

10-301/601: Introduction to Machine Learning

Lecture 3 – Decision Trees: Learning

Henry Chai

5/13/25

Front Matter

- Announcements:
 - HW1 released on 5/13 (today!), due 5/16 at 11:59 PM
 - You will submit your homework to Gradescope
 1. Submit your code to the “programming” submission slot
 2. Submit a PDF with your answers to the questions “written” submission slot
 - **You must use LaTeX to typeset your responses!**

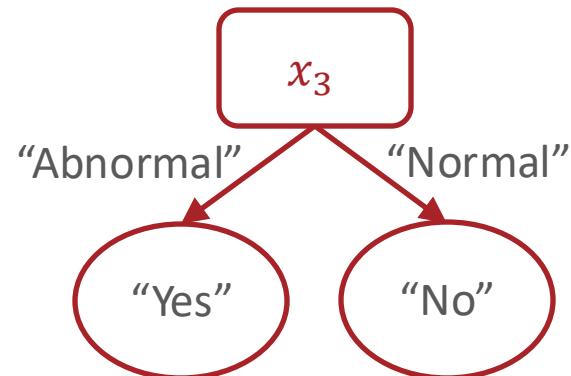
Decision Stumps: Questions

1. How can we pick which feature to split on?
2. Why stop at just one feature?
 - a. How can we pick the order of the splits?

From Decision Stump

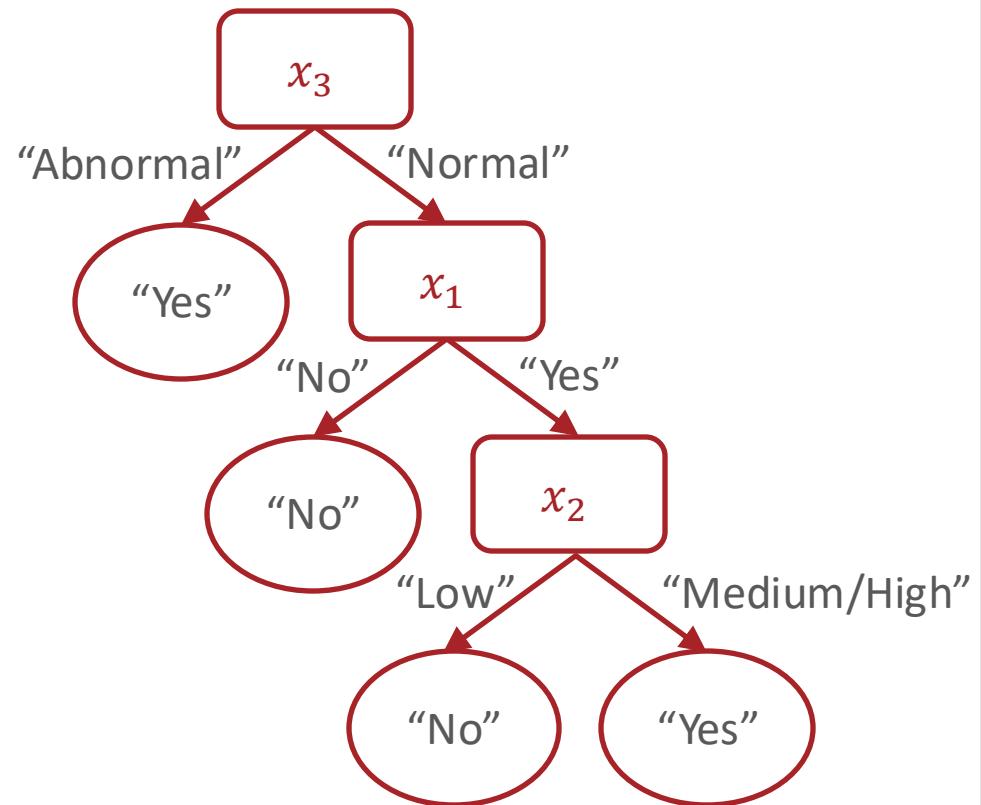
...

x_1 Family History	x_2 Resting Blood Pressure	x_3 Cholesterol	y Heart Disease?
Yes	Low	Normal	No
No	Medium	Normal	No
No	Low	Abnormal	Yes
Yes	Medium	Normal	Yes
Yes	High	Abnormal	Yes



From Decision Stump to Decision Tree

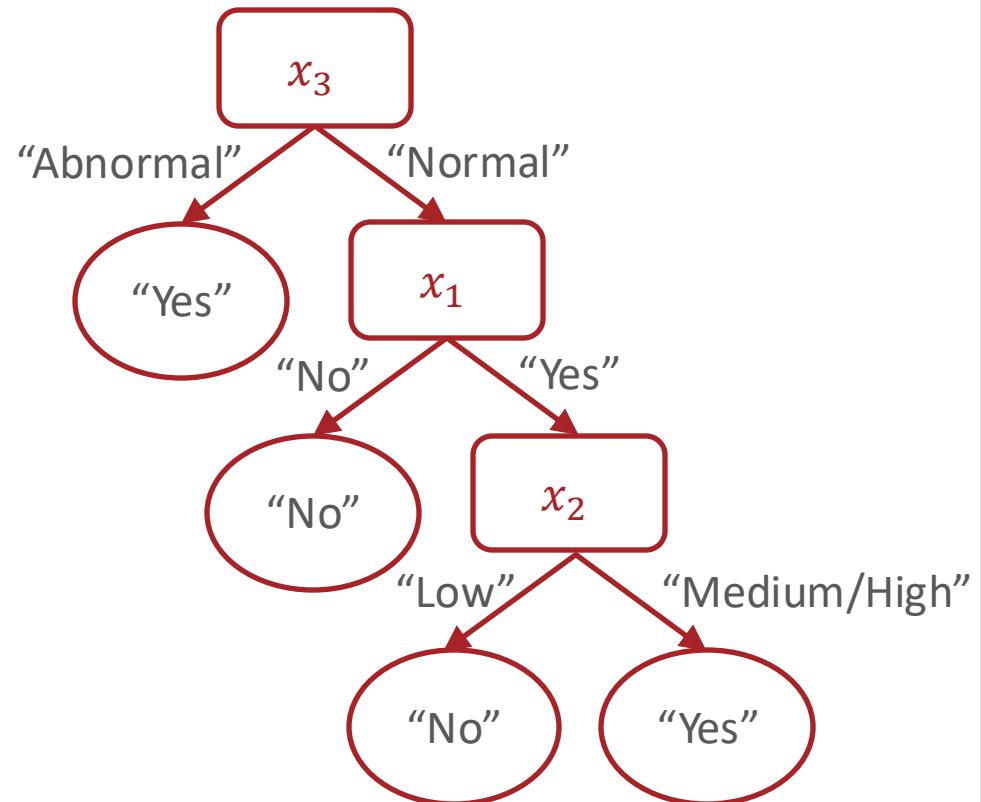
x_1 Family History	x_2 Resting Blood Pressure	x_3 Cholesterol	y Heart Disease?
Yes	Low	Normal	No
No	Medium	Normal	No
No	Low	Abnormal	Yes
Yes	Medium	Normal	Yes
Yes	High	Abnormal	Yes



