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 Announcements: 

 HW1 released on 5/13 (today!), due 5/16 at 11:59 PM

 You will submit your homework to Gradescope

1. Submit your code to the “programming” 

submission slot

2. Submit a PDF with your answers to the 

questions “written” submission slot

 You must use LaTeX to typeset your 

responses!



Decision 
Stumps: 
Questions

1. How can we pick which feature to split on?

2. Why stop at just one feature?

a. How can we pick the order of the splits? 
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From 
Decision 
Stump 
…
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𝑥1

Family
History

𝑥2

Resting Blood 
Pressure

𝑥3

Cholesterol 
𝑦

Heart 
Disease?

Yes Low Normal No

No Medium Normal No

No Low Abnormal Yes

Yes Medium Normal Yes

Yes High Abnormal Yes

𝑥3

“Yes”

“Abnormal” “Normal”

“No”
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Decision 
Tree: 
Example
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Decision Trees 
Suppose X = <X1,… Xn>  

where Xi are boolean-valued variables 

 

 

How would you represent Y = X2 X5 ?     Y = X2 Ú X5 

How would you represent  X2 X5  Ú X3X4(ØX1) 
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def predict(𝒙′):

 - walk from root node to a leaf node

   while(true):

 if current node is internal (non-leaf):

  check the associated attribute, 𝑥𝑑

  go down branch according to 𝑥𝑑
′

 if current node is a leaf node: 

  return label stored at that leaf
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Decision 
Tree: 
Pseudocode

So how do we 
train one of 
these things?



Background: 
Recursion

 A binary search tree (BST) consists of nodes, where each node:

 has a value, v 

 up to 2 children, a left descendant and a right descendant

 all its left descendants have values less than v and its right 
descendants have values greater than v

 We like BSTs because they permit search in O(log(n)) time, 
assuming n nodes in the tree
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def contains_iterative(node, key):

 cur = node

 while true:

  if key < cur.value & cur.left != null:

   cur = cur.left 

  else if cur.value < key & cur.right != null:

   cur = cur.right

  else:

   break

 return key == cur.value

7

3

61

9

15

1611
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def contains_recursive(node, key):

 if key < node.value & node.left != null:

  return contains(node.left, key)

 else if node.value < key & node.right != null:

  return contains(node.right, key)

 else:

  return key == node.value
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Decision 
Tree: 
Pseudocode
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def train(𝒟):

   store root = tree_recurse(𝒟)

def tree_recurse(𝒟′):

   q = new node()

   base case – if (SOME CONDITION):

   recursion – else:

 find best attribute to split on, 𝑥𝑑

 q.split = 𝑥𝑑

 for  𝑣  in 𝑉 𝑥𝑑 , all possible values of  𝑥𝑑:

      𝒟𝑣 = 𝑥 𝑛 , 𝑦 𝑛 ∈ 𝒟 | 𝑥𝑑
𝑛

= 𝑣

  q.children(𝑣) = tree_recurse(𝒟𝑣)

   return q
15







Decision 
Tree: 
Pseudocode

Henry Chai - 5/13/25

def train(𝒟):

   store root = tree_recurse(𝒟)

def tree_recurse(𝒟′):

   q = new node()

   base case – if (𝒟′ is empty OR

 all labels in 𝒟′ are the same OR

 all features in 𝒟′ are identical OR

 some other stopping criterion):

 q.label = majority_vote(𝒟′)

  

   recursion – else:

   return q
18



Decision 
Tree: 
Example – 
How is Henry 
getting to 
work?
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 Label: mode of transportation 

 𝑦 ∈ 𝒴 = {Bike, Drive, Bus}

 Features: 4 categorial features

 Is it raining? 𝑥1 ∈ {Rain, No Rain}

 When am I leaving (relative to rush hour)?            

𝑥2 ∈ {Before, During, After}

 What am I bringing?                  

