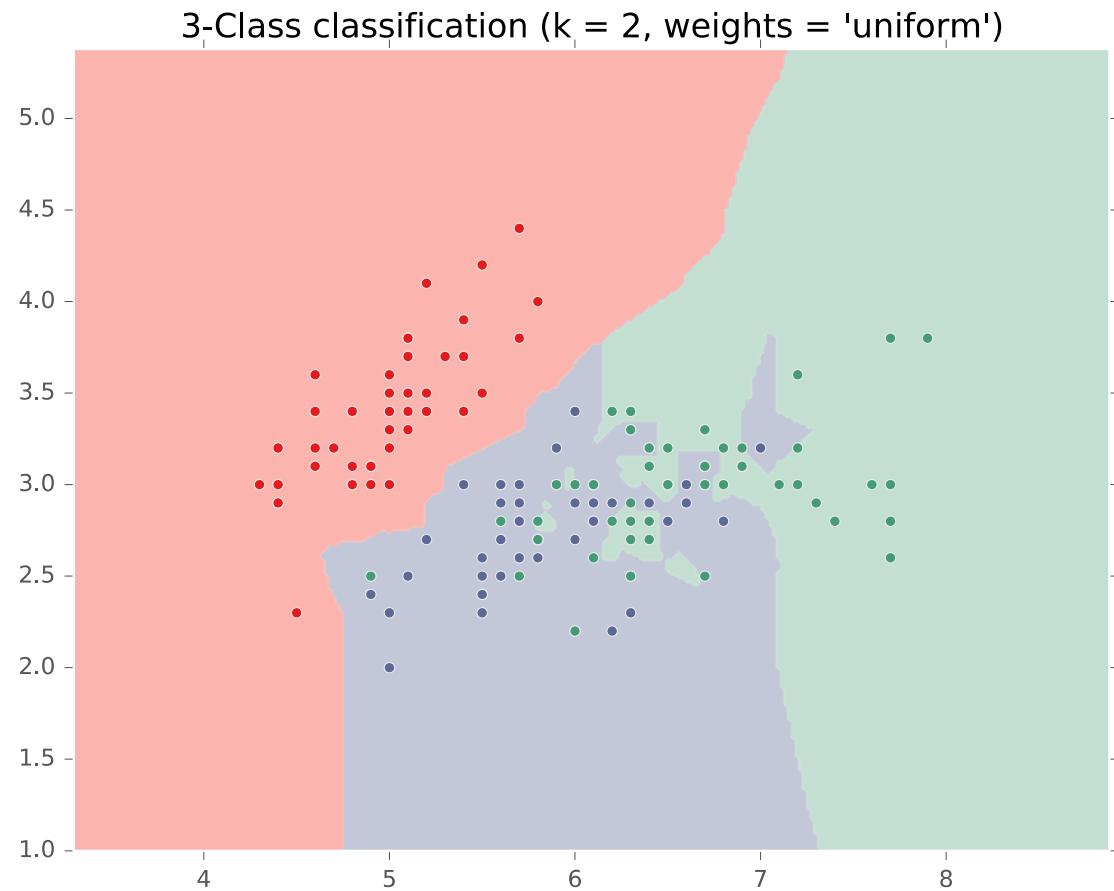
k -Nearest Neighbors (k NN): Pseudocode

```
def train( $\mathcal{D}$ ):  
    store  $\mathcal{D}$   
def predict( $\mathbf{x}'$ ):  
    return majority_vote(labels of the  $k$   
    nearest neighbors to  $\mathbf{x}'$  in  $\mathcal{D}$ )
```