From Decision Stump to Decision Tree

x_1 Family History	x_2 Resting Blood Pressure	x_3 Cholesterol	y Heart Disease?
Yes	Low	Normal	No
No	Medium	Normal	No
No	Low	Abnormal	Yes
Yes	Medium	Normal	Yes
Yes	High	Abnormal	Yes

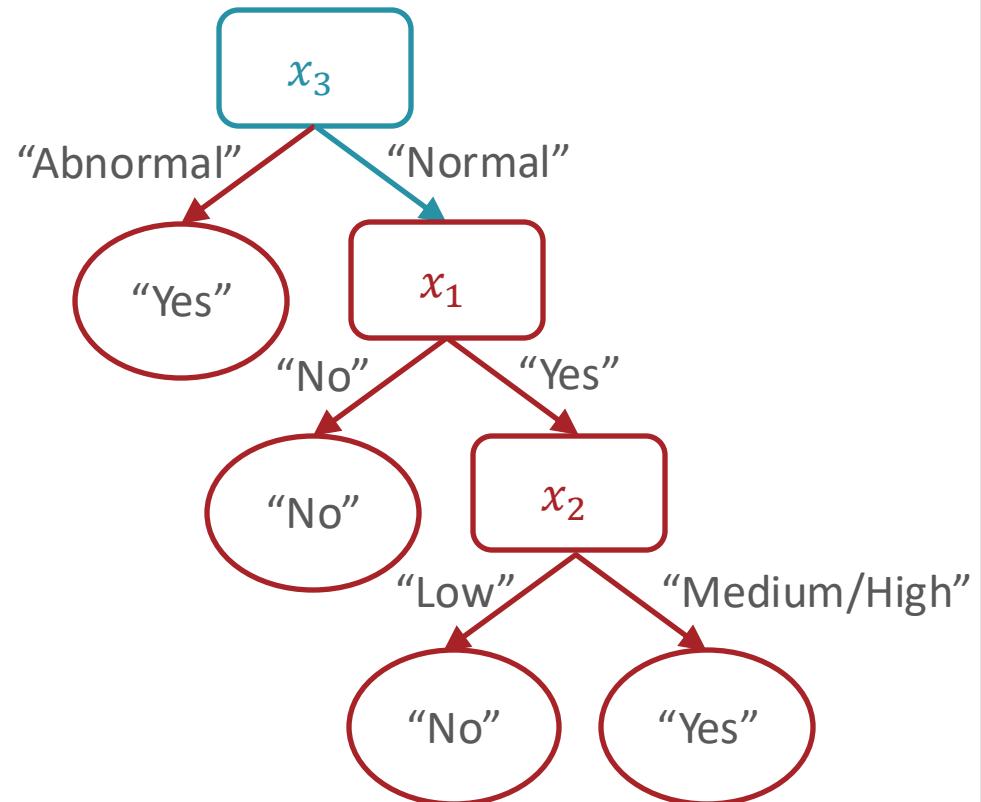
No	High	Normal	No
----	------	--------	----



From Decision Stump to Decision Tree

x_1 Family History	x_2 Resting Blood Pressure	x_3 Cholesterol	y Heart Disease?
Yes	Low	Normal	No
No	Medium	Normal	No
No	Low	Abnormal	Yes
Yes	Medium	Normal	Yes
Yes	High	Abnormal	Yes

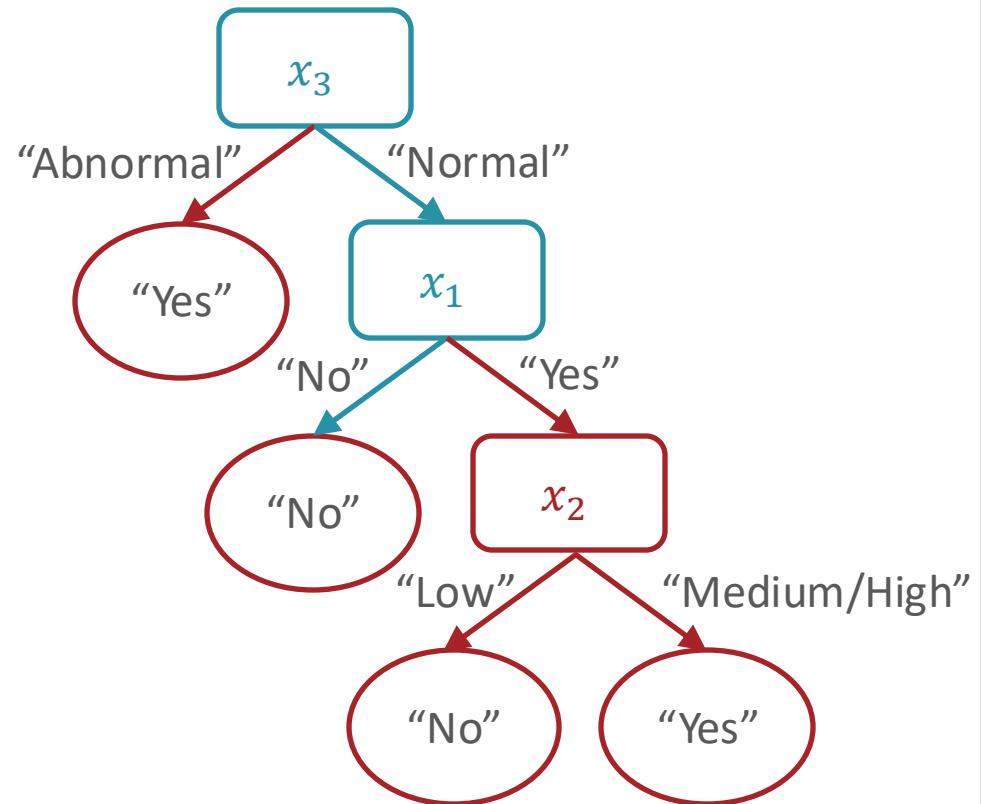
No	High	Normal	No
----	------	--------	----



From Decision Stump to Decision Tree

x_1 Family History	x_2 Resting Blood Pressure	x_3 Cholesterol	y Heart Disease?
Yes	Low	Normal	No
No	Medium	Normal	No
No	Low	Abnormal	Yes
Yes	Medium	Normal	Yes
Yes	High	Abnormal	Yes