𝑥3 ∈ {Backpack, Lunchbox, Both}

 Am I tired? 𝑥4 ∈ {Tired, Not Tired}



Data
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𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain Before Both Tired Drive

Rain During Both Not Tired Bus

Rain During Both Tired Drive

Rain After Backpack Not Tired Bus

Rain After Backpack Tired Bus

Rain After Lunchbox Tired Drive

No Rain Before Backpack Tired Bike

No Rain Before Lunchbox Not Tired Bus

No Rain Before Lunchbox Tired Drive

No Rain During Backpack Not Tired Bus

No Rain During Both Tired Drive

No Rain After Backpack Not Tired Bike

No Rain After Backpack Tired Bike

No Rain After Both Not Tired Bus

No Rain After Both Tired Drive

No Rain After Lunchbox Not Tired Bus
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Which feature 

would we split on 

first using mutual 

information as 

the splitting 

criterion?
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𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain Before Both Tired Drive

Rain During Both Not Tired Bus

Rain During Both Tired Drive

Rain After Backpack Not Tired Bus

Rain After Backpack Tired Bus

Rain After Lunchbox Tired Drive

No Rain Before Backpack Tired Bike

No Rain Before Lunchbox Not Tired Bus

No Rain Before Lunchbox Tired Drive

No Rain During Backpack Not Tired Bus

No Rain During Both Tired Drive

No Rain After Backpack Not Tired Bike

No Rain After Backpack Tired Bike

No Rain After Both Not Tired Bus

No Rain After Both Tired Drive

No Rain After Lunchbox Not Tired Bus
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𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain Before Both Tired Drive

Rain During Both Not Tired Bus

Rain During Both Tired Drive

Rain After Backpack Not Tired Bus

Rain After Backpack Tired Bus

Rain After Lunchbox Tired Drive

No Rain Before Backpack Tired Bike

No Rain Before Lunchbox Not Tired Bus

No Rain Before Lunchbox Tired Drive

No Rain During Backpack Not Tired Bus

No Rain During Both Tired Drive

No Rain After Backpack Not Tired Bike

No Rain After Backpack Tired Bike

No Rain After Both Not Tired Bus

No Rain After Both Tired Drive

No Rain After Lunchbox Not Tired Bus
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𝐻 𝑆 = − ෍

𝑣 ∈ 𝑉 𝑆

|𝑆𝑣|

|𝑆|
log2

|𝑆𝑣|

|𝑆|



𝐻 𝑌 = −
3

16
log2

3

16

𝐻 𝑌 = −
6

16
log2

6

16

𝐻 𝑌 = −
7

16
log2

7

16

𝐻 𝑌 ≈ 1.5052
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𝐻 𝑆 = − ෍

𝑣 ∈ 𝑉 𝑆

|𝑆𝑣|

|𝑆|
log2

|𝑆𝑣|

|𝑆|



𝐼 𝑥1, 𝑌 = 𝐻 𝑌

−
6
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ቆ

ቇ

−
1

2
log2

1

2

−
1

2
log2

1

2

IG 𝑥1, 𝑦 = −
7

16
log2

7

16

IG 𝑥1, 𝑦 ≈ 1.5051
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𝐼 𝑥𝑑; 𝑌

= 𝐻 𝑌 − ෍

𝑣 ∈ 𝑉 𝑥𝑑

𝑓𝑣 ∗ 𝐻 𝑌𝑥𝑑=𝑣
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𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain Before Both Tired Drive

Rain During Both Not Tired Bus

Rain During Both Tired Drive

Rain After Backpack Not Tired Bus

Rain After Backpack Tired Bus

Rain After Lunchbox Tired Drive

No Rain Before Backpack Tired Bike

No Rain Before Lunchbox Not Tired Bus

No Rain Before Lunchbox Tired Drive

No Rain During Backpack Not Tired Bus

No Rain During Both Tired Drive

No Rain After Backpack Not Tired Bike

No Rain After Backpack Tired Bike

No Rain After Both Not Tired Bus

No Rain After Both Tired Drive

No Rain After Lunchbox Not Tired Bus
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1

−
10

16
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𝐼 𝑥1, 𝑌 ≈ 0.1482
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No Rain After Both Tired Drive

No Rain After Lunchbox Not Tired Bus

𝐼 𝑥𝑑, 𝑌

𝑥1 0.1482

𝑥2 0.1302

𝑥3 0.5358

𝑥4 0.5576

𝐼 𝑥𝑑; 𝑌

= 𝐻 𝑌 − ෍

𝑣 ∈ 𝑉 𝑥𝑑

𝑓𝑣 ∗ 𝐻 𝑌𝑥𝑑=𝑣
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𝐼 𝑥𝑑, 𝑌
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Rain After Lunchbox Tired Drive