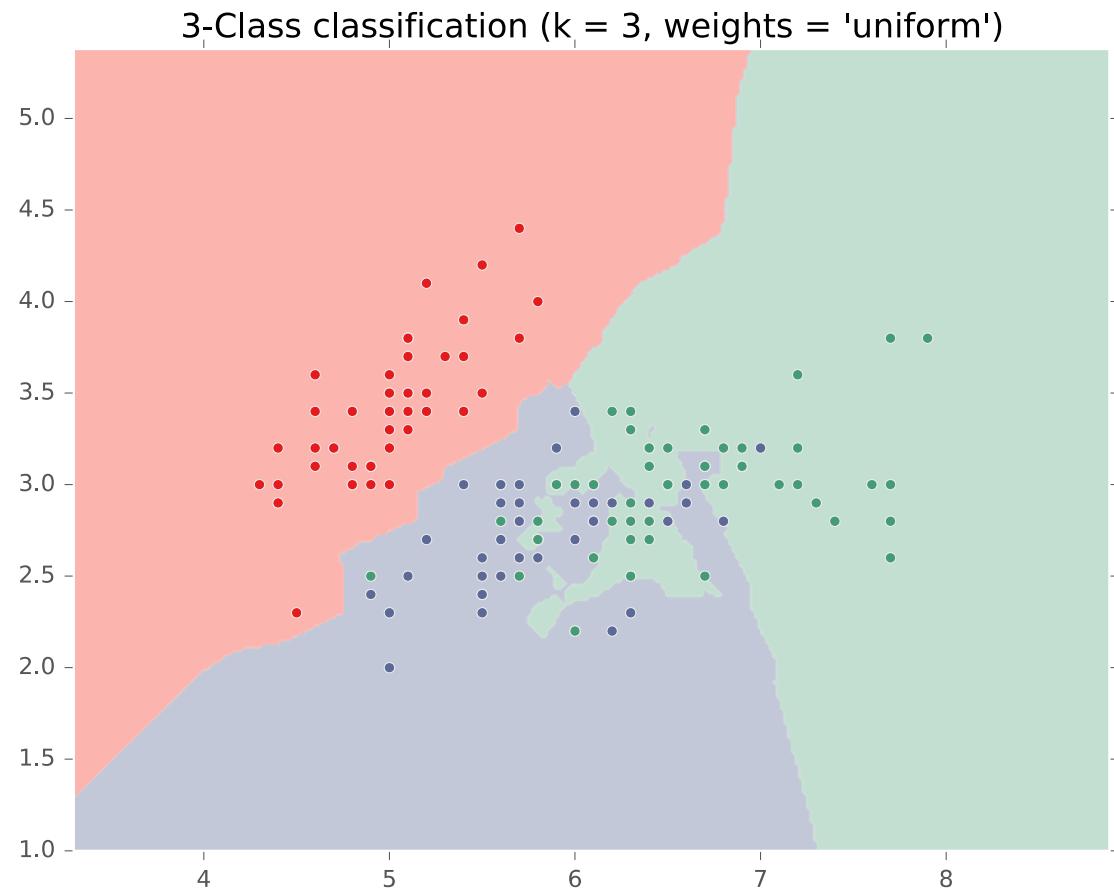
k NN on Fisher Iris Data



k NN on Fisher Iris Data



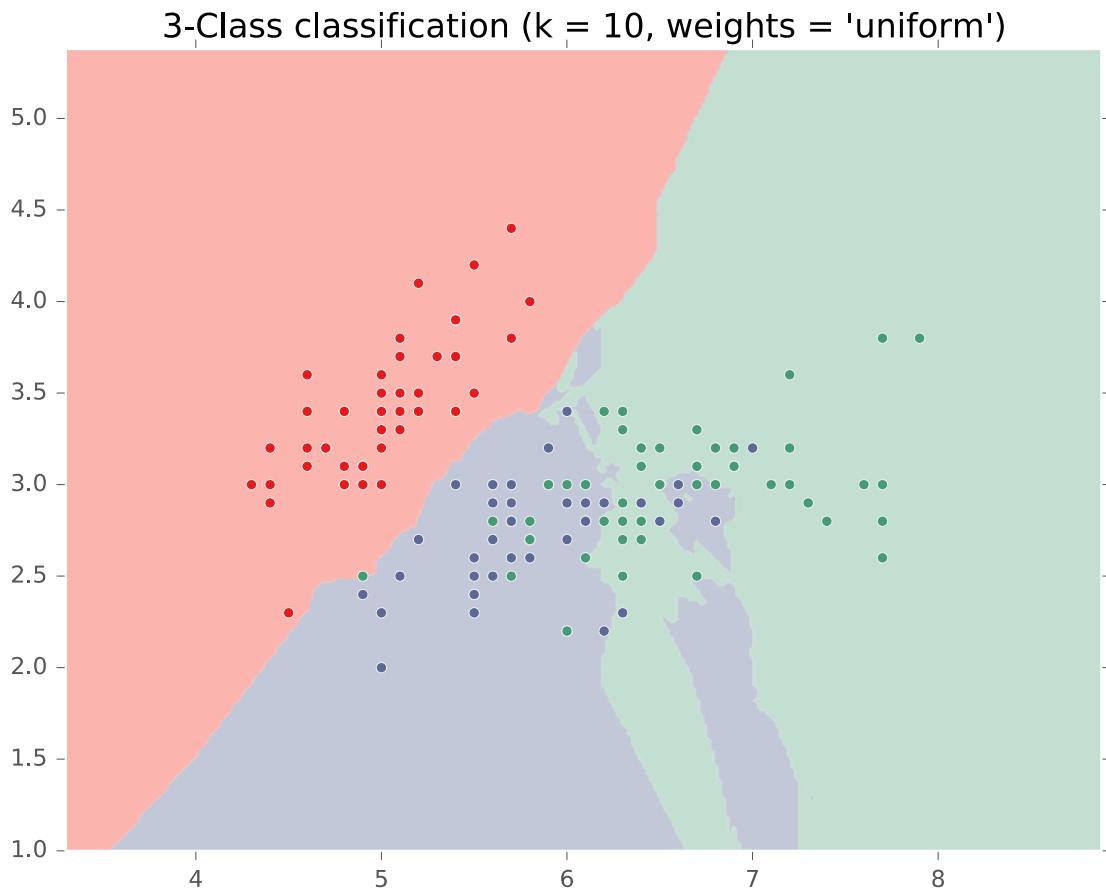
k NN on Fisher Iris Data



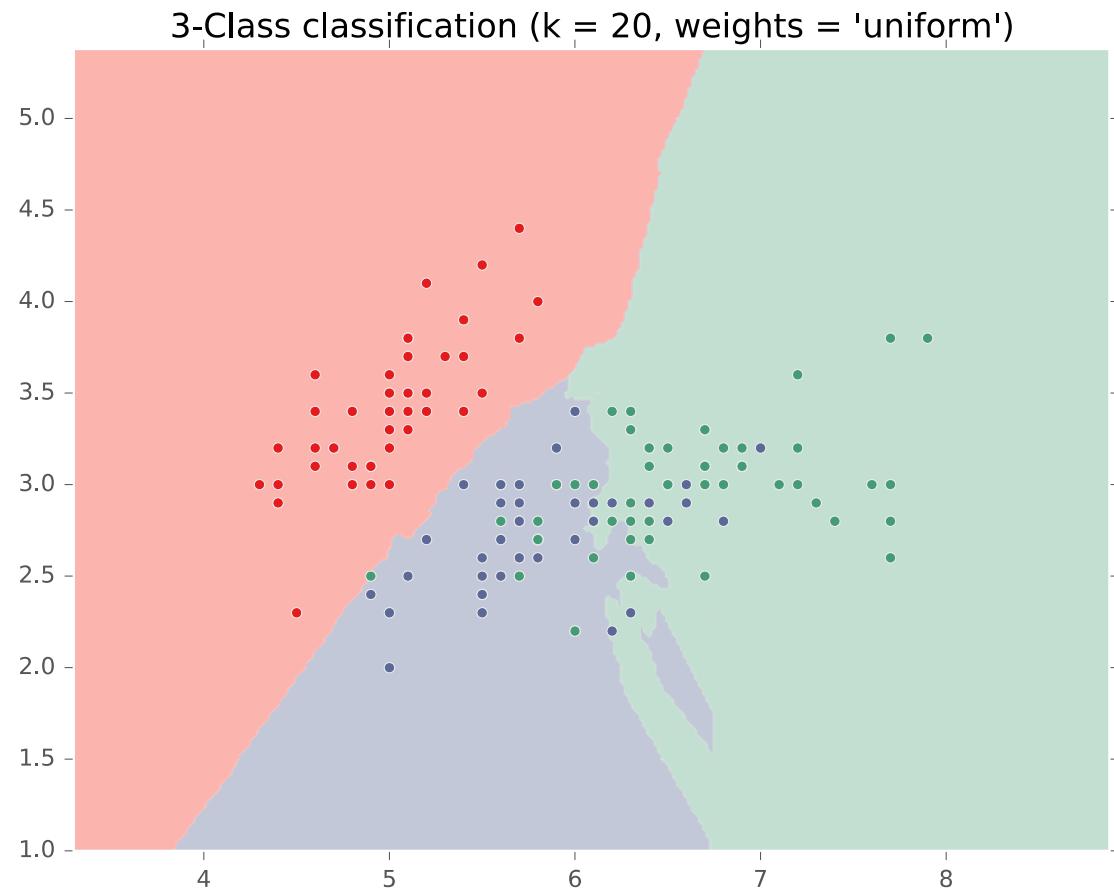