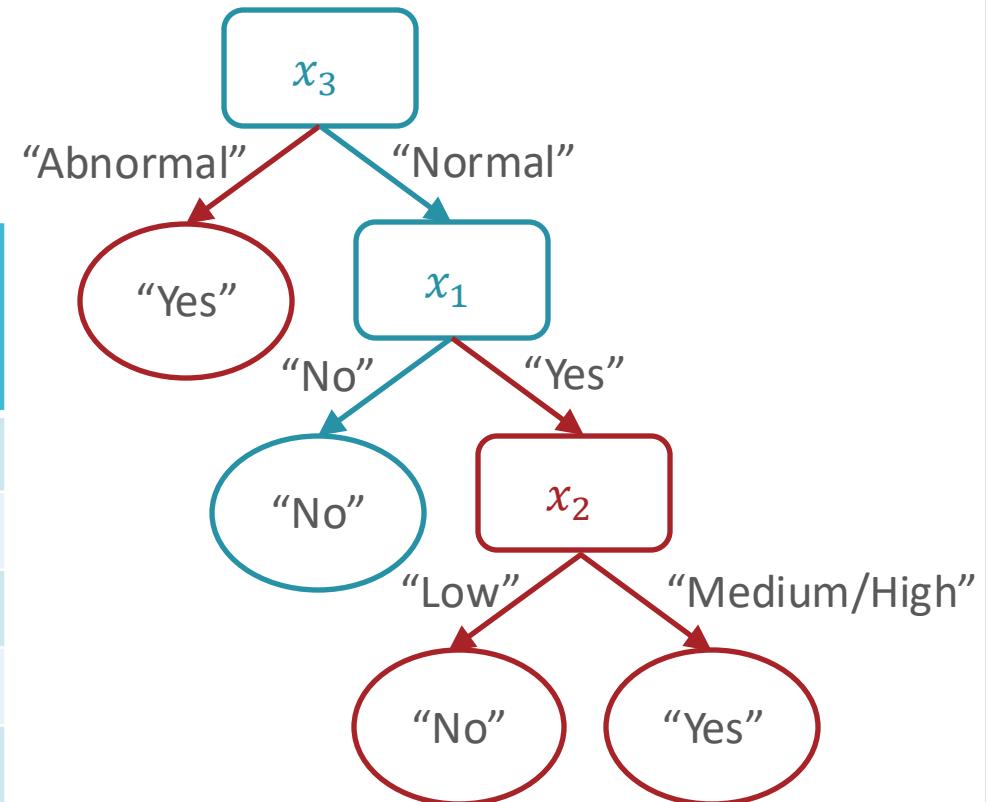
No	High	Normal	No
----	------	--------	----

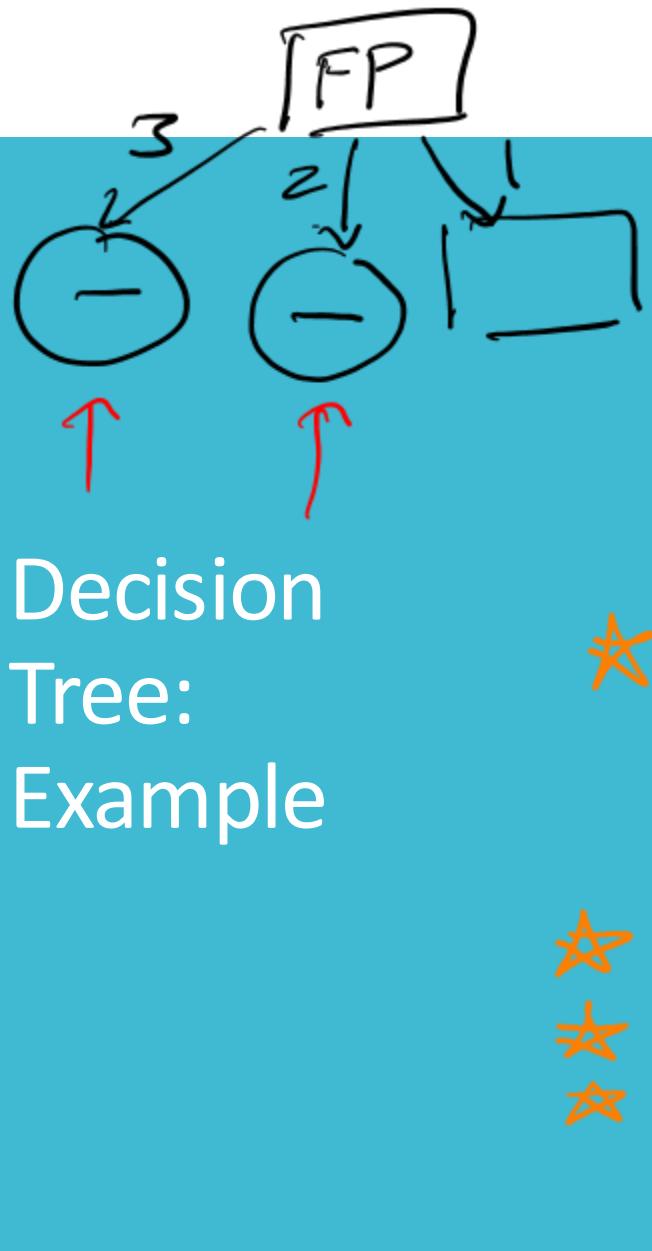


From Decision Stump to Decision Tree

x_1 Family History	x_2 Resting Blood Pressure	x_3 Cholesterol	y Heart Disease?
Yes	Low	Normal	No
No	Medium	Normal	No
No	Low	Abnormal	Yes
Yes	Medium	Normal	Yes
Yes	High	Abnormal	Yes

No	High	Normal	No
----	------	--------	----





Learned from medical records of 1000 women

Negative examples are C-sections

[833+, 167-] .83+ .17-

- Fetal_Presentation = 1: [822+, 116-] .88+ .12-
- | Previous_Csection = 0: [767+, 81-] .90+ .10-
- | | Primiparous = 0: [399+, 13-] .97+ .03-
- | | Primiparous = 1: [368+, 68-] .84+ .16-
- | | | Fetal_Distress = 0: [334+, 47-] .88+ .12-
- | | | Fetal_Distress = 1: [34+, 21-] .62+ .38-
- | Previous_Csection = 1: [55+, 35-] .61+ .39-
- → Fetal_Presentation = 2: [3+, 29-] .11+ .89-
- → Fetal_Presentation = 3: [8+, 22-] .27+ .73-

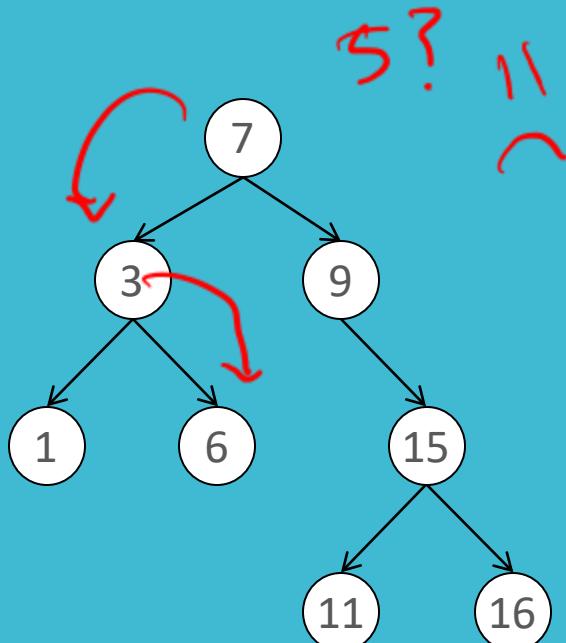
$$\frac{8}{30} \approx \frac{22}{30}$$

Decision
Tree: one of
these things?

def predict(x'):

 - walk from the root to a leaf
 while true:
 if current_node is internal:
 check the associated feature
 x_d
 go down the branch
 according to x_d'
 else if current_node is leaf:
 return the label stored at
 current_node