No Rain Before Backpack Tired Bike
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𝐼 𝑥𝑑; 𝑌

= 𝐻 𝑌 − ෍

𝑣 ∈ 𝑉 𝑥𝑑

𝑓𝑣 ∗ 𝐻 𝑌𝑥𝑑=𝑣
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𝒙𝟒
TiredNot Tired

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Both Not Tired Bus

Rain After Backpack Not Tired Bus

No Rain Before Lunchbox Not Tired Bus

No Rain During Backpack Not Tired Bus

No Rain After Backpack Not Tired Bike

No Rain After Both Not Tired Bus

No Rain After Lunchbox Not Tired Bus

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain Before Both Tired Drive

Rain During Both Tired Drive

Rain After Backpack Tired Bus

Rain After Lunchbox Tired Drive

No Rain Before Backpack Tired Bike

No Rain Before Lunchbox Tired Drive

No Rain During Both Tired Drive

No Rain After Backpack Tired Bike

No Rain After Both Tired Drive
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𝒙𝟒
TiredNot Tired
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𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Both Not Tired Bus

Rain After Backpack Not Tired Bus

No Rain Before Lunchbox Not Tired Bus

No Rain During Backpack Not Tired Bus

No Rain After Backpack Not Tired Bike

No Rain After Both Not Tired Bus

No Rain After Lunchbox Not Tired Bus

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain Before Both Tired Drive

Rain During Both Tired Drive

Rain After Backpack Tired Bus

Rain After Lunchbox Tired Drive

No Rain Before Backpack Tired Bike

No Rain Before Lunchbox Tired Drive

No Rain During Both Tired Drive

No Rain After Backpack Tired Bike

No Rain After Both Tired Drive
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𝒙𝟒
TiredNot Tired

𝐻 𝑌𝑥4=Tired = −
6

9
log2

6

9
−

2

9
log2

2

9
−

1

9
log2

1

9
≈ 1.2244

Henry Chai - 5/13/25

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Both Not Tired Bus

Rain After Backpack Not Tired Bus

No Rain Before Lunchbox Not Tired Bus

No Rain During Backpack Not Tired Bus

No Rain After Backpack Not Tired Bike

No Rain After Both Not Tired Bus

No Rain After Lunchbox Not Tired Bus

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain Before Both Tired Drive

Rain During Both Tired Drive

Rain After Backpack Tired Bus

Rain After Lunchbox Tired Drive

No Rain Before Backpack Tired Bike

No Rain Before Lunchbox Tired Drive

No Rain During Both Tired Drive

No Rain After Backpack Tired Bike

No Rain After Both Tired Drive
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𝒙𝟒
TiredNot Tired
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𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Both Not Tired Bus

Rain After Backpack Not Tired Bus

No Rain Before Lunchbox Not Tired Bus

No Rain During Backpack Not Tired Bus

No Rain After Backpack Not Tired Bike

No Rain After Both Not Tired Bus

No Rain After Lunchbox Not Tired Bus

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain Before Both Tired Drive

Rain During Both Tired Drive

Rain After Backpack Tired Bus

Rain After Lunchbox Tired Drive

No Rain Before Backpack Tired Bike

No Rain Before Lunchbox Tired Drive

No Rain During Both Tired Drive

No Rain After Backpack Tired Bike

No Rain After Both Tired Drive

𝐼 𝑥1, 𝑌𝑥4=Tired

= 𝐻 𝑌𝑥4=Tired −
4

9
𝐻 𝑌𝑥4=Tired, 𝑥1=Rain +

5

9
𝐻 𝑌𝑥4=Tired, 𝑥1=No Rain
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𝒙𝟒
TiredNot Tired

