10-301/601: Introduction
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Lecture 3 — Decision
Trees: Learning
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Front Matter
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- Announcements:

* HW1 released on 5/13 (today!), due 5/16 at 11:59 PM
* You will submit your homework to Gradescope

1. Submit your code to the “programming”

submission slot

2. Submit a PDF with your answers to the

guestions “written” submission slot

* You must use LaTeX to typeset your

responses!



- 1. How can we pick which feature to split on?
Decision

Stumps:
Questions 2. Why stop at just one feature?

a. How can we pick the order of the splits?
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Decision
Tree:
Example
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Negative examples are

C-sections

r[!,w?—] .83+ .1

7-)

—>Fetal_ Presentation
—=| Previous_Csection

J~ | | | Fetal Distres

f% | | | Fetal_Distres
—> | Previous_Csection
—>Fetal_Presentation
—> Fetal_Presentation

Figure courtesy of Tom Mitchell

—>| | Primiparous = O:
—| | Primiparous = 1:

Learned from medical records of 1000 women

= 1: [822%,116-] .88+ .12-
= 0: [767+,81-] .90+ .10-

[399+,13-]
[368+,68-]

.97+ .03-
.84+ .16-

s = 0: [334+,47-] .88+ .12-
s = 1: [34+,21-] .62+ .38-
= 1: [bb+,35-] .61+ .39-

= 2: [B%,29-]
= 3: B’QQ_]

.11+ .89-
27+ .73-
%52? > 22

50
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def predict(x’):
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* A binary search tree (BST) consists of nodes, where each node:
* has a value, v
* up to 2 children, a left descendant and a right descendant

Background: | o
: - all its left descendants have values less than v and its right
Recursion descendants have values greater than v

* We like BSTs because they permit search in O(log(n)) time,
assuming n nodes in the tree
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* A binary search tree (BST) consists of nodes, where each node:
* has a value, v
* up to 2 children, a left descendant and a right descendant

Background: | o
: - all its left descendants have values less than v and its right
Recursion descendants have values greater than v

* We like BSTs because they permit search in O(log(n)) time,
assuming n nodes in the tree é i
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def train(D):

store root = tree recurse(D)
def tree recurse(D'):

g = new node()

base case - if (SOME CONDITION):

Decision

recursion - else:

Tree: SR e best dhbok to sgld®

Pseudocode on (eq. sy ML), X,
- ‘1 Sd_)lr\( ,.Q_sium Z?‘QA y
*{;r J A \J(>§;)3-E;ﬂ\ wckwts 7%;'%;L“°ﬁ;
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return ¢
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m

Lecture 3+ 4 Polls

0 surveys completed
o ——

0 surveys underway

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



m m_

Which of the following are reasonable base cases for training decision trees recursively i.e.,
when does it make sense to stop splitting a node?

All labels in the node's dataset are the same

All feature vectors in the node's dataset are the same

The node's dataset is empty

The labels in the node's dataset are split 50-50

None of the above

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



Decision

Tree:
Pseudocode
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def train(D):
store root = tree recurse(D)
def tree recurse(D'):
g = new node()
base case - if (D' is empty OR
all labels in D’ are the same OR
all features in D' are identical OR
some other stopping criterion):

g.label = majority vote(D')

recursion - else:

return ¢
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Decision

Tree:
Example —
How is Henry
getting to
work?
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* Label: mode of transportation
-y € Y = {Bike, Drive, Bus}
* Features: 4 categorial features
* Is it raining? x; € {Rain, No Rain}

* When am | leaving (relative to rush hour)?

x, € {Before, During, After}

* What am | bringing?
x3 € {Backpack, Lunchbox, Both}

* Am | tired? x, € {Tired, Not Tired}
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Which feature
would we split on
first using mutual

information as

the splitting

criterion?
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1i\1 ) = 1.5052
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I(x,,Y) ~ 1.5052
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I(x,,Y) ~ 1.5052
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[ (x1' Yx4=Tired)
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I(x,Y,
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Not Tired

Rain Durlng Both  NotTired

Backpack Both, Lunchbox

Rain  After Backpack NotTired Bus

No Rain Before Lunchbox NotTired Bus

No Rain During Backpack NotTired Bus Rain  After Bus
No Rain After Backpack NotTired Bike No Rain Before Bike
No Rain  After Both  NotTired Bus No Rain  After Bike

No Rain After Lunchbox NotTired Bus

I(x1, Y, =Tirea) = 0.3244

1(x2, Y, =Tirea) =~ 0.2516

I(23, Y, ~Tirea) ~ 0.9183
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X
Not Tired =

Both, Lunchbox

Bus

Rain No Rain

Tired

Backpack
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X3

Both, Lunchbox

Drive

Rain
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41



Decision

Stumps:
Questions
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1. How can we pick which feature to split on?

2. Why stop at just one feature?

a. How can we pick the order of the splits?
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* Decision tree prediction algorithm

* Decision tree learning algorithm via recursion
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