Background: Recursion



- A **binary search tree** (BST) consists of nodes, where each node:
 - has a value, v
 - up to 2 children, a left descendant and a right descendant
 - all its left descendants have values less than v and its right descendants have values greater than v
- We like BSTs because they permit search in $O(\log(n))$ time, assuming n nodes in the tree

def contains_iterative(root, key)

 curr_node = root

 while True:

 if key < curr_node.value & curr_node.left exists:

 curr_node = curr_node.left

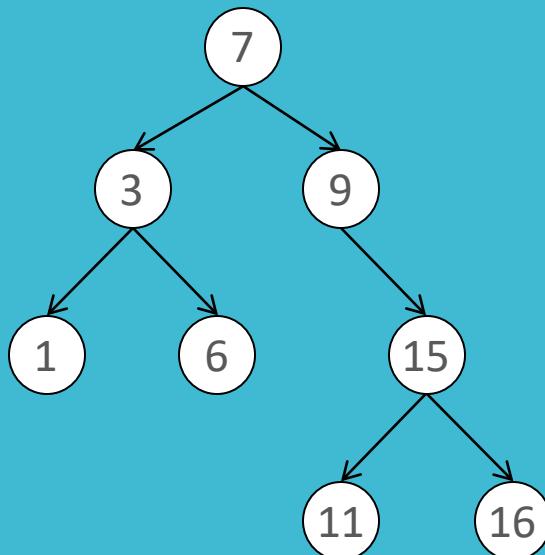
 else if key > curr_node.value & curr_node.right exists:

 curr_node = curr_node.right

 else:

 return key == curr_node.value

Background: Recursion



- A **binary search tree** (BST) consists of nodes, where each node:
 - has a value, v
 - up to 2 children, a left descendant and a right descendant
 - all its left descendants have values less than v and its right descendants have values greater than v
- We like BSTs because they permit search in $O(\log(n))$ time, assuming n nodes in the tree

```
def contains_recurse(node, key):  
    if key < node.value & node.left exists:  
        contains_recurse(node.left, key)  
    else if key > node.value & node.right exists:  
        contains_recurse(node.right, key)  
    else:  
        return key == node.value
```

Decision Tree: Pseudocode

```
def train( $\mathcal{D}$ ):  
    store root = tree_recurse( $\mathcal{D}$ )  
def tree_recurse( $\mathcal{D}'$ ):  
    q = new node()  
    base case - if (SOME CONDITION):  
    recursion - else:  
        - find the best attribute to split  $\mathcal{D}'$   
        on (e.g. using MI),  $X_d$   
        - q.split-feature =  $X_d$   
        for  $v$  in  $V(X_d) = \{\text{all values } X_d \text{ takes on}\}$   
             $D_v = \{(\vec{x}^{(i)}, y^{(i)}) \in \mathcal{D}' \mid X_d^{(i)} = v\}$   
            q.children(v) = tree_recurse( $D_v$ )  
return q
```

0 surveys completed

0 surveys underway

Which of the following are reasonable base cases for training decision trees recursively i.e., when does it make sense to stop splitting a node?

All labels in the node's dataset are the same

All feature vectors in the node's dataset are the same

The node's dataset is empty

The labels in the node's dataset are split 50-50

None of the above

Decision Tree: Pseudocode

```
def train( $\mathcal{D}$ ):  
    store root = tree_recurse( $\mathcal{D}$ )  
def tree_recurse( $\mathcal{D}'$ ):  
    q = new node()  
    base case - if ( $\mathcal{D}'$  is empty OR  
        all labels in  $\mathcal{D}'$  are the same OR  
        all features in  $\mathcal{D}'$  are identical OR  
        some other stopping criterion):  
        q.label = majority_vote( $\mathcal{D}'$ )  
    recursion - else:  
        return q
```

Decision Tree: Example – How is Henry getting to work?

- Label: mode of transportation
 - $y \in \mathcal{Y} = \{\text{Bike, Drive, Bus}\}$
- Features: 4 categorial features
 - Is it raining? $x_1 \in \{\text{Rain, No Rain}\}$
 - When am I leaving (relative to rush hour)?
 $x_2 \in \{\text{Before, During, After}\}$
 - What am I bringing?
 $x_3 \in \{\text{Backpack, Lunchbox, Both}\}$
 - Am I tired? $x_4 \in \{\text{Tired, Not Tired}\}$

Data

x_1	x_2	x_3	x_4	y
Rain	Before	Both	Tired	Drive
Rain	During	Both	Not Tired	Bus
Rain	During	Both	Tired	Drive
Rain	After	Backpack	Not Tired	Bus
Rain	After	Backpack	Tired	Bus
Rain	After	Lunchbox	Tired	Drive
No Rain	Before	Backpack	Tired	Bike
No Rain	Before	Lunchbox	Not Tired	Bus
No Rain	Before	Lunchbox	Tired	Drive
No Rain	During	Backpack	Not Tired	Bus
No Rain	During	Both	Tired	Drive
No Rain	After	Backpack	Not Tired	Bike
No Rain	After	Backpack	Tired	Bike
No Rain	After	Both	Not Tired	Bus
No Rain	After	Both	Tired	Drive
No Rain	After	Lunchbox	Not Tired	Bus

Which feature would we split on first using mutual information as the splitting criterion?

x_1	x_2	x_3	x_4	y
Rain	Before	Both	Tired	Drive
Rain	During	Both	Not Tired	Bus
Rain	During	Both	Tired	Drive
Rain	After	Backpack	Not Tired	Bus
Rain	After	Backpack	Tired	Bus
Rain	After	Lunchbox	Tired	Drive
No Rain	Before	Backpack	Tired	Bike
No Rain	Before	Lunchbox	Not Tired	Bus
No Rain	Before	Lunchbox	Tired	Drive
No Rain	During	Backpack	Not Tired	Bus
No Rain	During	Both	Tired	Drive
No Rain	After	Backpack	Not Tired	Bike
No Rain	After	Backpack	Tired	Bike
No Rain	After	Both	Not Tired	Bus
No Rain	After	Both	Tired	Drive
No Rain	After	Lunchbox	Not Tired	Bus

$$H(S) = - \sum_{v \in V(S)} \frac{|S_v|}{|S|} \log_2 \left(\frac{|S_v|}{|S|} \right)$$

x_1	x_2	x_3	x_4	y
Rain	Before	Both	Tired	Drive
Rain	During	Both	Not Tired	Bus
Rain	During	Both	Tired	Drive
Rain	After	Backpack	Not Tired	Bus
Rain	After	Backpack	Tired	Bus
Rain	After	Lunchbox	Tired	Drive
No Rain	Before	Backpack	Tired	Bike
No Rain	Before	Lunchbox	Not Tired	Bus
No Rain	Before	Lunchbox	Tired	Drive
No Rain	During	Backpack	Not Tired	Bus
No Rain	During	Both	Tired	Drive
No Rain	After	Backpack	Not Tired	Bike
No Rain	After	Backpack	Tired	Bike
No Rain	After	Both	Not Tired	Bus
No Rain	After	Both	Tired	Drive
No Rain	After	Lunchbox	Not Tired	Bus

$$H(S) = - \sum_{v \in V(S)} \frac{|S_v|}{|S|} \log_2 \left(\frac{|S_v|}{|S|} \right)$$

$$H(Y) = - \left(\frac{3}{16} \log_2 \frac{3}{16} + \frac{7}{16} \log_2 \frac{7}{16} + \frac{6}{16} \log_2 \frac{6}{16} \right) \approx 1.5052$$