k NN on Fisher Iris Data



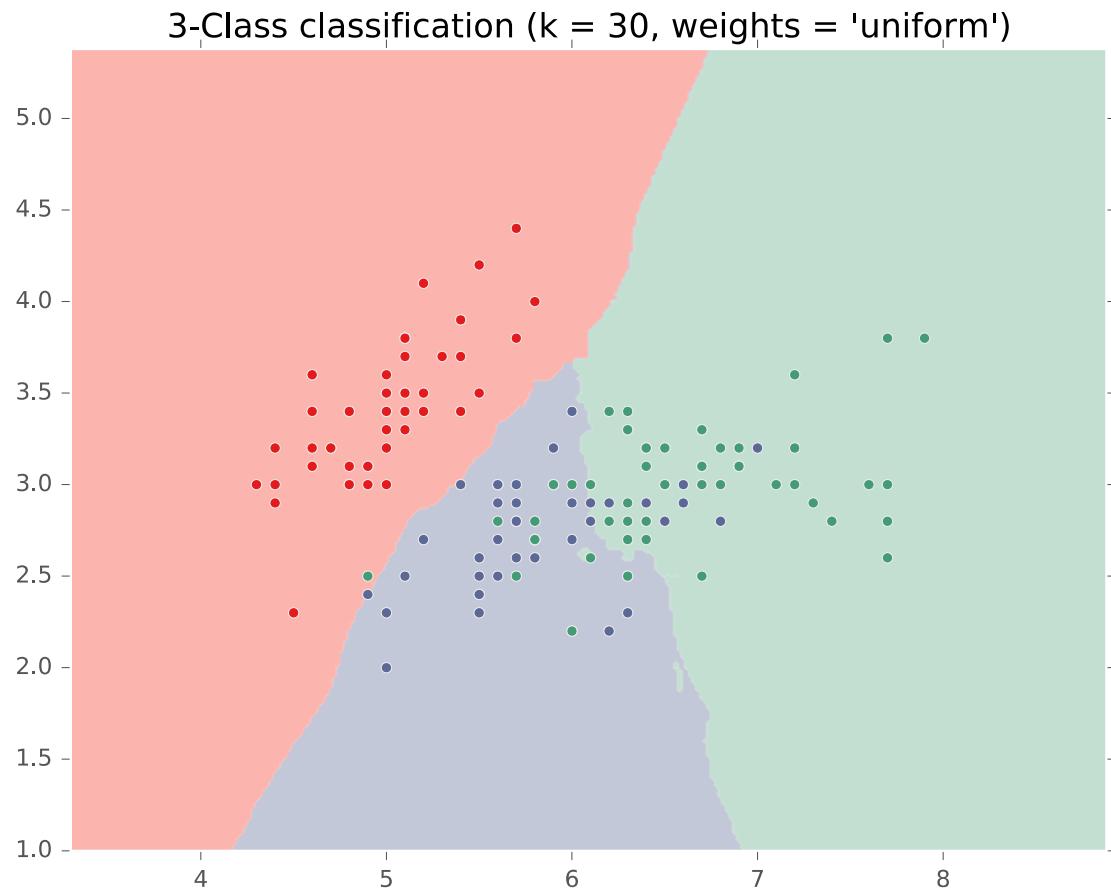
k NN on Fisher Iris Data



k NN on Fisher Iris Data



k NN on Fisher Iris Data

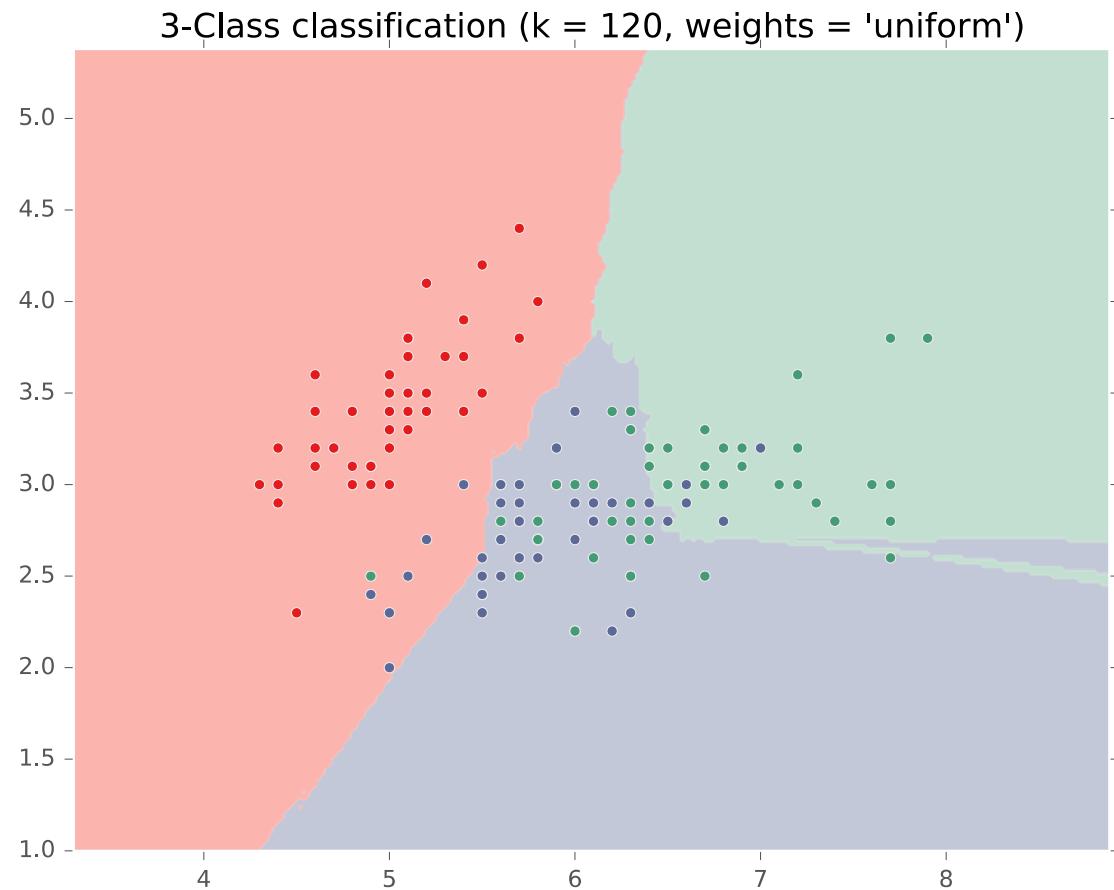


