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Given this 
dataset, if you 
used training 
error rate as 
the splitting 
criterion, you 
would learn 
this tree…
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… but there 
actually exists a 
shorter 
decision tree 
with zero 
training error!
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Decision 
Trees:
Inductive Bias

 The inductive bias of a machine learning algorithm is 

the principal by which it generalizes to unseen examples

 What is the inductive bias of the ID3 algorithm i.e., 

decision tree learning with mutual information 

maximization as the splitting criterion?

 Try to find the _______ tree that achieves 

______________________________ with 

___________________ features at the top 

 Occam’s razor: try to find the “simplest” (e.g., smallest 

decision tree) classifier that explains the training dataset  
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Decision 
Trees:
Pros & Cons

 Pros

 Interpretable

 Efficient (computational cost and storage)

 Can be used for classification and regression tasks

 Compatible with categorical and real-valued features

 Cons

 Learned greedily: each split only considers the 

immediate impact on the splitting criterion

 Not guaranteed to find the smallest (fewest number 

of splits) tree that achieves a training error rate of 0. 

 Liable to overfit!
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𝑥 < 38.5
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𝑥 < 44.5
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Real-Valued 
Features: 
Example - 
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Decision 
Trees:
Pros & Cons

 Pros

 Interpretable

 Efficient (computational cost and storage)

 Can be used for classification and regression tasks

 Compatible with categorical and real-valued features

 Cons

 Learned greedily: each split only considers the 

immediate impact on the splitting criterion

 Not guaranteed to find the smallest (fewest number 

of splits) tree that achieves a training error rate of 0. 

 Liable to overfit!
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Overfitting

 Overfitting occurs when the classifier (or model)…

 is too complex

 fits noise or “outliers” in the training dataset as 

opposed to the actual pattern of interest

 doesn’t have enough inductive bias pushing it to 

generalize

 Underfitting occurs when the classifier (or model)…

 is too simple

 can’t capture the actual pattern of interest in the 

training dataset

 has too much inductive bias
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Different Kinds 
of Error

 Training error rate = 𝑒𝑟𝑟 ℎ, 𝒟𝑡𝑟𝑎𝑖𝑛

 Test error rate = 𝑒𝑟𝑟 ℎ, 𝒟𝑡𝑒𝑠𝑡  

 True error rate = e𝑟𝑟 ℎ

True error rate = the error rate of h on all possible examples

 In machine learning, this is the quantity that we care 

about but, in most cases, it is unknowable.

 Overfitting occurs when e𝑟𝑟 ℎ > 𝑒𝑟𝑟 ℎ, 𝒟𝑡𝑟𝑎𝑖𝑛

 𝑒𝑟𝑟 ℎ − 𝑒𝑟𝑟 ℎ, 𝒟𝑡𝑟𝑎𝑖𝑛  can be thought of as a 

measure of overfitting
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Overfitting in 
Decision Trees
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Combatting
Overfitting in 
Decision Trees

 Heuristics:

 Do not split leaves past a fixed depth, 𝛿

 Do not split leaves with fewer than 𝑐 data points

 Do not split leaves where the maximal information 

gain is less than 𝜏

 Take a majority vote in impure leaves
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Combatting
Overfitting in 
Decision Trees
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 Pruning:

1. First, learn a decision tree

2. Then, evaluate each split using a “validation” 

dataset by comparing the validation error rate 

with and without that split

3. Greedily remove the split that most decreases the 

validation error rate

 Break ties in favor of smaller trees

4. Stop if no split is removed



Pruning
Decision Trees
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Key Takeaways

 Inductive bias of decision trees

 Overfitting vs. Underfitting 

 How to combat overfitting in decision trees
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