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Front Matter
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* Announcements:

* HW1 released on 5/13, due 5/16 at 11:59 PM
* You will submit your homework to Gradescope

1. Submit your code to the “programming”

submission slot

2. Submit a PDF with your answers to the

guestions “written” submission slot

* You must use LaTeX to typeset your

responses!






Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris virginica

), Iris versicolor (2) collected by Anderson (1936)

Sepal Sepal Petal Petal
Length Width Length Width

Fisher Iris )
Dataset 0 4.9 3.6 1.4 0.1
0 5.3 3.7 1.5 0.2
1 4.9 2.4 3.3 1.0
1 5.7 2.8 4.1 1.3
1 6.3 3.3 4.7 1.6
1 6.7 3.0 5.0 1.7

Henry Chai - 5/14/25 Source: https://en.wikipedia.org/wiki/Iris_flower data_set
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Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris virginica
(1), Iris versicolor (2) collected by Anderson (1936)

Sepal Sepal
Length Width

Fisher Iris 0 e 3.0
D ataset 0 4.9 3.6
0 5.3 3.7
1 4.9 2.4
1 5.7 2.8
1 6.3 3.3
1 6.7 3.0

Henry Chai - 5/14/25 Source: https://en.wikipedia.org/wiki/Iris_flower data_set
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Fisher Iris

Dataset
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Article Talk

WIKIPEDIA Duck test

The Free Encyclopedia From Wikipedia, the free encyclopedia
Main page For the use of "the duck test" within the Wikipedia community, see Wikipedia:DUCK.
Contents . . . . .

y The duck test is a form of abductive reasoning. This is its usual expression:

Featured content
Current events
Random article

| If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck.

The Duck Test

Henry Chai - 5/14/25 Source: https://en.wikipedia.org/wiki/Duck_test
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* Classify a point as the label of the “most similar”

training point

* ldea: given real-valued features, we can use a distance

metric to determine how similar two data points are

The Duck Test - A common choice is Euclidean distance:

for Machine D

Learning d(x,x) = |lx — x'l, = z(xd —x})?
NEE

* An alternative is the Manhattan distance:
D

dCe,x) = llx = ¥'lly = ) |xa - x;

d=1

Henry Chai - 5/14/25



def train(D):

Nearest store D

Neighbor: def predict(x’):

Pseudocode find the nearest neighbor to x' in D, x®

return y®
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Nearest
Neighbor:

Example
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Nearest
Neighbor:

Example
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Nearest
Neighbor:

Example
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The Nearest
Neighbor

Model
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°* Requires no training!

* Always has zero training error!

- A data point is always its own nearest neighbor

* Always has zero training error...

13



Generalization
of Nearest
Neighbor

(Cover and
Hart, 1967)
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* Claim: under certain conditions, as N = oo, with high
probability, the true error rate of the nearest neighbor

model < 2 * the Bayes error rate (the optimal classifier)

* Interpretation: “In this sense, it may be said that half the
classification information in an infinite sample set is

contained in the nearest neighbor.”

Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1053964 14
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But why limit
ourselves to

just one
neighbor?
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* Claim: under certain conditions, as N = oo, with high
probability, the true error rate of the nearest neighbor

model < 2 * the Bayes error rate (the optimal classifier)

* Interpretation: “In this sense, it may be said that half the
classification information in an infinite sample set is

contained in the nearest neighbor.”

Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1053964 15
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k-Nearest

Neighbors
(kKNN)
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* Classify a point as the most common label among the

labels of the k nearest training points

* Tie-breaking (in case of even k and/or more than 2 classes)

- Weight votes by distance
* Remove furthest neighbor
- Add next closest neighbor

* Use a different distance metric
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k-Nearest

Neighbors
(KNN):
Pseudocode
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def train(D):
store D

def predict(x’):

return majority vote(labels of the k
nearest neighbors to x' in D)
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kNN on
Fisher Iris

DEI
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3-Class classification (k = 1, weights = 'uniform')
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kNN on
Fisher Iris

DEI
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3-Class classification (k = 2, weights = 'uniform’)
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kNN on
Fisher Iris

DEI
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3-Class classification (k = 3, weights = 'uniform')
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kNN on
Fisher Iris

DEI
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3-Class classification (k = 5, weights = 'uniform')
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kNN on
Fisher Iris

DEI
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3-Class classification (k = 10, weights = 'uniform’)
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kNN on
Fisher Iris

DEI
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3-Class classification (k = 20, weights = 'uniform’)
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kNN on
Fisher Iris

DEI
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3-Class classification (k = 30, weights = 'uniform’)
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kNN on
Fisher Iris

DEI
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3-Class classification (k = 50, weights = 'uniform’)
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kNN on
Fisher Iris

DEI
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3-Class classification (k = 100, weights

L)

CRON

o o o CNC)
A0

= 'uniform’)

26



kNN on
Fisher Iris

DEI
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3-Class classification (k = 120, weights = 'uniform’)
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3-Class classification (k = 150, weights = 'uniform’)

kNN on
Fisher Iris

DEI

Henry Chai - 5/14/25 Figure courtesy of Matt Gormley



Setting k
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* When k = 1:

- many, complicated decision boundaries

* may overfit

*When k = N:

* no decision boundaries; always predicts the most

common label in the training data

* may underfit

* k controls the complexity of the hypothesis set = k

affects how well the learned hypothesis will generalize

29



- kNNs are compatible with categorical features, either by:

1. Converting categorical features into binary ones:

Cholesterol Normal Abnormal
Cholesterol? | Cholesterol?

kNN and Morma — ) -
: Normal 1 0
CategOrICal Abnormal 0 1

Features

2. Using a distance metric that works over categorical

features e.g., the Hamming distance:

D
d(x,x') = z 1(xyg # x4)
d=1

Henry Chai - 5/14/25 30



* Similar points should have similar labels and all features

are equivalently important for determining similarity
A A

.| ®® .| o
kNN: . ® == - '+
Inductive Bias H 5
++ § 4
> >
sepal width (cm) sepal width (m)

* Feature scale can dramatically influence results!

Henry Chai - 5/14/25

Figure courtesy of Matt Gormley 31
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° Real-valued features and decision boundaries

* Nearest neighbor model and generalization guarantees
* kNN “training” and prediction

* Effect of kK on model complexity

* kNN inductive bias

32
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