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True or False: if we use mutual information maximization as the splitting criterion, we will
always learn the shortest possible decision tree with zero training error.
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True or False: if we use training error minimization as the splitting criterion, we will always
learn the shortest possible decision tree with zero training error.

True
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Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



Given this
dataset, if you
used training
error rate as

the splitting
criterion, you
would learn
this tree...
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... but there
actually exists a
shorter

decision tree
with zero
training error!
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* The inductive bias of a machine learning algorithm is

the principal by which it generalizes to unseen examples

- What is the inductive bias of the ID3 algorithm i.e.,

decision tree learning with mutual information

Decision

maximization as the splitting criterion?

- Try to find the Shodest tree that achieves
uLft}"]' Fjsi LL& ’/’E’ﬁmm}, o with
mort rﬂé’mﬂ[’v‘t features at the top

Trees:
Inductive Bias
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Decision

Trees:
Pros & Cons
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* Pros

* Interpretable
* Efficient (computational cost and storage)
 Can be used for classification and regression tasks

- Compatible with categorical and real-valued features

* Cons
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Real-Valued
Features:

Example -
Outside
Temperature (°F)
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Real-Valued
Features:

Example -
Outside
Temperature (°F)
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Decision

Trees:
Pros & Cons
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* Pros

* Interpretable
* Efficient (computational cost and storage)
 Can be used for classification and regression tasks

- Compatible with categorical and real-valued features

* Cons

* Learned greedily: each split only considers the

immediate impact on the splitting criterion

* Not guaranteed to find the smallest (fewest number

of splits) tree that achieves a training error rate of O.

* Liable to overfit!
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Overfitting
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* Overfitting occurs when the classifier (or model)...

* is too complex

- fits noise or “outliers” in the training dataset as

opposed to the actual pattern of interest

- doesn’t have enough inductive bias pushing it to

generalize

- Underfitting occurs when the classifier (or model)...

* is too simple

° can’t capture the actual pattern of interest in the

training dataset

* has too much inductive bias
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Different Kinds

of Error
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* Training error rate = err(h, D¢y gin)
* Test error rate = err(h, Dypgr)

* True error rate = err(h)

= the error rate of h on all possible examples

* In machine learning, this is the quantity that we care

about but, in most cases, it is unknowable.

- Overfitting occurs when err(h) > err(h, Dsrgin)

- err(h) — err(h, Dy qin) can be thought of as a

measure of overfitting
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Not Tired

This tree only misclassifies one training data point!

Both, Lunchbox
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Combatting

Overfitting in
Decision Trees
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* Heuristics:

* Do not split leaves past a fixed depth, 6
* Do not split leaves with fewer than ¢ data points

* Do not split leaves where the maximal information

gainis lessthan t

- Take a majority vote in impure leaves
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Combatting

Overfitting in
Decision Trees
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* Pruning:

1. First, learn a decision tree

2. Then, evaluate each split using a “validation”
dataset by comparing the validation error rate

with and without that split

3. Greedily remove the split that most decreases the

validation error rate
* Break ties in favor of smaller trees

4. Stop if no split is removed
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* Inductive bias of decision trees
* Overfitting vs. Underfitting

* How to combat overfitting in decision trees

78



	Slide 1:  10-301/601: Introduction to Machine Learning Lecture 3 – Decision Trees: Learning
	Slide 2: Front Matter
	Slide 3:  Decision Stumps: Questions 
	Slide 4: From  Decision Stump  …  
	Slide 5: From  Decision Stump  to  Decision  Tree
	Slide 6: From  Decision Stump  to  Decision  Tree
	Slide 7: From  Decision Stump  to  Decision  Tree
	Slide 8: From  Decision Stump  to  Decision  Tree
	Slide 9: From  Decision Stump  to  Decision  Tree
	Slide 10: Decision  Tree:  Example
	Slide 12: So how do we train one of these things?
	Slide 13: Background: Recursion     
	Slide 14: Background: Recursion     
	Slide 15: Decision  Tree:  Pseudocode
	Slide 16
	Slide 17
	Slide 18: Decision  Tree:  Pseudocode
	Slide 19:    Decision  Tree:  Example –  How is Henry getting to work?
	Slide 20: Data
	Slide 21: Which feature would we split on first using mutual information as the splitting criterion?
	Slide 22
	Slide 23: H Y , 3 16 log 2 3 16  H Y , 6 16 log 2 6 16  H Y , 7 16 log 2 7 16  H Y , 1.5052
	Slide 24
	Slide 25: I. x 1, Y , 1.5052 6 16 1 log 2 1 , 1 log 2 1  IG x 1,y , 7 16 log 2 7 16  IG x 1,y , 1.5051
	Slide 26: I. x 1, Y , 1.5052 6 16 1  IG x 1,y , 7 16 log 2 7 16  IG x 1,y , 1.5051
	Slide 27: I. x 1, Y , 1.5052 6 16 1 , 10 16 3 log 2 3 , 3 log 2 3 , 4 log 2 4  IG x 1,y , 1.5051
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Decision Tree: Example
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42:  Decision Stumps: Questions 
	Slide 43: Key Takeaways
	Slide 44:  10-301/601: Introduction to Machine Learning Lecture 4 – Overfitting 
	Slide 45
	Slide 46
	Slide 47: Given this dataset, if you used training error rate as the splitting criterion, you would learn this tree…
	Slide 48: … but there actually exists a shorter decision tree with zero training error!
	Slide 49:  Decision  Trees: Inductive Bias 
	Slide 50:  Decision  Trees: Pros & Cons 
	Slide 51: Real-Valued Features: Example -  x  Outside Temperature (℉) 
	Slide 52: Real-Valued Features: Example -  x  Outside Temperature (℉) 
	Slide 53: Real-Valued Features: Example -  x  Outside Temperature (℉) 
	Slide 54: Real-Valued Features: Example -  x  Outside Temperature (℉) 
	Slide 55:  Decision  Trees: Pros & Cons 
	Slide 56:  Overfitting 
	Slide 57: Different Kinds of Error
	Slide 58
	Slide 59
	Slide 60
	Slide 61:  Overfitting in  Decision Trees
	Slide 62: Combatting Overfitting in  Decision Trees
	Slide 63: Combatting Overfitting in  Decision Trees
	Slide 64:  Pruning Decision Trees
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78: Key Takeaways