Henry Chai - 5/13/25

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Both Not Tired Bus

Rain After Backpack Not Tired Bus

No Rain Before Lunchbox Not Tired Bus

No Rain During Backpack Not Tired Bus

No Rain After Backpack Not Tired Bike

No Rain After Both Not Tired Bus

No Rain After Lunchbox Not Tired Bus

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain Before Both Tired Drive

Rain During Both Tired Drive

Rain After Backpack Tired Bus

Rain After Lunchbox Tired Drive

No Rain Before Backpack Tired Bike

No Rain Before Lunchbox Tired Drive

No Rain During Both Tired Drive

No Rain After Backpack Tired Bike

No Rain After Both Tired Drive

𝐼 𝑥1, 𝑌𝑥4=Tired

≈ 1.2244 −
4

9
0.8113 +

5

9
0.9710 ≈ 0.3244
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𝒙𝟒
TiredNot Tired

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain Before Both Tired Drive

Rain During Both Tired Drive

Rain After Backpack Tired Bus

Rain After Lunchbox Tired Drive

No Rain Before Backpack Tired Bike

No Rain Before Lunchbox Tired Drive

No Rain During Both Tired Drive

No Rain After Backpack Tired Bike

No Rain After Both Tired Drive

Henry Chai - 5/13/25

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Both Not Tired Bus

Rain After Backpack Not Tired Bus

No Rain Before Lunchbox Not Tired Bus

No Rain During Backpack Not Tired Bus

No Rain After Backpack Not Tired Bike

No Rain After Both Not Tired Bus

No Rain After Lunchbox Not Tired Bus

𝐼 𝑥1, 𝑌𝑥4=Tired ≈ 0.3244

𝐼 𝑥2, 𝑌𝑥4=Tired ≈ 0.2516

𝐼 𝑥3, 𝑌𝑥4=Tired ≈ 𝟎. 𝟗𝟏𝟖𝟑
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𝒙𝟒
TiredNot Tired

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain After Backpack Tired Bus

No Rain Before Backpack Tired Bike

No Rain After Backpack Tired Bike

Rain Before Both Tired Drive

Rain During Both Tired Drive

No Rain During Both Tired Drive

No Rain After Both Tired Drive

Rain After Lunchbox Tired Drive

No Rain Before Lunchbox Tired Drive

Henry Chai - 5/13/25

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Both Not Tired Bus

Rain After Backpack Not Tired Bus

No Rain Before Lunchbox Not Tired Bus

No Rain During Backpack Not Tired Bus

No Rain After Backpack Not Tired Bike

No Rain After Both Not Tired Bus

No Rain After Lunchbox Not Tired Bus

𝐼 𝑥1, 𝑌𝑥4=Tired ≈ 0.3244

𝐼 𝑥2, 𝑌𝑥4=Tired ≈ 0.2516

𝐼 𝑥3, 𝑌𝑥4=Tired ≈ 𝟎. 𝟗𝟏𝟖𝟑
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𝒙𝟒
TiredNot Tired

𝒙𝟑

Drive

Both, LunchboxBackpack

𝒙𝟏 𝒙𝟐 𝒚

Rain After Bus

No Rain Before Bike

No Rain After Bike

Henry Chai - 5/13/25

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Both Not Tired Bus

Rain After Backpack Not Tired Bus

No Rain Before Lunchbox Not Tired Bus

No Rain During Backpack Not Tired Bus

No Rain After Backpack Not Tired Bike

No Rain After Both Not Tired Bus

No Rain After Lunchbox Not Tired Bus

𝐼 𝑥1, 𝑌𝑥4=Tired ≈ 0.3244

𝐼 𝑥2, 𝑌𝑥4=Tired ≈ 0.2516

𝐼 𝑥3, 𝑌𝑥4=Tired ≈ 𝟎. 𝟗𝟏𝟖𝟑
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𝒙𝟒

𝒙𝟑 𝒙𝟑

DriveBus 𝒙𝟏𝒙𝟏

Bike BusBus𝒙𝟐

Bike Bus

TiredNot Tired

Both, LunchboxBackpackBoth, LunchboxBackpack

RainNo RainRainNo Rain

DuringBefore, After

Henry Chai - 5/13/25



Decision 
Stumps: 
Questions

1. How can we pick which feature to split on?

2. Why stop at just one feature?

a. How can we pick the order of the splits? 

Henry Chai - 5/13/25 42



Key Takeaways
 Decision tree prediction algorithm

 Decision tree learning algorithm via recursion

Henry Chai - 5/13/25 43
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