x_1	x_2	x_3	x_4	y
Rain	Before	Both	Tired	Drive
Rain	During	Both	Not Tired	Bus
Rain	During	Both	Tired	Drive
Rain	After	Backpack	Not Tired	Bus
Rain	After	Backpack	Tired	Bus
Rain	After	Lunchbox	Tired	Drive
No Rain	Before	Backpack	Tired	Bike
No Rain	Before	Lunchbox	Not Tired	Bus
No Rain	Before	Lunchbox	Tired	Drive
No Rain	During	Backpack	Not Tired	Bus
No Rain	During	Both	Tired	Drive
No Rain	After	Backpack	Not Tired	Bike
No Rain	After	Backpack	Tired	Bike
No Rain	After	Both	Not Tired	Bus
No Rain	After	Both	Tired	Drive
No Rain	After	Lunchbox	Not Tired	Bus

$$I(x_d; Y) = H(Y) - \sum_{v \in V(x_d)} f_v * H(Y_{x_d=v})$$

$$I(x_1, Y)$$

$$\text{IG}(x_1, y) = -\frac{7}{16} \log_2 \left(\frac{7}{16} \right)$$

x_1	x_2	x_3	x_4	y
Rain	Before	Both	Tired	Drive
Rain	During	Both	Not Tired	Bus
Rain	During	Both	Tired	Drive
Rain	After	Backpack	Not Tired	Bus
Rain	After	Backpack	Tired	Bus
Rain	After	Lunchbox	Tired	Drive
No Rain	Before	Backpack	Tired	Bike
No Rain	Before	Lunchbox	Not Tired	Bus
No Rain	Before	Lunchbox	Tired	Drive
No Rain	During	Backpack	Not Tired	Bus
No Rain	During	Both	Tired	Drive
No Rain	After	Backpack	Not Tired	Bike
No Rain	After	Backpack	Tired	Bike
No Rain	After	Both	Not Tired	Bus
No Rain	After	Both	Tired	Drive
No Rain	After	Lunchbox	Not Tired	Bus

$$I(x_d; Y) = H(Y) - \sum_{v \in V(x_d)} f_v * H(Y_{x_d=v})$$

$$I(x_1, Y) \approx 1.5052$$

$$-\frac{6}{16} \left(-\frac{1}{2} \log_2 \left(\frac{1}{2} \right) \right)$$

$$\text{IG}(x_1, y) = 16 - 16/16 = 0$$

x_1	x_2	x_3	x_4	y
Rain	Before	Both	Tired	Drive
Rain	During	Both	Not Tired	Bus
Rain	During	Both	Tired	Drive
Rain	After	Backpack	Not Tired	Bus
Rain	After	Backpack	Tired	Bus
Rain	After	Lunchbox	Tired	Drive
No Rain	Before	Backpack	Tired	Bike
No Rain	Before	Lunchbox	Not Tired	Bus
No Rain	Before	Lunchbox	Tired	Drive
No Rain	During	Backpack	Not Tired	Bus
No Rain	During	Both	Tired	Drive
No Rain	After	Backpack	Not Tired	Bike
No Rain	After	Backpack	Tired	Bike
No Rain	After	Both	Not Tired	Bus
No Rain	After	Both	Tired	Drive
No Rain	After	Lunchbox	Not Tired	Bus

$$I(x_d; Y) = H(Y) - \sum_{v \in V(x_d)} f_v * H(Y_{x_d=v})$$

$$I(x_1, Y) \approx 1.5052$$

$$-\frac{6}{16}(1)$$

x_1	x_2	x_3	x_4	y
Rain	Before	Both	Tired	Drive
Rain	During	Both	Not Tired	Bus
Rain	During	Both	Tired	Drive
Rain	After	Backpack	Not Tired	Bus
Rain	After	Backpack	Tired	Bus
Rain	After	Lunchbox	Tired	Drive
No Rain	Before	Backpack	Tired	Bike
No Rain	Before	Lunchbox	Not Tired	Bus
No Rain	Before	Lunchbox	Tired	Drive
No Rain	During	Backpack	Not Tired	Bus
No Rain	During	Both	Tired	Drive
No Rain	After	Backpack	Not Tired	Bike
No Rain	After	Backpack	Tired	Bike
No Rain	After	Both	Not Tired	Bus
No Rain	After	Both	Tired	Drive
No Rain	After	Lunchbox	Not Tired	Bus

$$I(x_d; Y)$$

$$= H(Y) - \sum_{v \in V(x_d)} f_v * H(Y_{x_d=v})$$

$$I(x_1, Y) \approx 1.5052$$

$$-\frac{6}{16}(1)$$

$$-\frac{10}{16} \left(-\frac{3}{10} \log_2 \left(\frac{3}{10} \right) \right)$$

$$-\frac{3}{16} \log_2 \left(\frac{3}{16} \right)$$

x_1	x_2	x_3	x_4	y
Rain	Before	Both	Tired	Drive
Rain	During	Both	Not Tired	Bus
Rain	During	Both	Tired	Drive
Rain	After	Backpack	Not Tired	Bus
Rain	After	Backpack	Tired	Bus
Rain	After	Lunchbox	Tired	Drive
No Rain	Before	Backpack	Tired	Bike
No Rain	Before	Lunchbox	Not Tired	Bus
No Rain	Before	Lunchbox	Tired	Drive
No Rain	During	Backpack	Not Tired	Bus
No Rain	During	Both	Tired	Drive
No Rain	After	Backpack	Not Tired	Bike
No Rain	After	Backpack	Tired	Bike
No Rain	After	Both	Not Tired	Bus
No Rain	After	Both	Tired	Drive
No Rain	After	Lunchbox	Not Tired	Bus

$$I(x_d; Y) = H(Y) - \sum_{v \in V(x_d)} f_v * H(Y_{x_d=v})$$

$$I(x_1, Y) \approx 1.5052$$

$$-\frac{6}{16}(1)$$

$$-\frac{10}{16}(1.5710)$$

$$\approx 0.1482$$

x_1	x_2	x_3	x_4	y
Rain	Before	Both	Tired	Drive
Rain	During	Both	Not Tired	Bus
Rain	During	Both	Tired	Drive
Rain	After	Backpack	Not Tired	Bus
Rain	After	Backpack	Tired	Bus
Rain	After	Lunchbox	Tired	Drive
No Rain	Before	Backpack	Tired	Bike
No Rain	Before	Lunchbox	Not Tired	Bus
No Rain	Before	Lunchbox	Tired	Drive
No Rain	During	Backpack	Not Tired	Bus
No Rain	During	Both	Tired	Drive
No Rain	After	Backpack	Not Tired	Bike
No Rain	After	Backpack	Tired	Bike
No Rain	After	Both	Not Tired	Bus
No Rain	After	Both	Tired	Drive
No Rain	After	Lunchbox	Not Tired	Bus

$$I(x_d; Y) = H(Y) - \sum_{v \in V(x_d)} f_v * H(Y_{x_d=v})$$

$I(x_d, Y)$	
x_1	0.1482
x_2	0.1302
x_3	0.5358
x_4	0.5576

x_1	x_2	x_3	x_4	y
Rain	Before	Both	Tired	Drive
Rain	During	Both	Not Tired	Bus
Rain	During	Both	Tired	Drive
Rain	After	Backpack	Not Tired	Bus
Rain	After	Backpack	Tired	Bus
Rain	After	Lunchbox	Tired	Drive
No Rain	Before	Backpack	Tired	Bike
No Rain	Before	Lunchbox	Not Tired	Bus
No Rain	Before	Lunchbox	Tired	Drive
No Rain	During	Backpack	Not Tired	Bus
No Rain	During	Both	Tired	Drive
No Rain	After	Backpack	Not Tired	Bike
No Rain	After	Backpack	Tired	Bike
No Rain	After	Both	Not Tired	Bus
No Rain	After	Both	Tired	Drive
No Rain	After	Lunchbox	Not Tired	Bus

