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Recap: Pretraining + Fine-tuning

• We begin by pretraining LLMs with a language modeling objective on vast amounts 
of text scraped from the web 

➡ Resulting model is knowledgable but not yet helpful 

• Afterwards, we teach the model to accomplish specific tasks/behaviors by doing 
supervised fine-tuning (SFT) on a smaller set of high quality data 

• Where does this data come from? 

• Human demonstrations — resource & time intensive 

• Other LLMs — convenient, assumes existence of better model, legally questionable 

• Itself (rejection fine-tuning) — assumes model is already pretty good at the task 

• SFT teaches a model to imitate (humans, better models, or it’s own successes)
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Why train LLMs with RL? (or, why is SFT not sufficient?)

• RL allows us to directly optimize for (proxies of) desired constructs that are not 
differentiable 

• Human preference, factuality, safety, alignment with human values, correctness, etc. 

• RL allows the model to explore multiple ways to solve a problem 

• Helps with math, coding, reasoning 

• Also allows the model to learn from both good and bad trajectories 

• SFT encourages/cannot fix hallucination (and other pathologies) 

• If we teach the model a new fact in SFT, we’re actually teaching it how to make up more new 
“facts” at test time 

• RL can teach models to abstain based on what they know
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Text generation

LLM

My favorite profess is Henryor

Oolong

Matcha

Coffee

0.45
0.30

0.25

Autoregressive 
token-by-token 

generation
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Text generation as RL

LLM

My favorite profess is Henryor

Oolong

Matcha

Coffee

0.45
0.30

0.25

State 
Action 
Transition 
Reward 

Policy 
Value

We use the current 
text prefix as the 

state

6



Text generation as RL

LLM

My favorite profess is Henryor

Oolong

Matcha

Coffee

0.45
0.30

0.25

State 
Action 
Transition 
Reward 

Policy 
Value
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The chosen next 
token is the action



Text generation as RL

LLM

My favorite profess is Henryor

Oolong

Matcha

Coffee

0.45
0.30

0.25

State 
Action 
Transition 
Reward 

Policy 
Value

Transitions are trivially 
deterministic here; we 
just append the next 
token to the prefix.
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Text generation as RL

LLM

My favorite profess is Henryor

Oolong

Matcha

Coffee

0.45
0.30

0.25

State 
Action 
Transition 
Reward 

Policy 
Value

After done 
generating full 

sequence

Human 
(or Learned Proxy)

-1.0

Real-valued score

In this environment, we only 
get one reward at the very end. 

In some cases we may have 
intermediate process rewards, 
but we won’t consider those 
today.
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Text generation as RL

LLM

My favorite profess is Henryor

Oolong

Matcha

Coffee

0.45
0.30

0.25

State 
Action 
Transition 
Reward 

Policy 
Value

After done 
generating full 

sequence

Human 
(or Learned Proxy)

+1.0

Real-valued score

Different trajectories (i.e. full 
sequences) will have different 
rewards. 

(the annotator really likes 
matcha)
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Text generation as RL

LLM

My favorite profess is Henryor

Oolong

Matcha

Coffee

0.45
0.30

0.25

State 
Action 
Transition 
Reward 

Policy 
Value

After done 
generating full 

sequence

Human 
(or Learned Proxy)

-0.25

Real-valued score

Different trajectories will have 
different rewards! 

(and they’re lukewarm about 
coffee)
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Text generation as RL

LLM

My favorite profess is Henryor

Oolong

Matcha

Coffee

0.45
0.30

0.25

State 
Action 
Transition 
Reward 

Policy 
Value
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Unlike past lectures, we’re  
going to be considering a 
stochastic policy, which 
yields a distribution over 
next actions.



Text generation as RL

LLM

My favorite profess is Henryor

Oolong

Matcha

Coffee

0.45
0.30

0.25

State 
Action 
Transition 
Reward 

Policy 
Value

We can estimate 
value for the 
current state

Value Model

0.7
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Policy Gradients

Previous approaches we’ve discussed focused on estimating certain quantities (i.e. 
values, q-values) and deriving a policy from them. 

What if we directly learn a policy to maximize the reward?
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Notation

Let’s assume we have a stochastic policy π parameterized by θ. Our aim is to learn 
parameters θ* to optimize the reward of trajectories sampled from our policy (and the 
environment) 

Reward of entire trajectory 

Probability of trajectory

Trajectory (or episode)

Environment  
transitions

Policy  
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Why don’t we just differentiate the reward?

The natural first step here is just to take the gradient of the expectation w.r.t. θ. 

Usually, the next step is to bring the gradient operator inside the expectation. 
But now, the quantity we’re differentiating by is also part of the expectation — is that 
still allowed?

no!
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Let’s open up the expectation

Recall the definition of expectation: 

Applying it to our gradient expression, we get

Has no explicit dependency on θ,  
so we can treat it as a constant.

The states and actions are 
derived from the policy/env via 

sampling, which is not a 
differentiable operation. Thus, 
we treat them as constants.
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From sum to expectation

This is better, but still intractable due to the infinite sum over trajectories. What if we 
turn it into an expectation over trajectories? 1

Why is this a better 
way to express the 

policy gradient?
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Sidenote: Monte Carlo estimation
We can estimate expected value of a random variable by drawing a bunch of samples 
and taking their mean — this is a Monte Carlo estimate. 