k NN on Fisher Iris Data



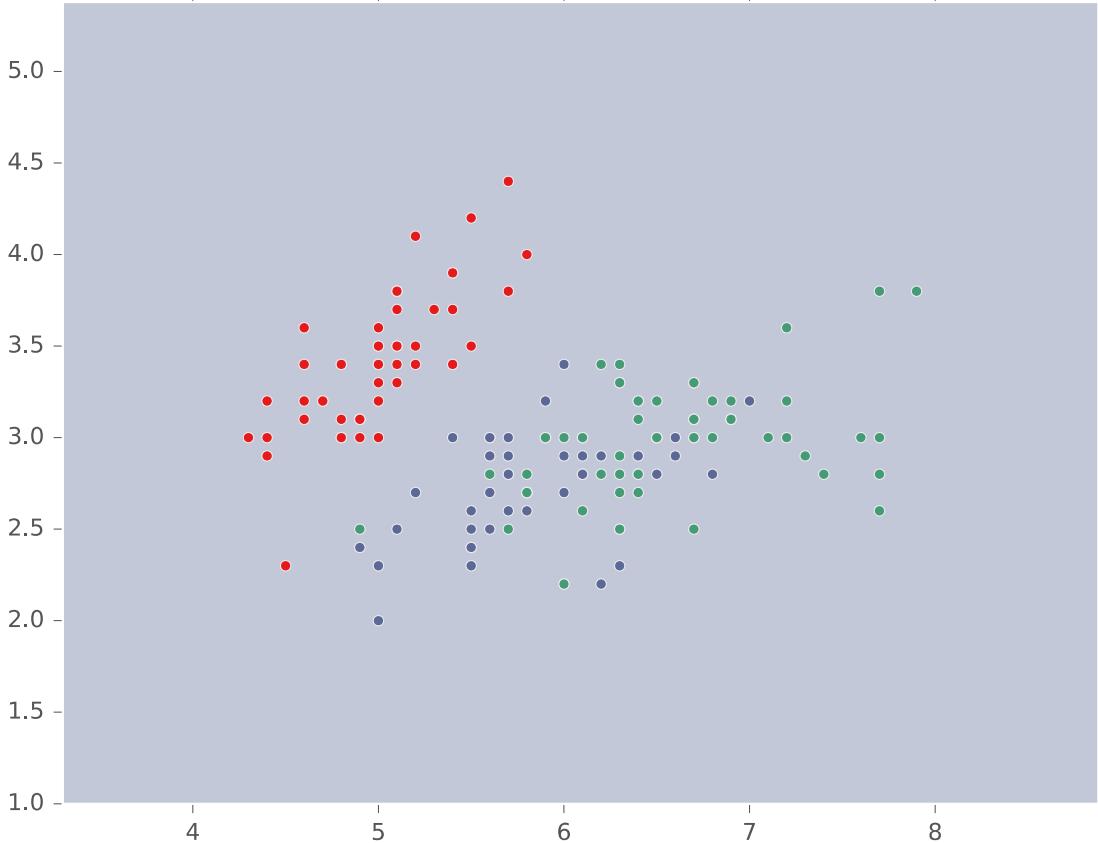
k NN on Fisher Iris Data

k NN on Fisher Iris Data



k NN on Fisher Iris Data

3-Class classification ($k = 150$, weights = 'uniform')



Setting k

- When $k = 1$:
 - many, complicated decision boundaries
 - may overfit
- When $k = N$:
 - no decision boundaries; always predicts the most common label in the training data
 - may underfit
- k controls the complexity of the hypothesis set $\Rightarrow k$ affects how well the learned hypothesis will generalize

*k*NN and Categorical Features

- *k*NNs are compatible with categorical features, either by:

