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Given this
dataset, if you
used training
error rate as

the splitting
criterion, you
would learn
this tree...
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... but there
actually exists a
shorter

decision tree
with zero
training error!
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* The inductive bias of a machine learning algorithm is

the principal by which it generalizes to unseen examples

- What is the inductive bias of the ID3 algorithm i.e.,

decision tree learning with mutual information

Decision

maximization as the splitting criterion?
Trees:

. . * Try to find the smallest tree that achieves a trainin
Inductive Bias / .

error rate of 0 with high mutual information

features at the top

* Occam’s razor: try to find the “simplest” (e.g., smallest

decision tree) classifier that explains the training dataset
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Decision

Trees:
Pros & Cons
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* Pros

* Interpretable
* Efficient (computational cost and storage)
 Can be used for classification and regression tasks

- Compatible with categorical and real-valued features

* Cons

* Learned greedily: each split only considers the

immediate impact on the splitting criterion

* Not guaranteed to find the smallest (fewest number

of splits) tree that achieves a training error rate of O.

* Liable to overfit!



74 Drive 33 Drive

+«— x < 385

55 Bus L4 Bus

63  Bike 45  Bus

33 Drive 51 Bus

Real-Valued sl Bl
Features: 81 Drive = | i
L4 Bus 74  Drive

Example - T T
O Ut S i d e 78  Drive 80 Drive

51 Bus 81 Drive

Temperature (°F)

Henry Chai - 5/13/25



74 Drive 33 Drive
55 Bus L4 Bus

63 Bike e B ¥ x< 44.5
33 Drive 51 Bus
Real-Valued sl Bl
Features: B D 6 Bike
L4 Bus 74  Drive
Example - T T
O Ut S i d e 78  Drive 80 Drive
51 Bus 81 Drive

Temperature (°F)

Henry Chai - 5/13/25



74 Drive 33 Drive
55 Bus L4 Bus
63  Bike 45  Bus
33 Drive 51 Bus
Real-Valued sl Bl
Features: 81 Drive = | i
L4 Bus 74  Drive
Example - T T

O uts | d e 78  Drive 80 Drive
1 Bus 81 Drive
Temperature (°F) i x < 59 x = 59

Henry Chai - 5/13/25



L« y x ]y

74  Drive 33 Drive

55 Bus L4 Bus

63  Bike 45  Bus

33 Drive 51 Bus

Real-Valued e o
: 81 Dri 63  Bik
Features: . T
L us 74 rive

Exa m ple " 45 Bus 78  Drive
O ut S i d e 78  Drive 8o Drive

51 Bus 81 Drive

Temperature (°F)

x < 38.5 x =>385 x<685 x = 68.5

Henry Chai - 5/13/25



Decision

Trees:
Pros & Cons
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* Pros

* Interpretable
* Efficient (computational cost and storage)
 Can be used for classification and regression tasks

- Compatible with categorical and real-valued features

* Cons

* Learned greedily: each split only considers the

immediate impact on the splitting criterion

* Not guaranteed to find the smallest (fewest number

of splits) tree that achieves a training error rate of O.

* Liable to overfit!
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Overfitting
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* Overfitting occurs when the classifier (or model)...

* is too complex

- fits noise or “outliers” in the training dataset as

opposed to the actual pattern of interest

- doesn’t have enough inductive bias pushing it to

generalize

- Underfitting occurs when the classifier (or model)...

* is too simple

° can’t capture the actual pattern of interest in the

training dataset

* has too much inductive bias
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Different Kinds

of Error
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* Training error rate = err(h, D¢y gin)
* Test error rate = err(h, Dypgr)

* True error rate = err(h)

= the error rate of h on all possible examples

* In machine learning, this is the quantity that we care

about but, in most cases, it is unknowable.

- Overfitting occurs when err(h) > err(h, Dsrgin)

- err(h) — err(h, Dy qin) can be thought of as a

measure of overfitting
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Not Tired

This tree only misclassifies one training data point!

Both, Lunchbox
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Combatting

Overfitting in
Decision Trees
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* Heuristics:

* Do not split leaves past a fixed depth, 6
* Do not split leaves with fewer than ¢ data points

* Do not split leaves where the maximal information

gainis lessthan t

- Take a majority vote in impure leaves
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Combatting

Overfitting in
Decision Trees
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* Pruning:

1. First, learn a decision tree

2. Then, evaluate each split using a “validation”
dataset by comparing the validation error rate

with and without that split

3. Greedily remove the split that most decreases the

validation error rate
* Break ties in favor of smaller trees

4. Stop if no split is removed
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Not Tired
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* Inductive bias of decision trees
* Overfitting vs. Underfitting

* How to combat overfitting in decision trees
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