$$I(x_d; Y) = H(Y) - \sum_{v \in V(x_d)} f_v * H(Y_{x_d=v})$$

$I(x_d, Y)$	
x_1	0.1482
x_2	0.1302
x_3	0.5358
x_4	0.5576

x_1	x_2	x_3	x_4	y
Rain	During	Both	Not Tired	Bus
Rain	After	Backpack	Not Tired	Bus
No Rain	Before	Lunchbox	Not Tired	Bus
No Rain	During	Backpack	Not Tired	Bus
No Rain	After	Backpack	Not Tired	Bike
No Rain	After	Both	Not Tired	Bus
No Rain	After	Lunchbox	Not Tired	Bus
Rain	Before	Both	Tired	Drive
Rain	During	Both	Tired	Drive
Rain	After	Backpack	Tired	Bus
Rain	After	Lunchbox	Tired	Drive
No Rain	Before	Backpack	Tired	Bike
No Rain	Before	Lunchbox	Tired	Drive
No Rain	During	Both	Tired	Drive
No Rain	After	Backpack	Tired	Bike
No Rain	After	Both	Tired	Drive

$$I(x_d; Y) = H(Y) - \sum_{v \in V(x_d)} f_v * H(Y_{x_d=v})$$

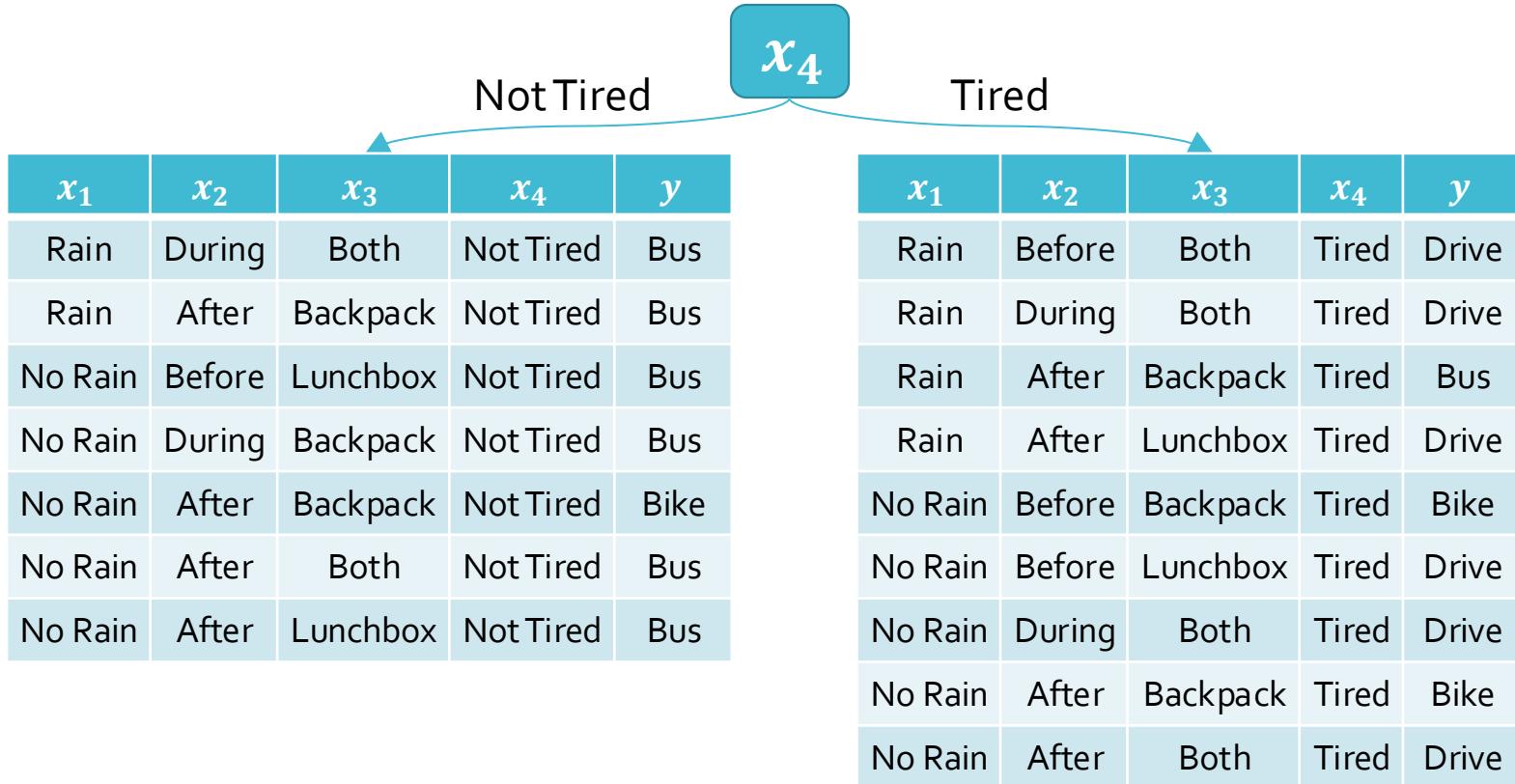
$I(x_d, Y)$	
x_1	0.1482
x_2	0.1302
x_3	0.5358
x_4	0.5576

x_1	x_2	x_3	x_4	y
Rain	During	Both	Not Tired	Bus
Rain	After	Backpack	Not Tired	Bus
No Rain	Before	Lunchbox	Not Tired	Bus
No Rain	During	Backpack	Not Tired	Bus
No Rain	After	Backpack	Not Tired	Bike
No Rain	After	Both	Not Tired	Bus
No Rain	After	Lunchbox	Not Tired	Bus
Rain	Before	Both	Tired	Drive
Rain	During	Both	Tired	Drive
Rain	After	Backpack	Tired	Bus
Rain	After	Lunchbox	Tired	Drive
No Rain	Before	Backpack	Tired	Bike
No Rain	Before	Lunchbox	Tired	Drive
No Rain	During	Both	Tired	Drive
No Rain	After	Backpack	Tired	Bike
No Rain	After	Both	Tired	Drive

$$I(x_d; Y) = H(Y) - \sum_{v \in V(x_d)} f_v * H(Y_{x_d=v})$$

$I(x_d, Y)$	
x_1	0.1482
x_2	0.1302
x_3	0.5358
x_4	0.5576

x_1	x_2	x_3	x_4	y
Rain	During	Both	Not Tired	Bus
Rain	After	Backpack	Not Tired	Bus
No Rain	Before	Lunchbox	Not Tired	Bus
No Rain	During	Backpack	Not Tired	Bus
No Rain	After	Backpack	Not Tired	Bike
No Rain	After	Both	Not Tired	Bus
No Rain	After	Lunchbox	Not Tired	Bus
Rain	Before	Both	Tired	Drive
Rain	During	Both	Tired	Drive
Rain	After	Backpack	Tired	Bus
Rain	After	Lunchbox	Tired	Drive
No Rain	Before	Backpack	Tired	Bike
No Rain	Before	Lunchbox	Tired	Drive
No Rain	During	Both	Tired	Drive
No Rain	After	Backpack	Tired	Bike
No Rain	After	Both	Tired	Drive



Decision Tree: Example

Diagram illustrating a variable node x_4 branching into two categories: **Not Tired** and **Tired**.