1. Converting categorical features into binary ones:

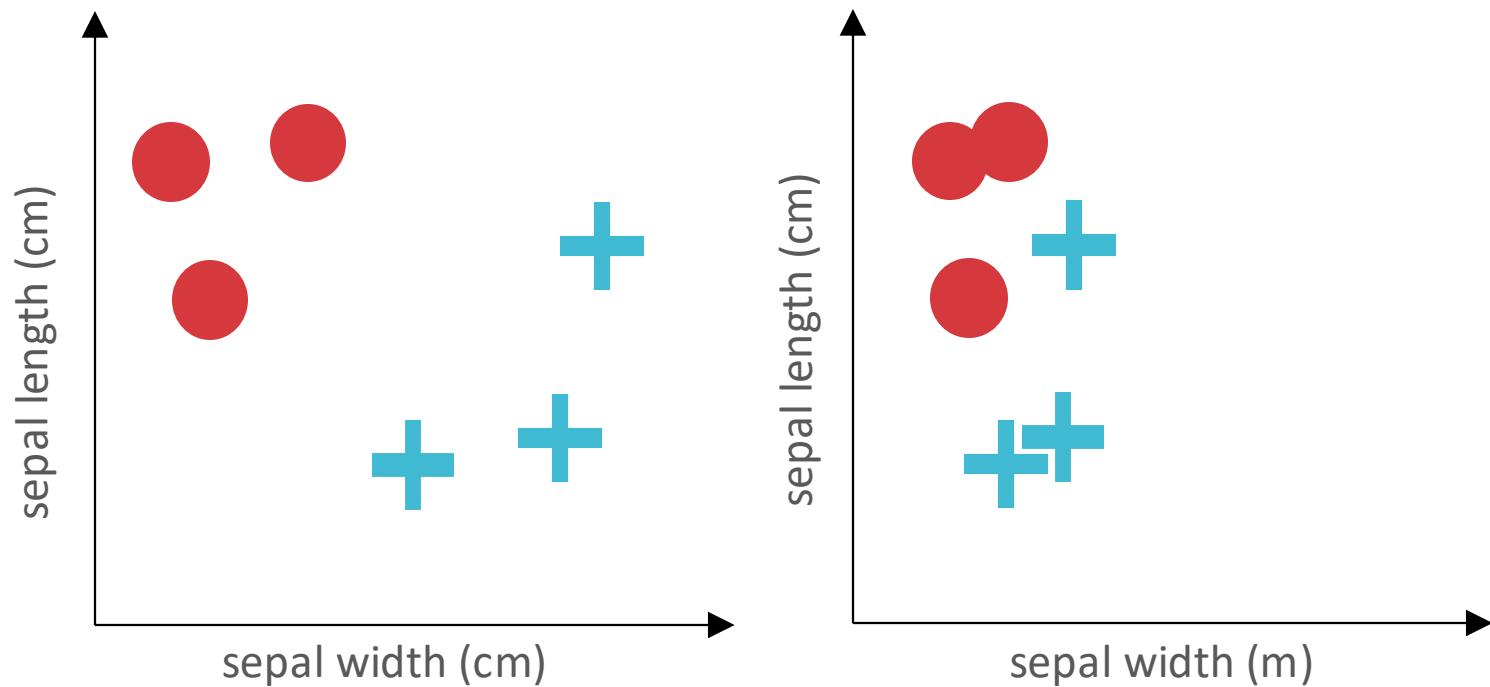
Cholesterol	Normal Cholesterol?	Abnormal Cholesterol?
Normal	1	0
Normal	1	0
Abnormal	0	1

2. Using a distance metric that works over categorical features e.g., the Hamming distance:

$$d(\mathbf{x}, \mathbf{x}') = \sum_{d=1}^D \mathbb{1}(x_d \neq x'_d)$$

k NN: Inductive Bias

- Similar points should have similar labels and *all features are equivalently important for determining similarity*



- Feature scale can dramatically influence results!

Key Takeaways

- Real-valued features and decision boundaries
- Nearest neighbor model and generalization guarantees
- k NN “training” and prediction
- Effect of k on model complexity
- k NN inductive bias