The **Not Tired** branch leads to a table with the following data:

x_1	x_2	x_3	x_4	y
Rain	During	Both	Not Tired	Bus
Rain	After	Backpack	Not Tired	Bus
No Rain	Before	Lunchbox	Not Tired	Bus
No Rain	During	Backpack	Not Tired	Bus
No Rain	After	Backpack	Not Tired	Bike
No Rain	After	Both	Not Tired	Bus
No Rain	After	Lunchbox	Not Tired	Bus

The **Tired** branch leads to a table with the following data:

x_1	x_2	x_3	x_4	y
Rain	Before	Both	Tired	Drive
Rain	During	Both	Tired	Drive
Rain	After	Backpack	Tired	Bus
Rain	After	Lunchbox	Tired	Drive
No Rain	Before	Backpack	Tired	Bike
No Rain	Before	Lunchbox	Tired	Drive
No Rain	During	Both	Tired	Drive
No Rain	After	Backpack	Tired	Bike
No Rain	After	Both	Tired	Drive

x_4				
Not Tired				Tired
x_1	x_2	x_3	x_4	y
Rain	During	Both	Not Tired	Bus
Rain	After	Backpack	Not Tired	Bus
No Rain	Before	Lunchbox	Not Tired	Bus
No Rain	During	Backpack	Not Tired	Bus
No Rain	After	Backpack	Not Tired	Bike
No Rain	After	Both	Not Tired	Bus
No Rain	After	Lunchbox	Not Tired	Bus
Rain	Before	Both	Tired	Drive
Rain	During	Both	Tired	Drive
Rain	After	Backpack	Tired	Bus
Rain	After	Lunchbox	Tired	Drive
No Rain	Before	Backpack	Tired	Bike
No Rain	Before	Lunchbox	Tired	Drive
No Rain	During	Both	Tired	Drive
No Rain	After	Backpack	Tired	Bike
No Rain	After	Both	Tired	Drive

$$H(Y_{x_4=\text{Tired}}) = -\frac{6}{9} \log_2 \frac{6}{9} - \frac{2}{9} \log_2 \frac{2}{9} - \frac{1}{9} \log_2 \frac{1}{9} \approx 1.2244$$

x_4				
Not Tired				Tired
x_1	x_2	x_3	x_4	y
Rain	During	Both	Not Tired	Bus
Rain	After	Backpack	Not Tired	Bus
No Rain	Before	Lunchbox	Not Tired	Bus
No Rain	During	Backpack	Not Tired	Bus
No Rain	After	Backpack	Not Tired	Bike
No Rain	After	Both	Not Tired	Bus
No Rain	After	Lunchbox	Not Tired	Bus
Rain	Before	Both	Tired	Drive
Rain	During	Both	Tired	Drive
Rain	After	Backpack	Tired	Bus
Rain	After	Lunchbox	Tired	Drive
No Rain	Before	Backpack	Tired	Bike
No Rain	Before	Lunchbox	Tired	Drive
No Rain	During	Both	Tired	Drive
No Rain	After	Backpack	Tired	Bike
No Rain	After	Both	Tired	Drive

$$\begin{aligned}
 & I(x_1, Y_{x_4=\text{Tired}}) \\
 &= H(Y_{x_4=\text{Tired}}) - \left(\frac{4}{9} H(Y_{x_4=\text{Tired}, x_1=\text{Rain}}) + \frac{5}{9} H(Y_{x_4=\text{Tired}, x_1=\text{No Rain}}) \right)
 \end{aligned}$$

Not Tired					Tired				
x_1	x_2	x_3	x_4	y	x_1	x_2	x_3	x_4	y
Rain	During	Both	Not Tired	Bus	Rain	Before	Both	Tired	Drive
Rain	After	Backpack	Not Tired	Bus	Rain	During	Both	Tired	Drive
No Rain	Before	Lunchbox	Not Tired	Bus	Rain	After	Backpack	Tired	Bus
No Rain	During	Backpack	Not Tired	Bus	Rain	After	Lunchbox	Tired	Drive
No Rain	After	Backpack	Not Tired	Bike	No Rain	Before	Backpack	Tired	Bike
No Rain	After	Both	Not Tired	Bus	No Rain	Before	Lunchbox	Tired	Drive
No Rain	After	Lunchbox	Not Tired	Bus	No Rain	During	Both	Tired	Drive
					No Rain	After	Backpack	Tired	Bike
					No Rain	After	Both	Tired	Drive

$$I(x_1, Y_{x_4=\text{Tired}})$$

$$\approx 1.2244 - \left(\frac{4}{9}(0.8113) + \frac{5}{9}(0.9710) \right) \approx 0.3244$$

The diagram illustrates a variable node x_4 at the top, with two arrows pointing down to two separate tables. The left table is titled "Not Tired" and the right table is titled "Tired". Both tables have columns x_1 , x_2 , x_3 , x_4 , and y .

Not Tired Table:

x_1	x_2	x_3	x_4	y
Rain	During	Both	Not Tired	Bus
Rain	After	Backpack	Not Tired	Bus
No Rain	Before	Lunchbox	Not Tired	Bus
No Rain	During	Backpack	Not Tired	Bus
No Rain	After	Backpack	Not Tired	Bike
No Rain	After	Both	Not Tired	Bus
No Rain	After	Lunchbox	Not Tired	Bus

Tired Table:

x_1	x_2	x_3	x_4	y
Rain	Before	Both	Tired	Drive
Rain	During	Both	Tired	Drive
Rain	After	Backpack	Tired	Bus
Rain	After	Lunchbox	Tired	Drive
No Rain	Before	Backpack	Tired	Bike
No Rain	Before	Lunchbox	Tired	Drive
No Rain	During	Both	Tired	Drive
No Rain	After	Backpack	Tired	Bike
No Rain	After	Both	Tired	Drive

$$I(x_1, Y_{x_4=\text{Tired}}) \approx 0.3244$$

$$I(x_2, Y_{x_4=\text{Tired}}) \approx 0.2516$$

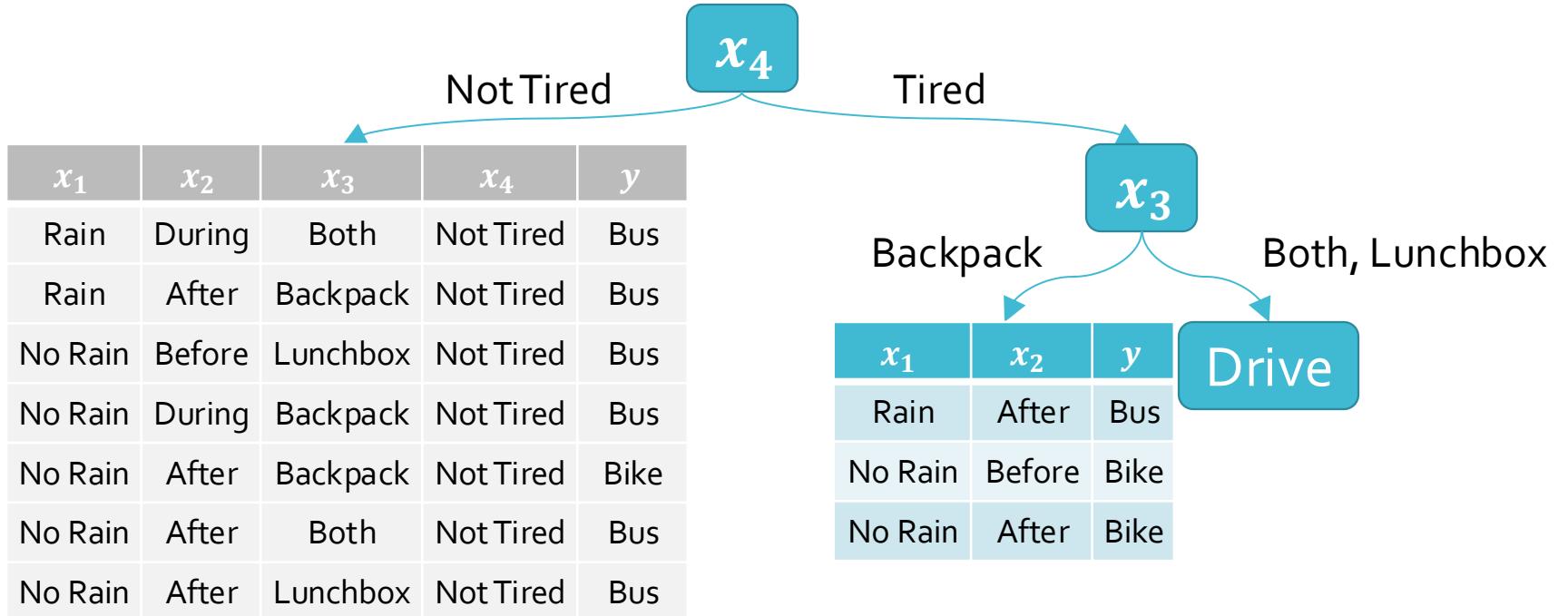
$$I(x_3, Y_{x_4=\text{Tired}}) \approx 0.9183$$

x_4				
Not Tired				Tired
x_1	x_2	x_3	x_4	y
Rain	During	Both	Not Tired	Bus
Rain	After	Backpack	Not Tired	Bus
No Rain	Before	Lunchbox	Not Tired	Bus
No Rain	During	Backpack	Not Tired	Bus
No Rain	After	Backpack	Not Tired	Bike
No Rain	After	Both	Not Tired	Bus
No Rain	After	Lunchbox	Not Tired	Bus
Rain	After	Both	Tired	Bus
No Rain	Before	Backpack	Tired	Bike
No Rain	After	Backpack	Tired	Bike
Rain	Before	Both	Tired	Drive
Rain	During	Both	Tired	Drive
No Rain	During	Both	Tired	Drive
No Rain	After	Both	Tired	Drive
Rain	After	Lunchbox	Tired	Drive
No Rain	Before	Lunchbox	Tired	Drive

$$I(x_1, Y_{x_4=\text{Tired}}) \approx 0.3244$$

$$I(x_2, Y_{x_4=\text{Tired}}) \approx 0.2516$$

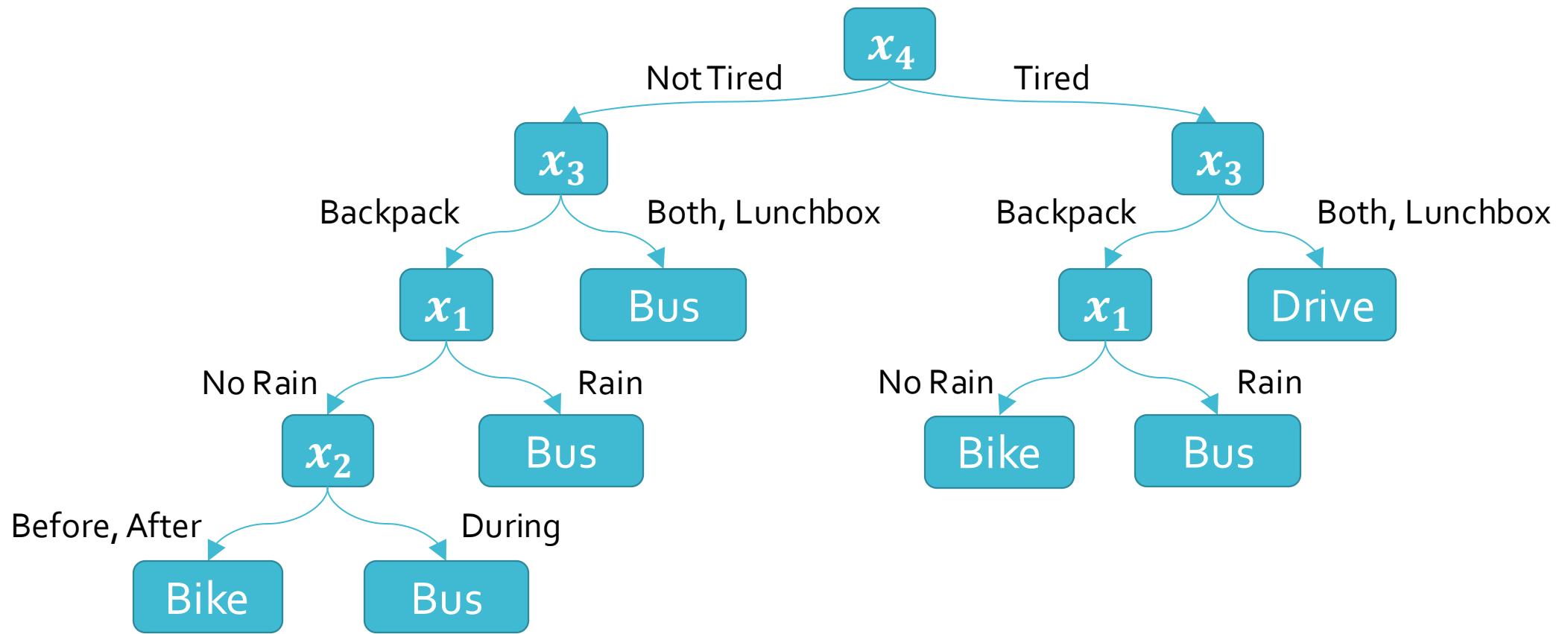
$$I(x_3, Y_{x_4=\text{Tired}}) \approx 0.9183$$



$$I(x_1, Y_{x_4=\text{Tired}}) \approx 0.3244$$

$$I(x_2, Y_{x_4=\text{Tired}}) \approx 0.2516$$

$$I(x_3, Y_{x_4=\text{Tired}}) \approx 0.9183$$



Decision Stumps: Questions

1. How can we pick which feature to split on?
2. Why stop at just one feature?
 - a. How can we pick the order of the splits?

Key Takeaways

- Decision tree prediction algorithm
- Decision tree learning algorithm via recursion