Monte Carlo methods trade off between speed and accuracy; taking more samples 
gets the estimate closer to the true value, but can be very costly (esp. for LLMs!) 

To estimate the policy gradient, we can draw N trajectories from Pθ, compute the 
quantity in brackets for each of them, and take the average. 

This is very similar to what we did with (mini-batch) stochastic gradient descent to 
estimate the average gradient over the entire dataset.
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The log derivative trick

Let’s do something clever here! Observe that: 

Which lands us here:
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Policy Gradients

Let’s plug in the expression for the probability of 
trajectory, giving us the following final-ish 
expression. 

Note that we’re sampling N trajectories for the 
Monte Carlo estimate.

Contains no 
θ terms
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Credit Assignment

Let’s inspect our final expression:

Credit for at
Direction to increase 

probability of at

Suppose the agent commits a big mistake and gets a huge negative reward at T = 1, 
but is perfect for the rest of the trajectory. However, the overall trajectory has a large 
negative R(τ). Should we punish later actions for rewards obtained at earlier steps?

No! Let’s only scale by rewards caused by the action.
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Better Credit Assignment

Instead of scaling each gradient by the total reward, let’s scale only by future rewards: 

This gives us the REINFORCE policy gradient.
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REINFORCE

1. Sample trajectories τ1, …, τN from the policy and environment 

2. Compute policy gradients 

3. Apply gradient updates 
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Limitations of REINFORCE

Naive REINFORCE usually doesn’t work too well — why? 

Variance! 
The rewards may vary wildly depending on the states in the trajectory, meaning that for 
stability, we often need a very large N. —> This results in unstable gradient updates! 

How can we reduce variance in our gradient estimator?
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Accounting for Variance

Recall our interpretation of the policy gradient: 

Observe that we don’t need the credit term to be exactly the rewards — it just has to 
be anything that gives some signal for which actions are better/worse in a given state. 

Solution: For each state, subtract a specific baseline value from all the rewards to 
remove the variance across states.

Credit for at
Direction to increase 

probability of at
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Why state-dependent baselines?

We don’t need the credit term to be exactly the rewards — it just has to be anything 
that gives some signal for which actions are better/worse in a given state. 

Solution: For each state, subtract a specific baseline value to remove the variance in 
rewards across states.

A

C

B
-99

-101

101

99

Observe that 
the bad action 
in B will have a 

greater gradient 
than a good 
action in A.

Terminal 29



But if we 
subtract away a 
baseline value 
for each state, 

we will have the 
desired gradient 

behavior.

Why state-dependent baselines?

We don’t need the credit term to be exactly the rewards — it just has to be anything 
that gives some signal for which actions are better/worse in a given state. 

Solution: For each state, subtract a specific baseline value to remove the variance in 
rewards across states.

A

C

B
-1

1

1

-1

Terminal

Subtract -100 Subtract 100

We’ll call these 
remaining quantities 

the advantages.
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Learning baselines

To normalize the rewards, we’ll subtract the mean observed rewards Gt for each state. 

If the number of states is small we can use a table (like tabular q-learning), but if there 
are lots of states (which there are for LLMs) then we can learn a critic model. 

Then, in the gradient, instead of using the raw reward Gt, we’ll use the advantage At
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Recall the definition of values and Q-values (assuming deterministic transitions) 

Q-learning returns

Note that this is no 
longer a max since our 

policy is stochastic

So our Gt quantities are q-value estimates, our 
critic is estimating values, and our advantages 

are gaps between q-value and value!
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Actor-Critic

1. Sample trajectories τ1, …, τN from the policy and environment 

2. Update critic 

3. Compute policy gradients using advantages. 

4. Update actor 
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Proximal Policy Optimization

Modifying the policy too quickly can cause instability in training.  

Ideally, we’d like to limit the amount that the policy distribution changes in each 
update, i.e. 

35

KL divergence is a measure of the “distance” between two 
distributions; here, we want the distance between the old 

and updated policies to be under some threshold.



Proximal Policy Optimization

Modifying the policy too quickly can cause instability in training.  

Ideally, we’d like to limit the amount that the policy distribution changes in each 
update, i.e. 

However, limiting update size in this manner is difficult and expensive to implement. 
Instead, PPO optimizes the following proxy objective:

Note that this is the clipped version of the objective for language models.
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Making sense of PPO

As in actor-critic, we’re optimizing the advantage-adjusted reward At . However, we’re 
also scaling the advantage by some odd-looking terms.

Likelihood ratio r between 
our current policy vs. policy 

at the start of training

hyperparameterLimits the quantity to be 
between 1-ε and 1+ε
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Making sense of PPO

Limit step size 
toward good 

action

1 Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Figure taken from [1]
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Likelihood ratio r

When bad action is more 
probable under current 

policy, make step large so 
we can revert back to 

original policy.

TLDR: new policy is not 
allowed to move far away 

from original policy 



RL from Human Feedback

SFT + learning a 
reward model 

based on human 
preferences

PPO! 

This is what 
ChatGPT did 
(circa 2022)

392 Ouyang, Long, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang et al. "Training language models to follow instructions with human 
feedback." Advances in neural information processing systems 35 (2022): 27730-27744.

Figure from [2]
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PPO is expensive!

To do PPO, we need to keep in memory: 

• Policy weights 

• Reference model weights (same size as policy, frozen) 

• Value/critic model weights (same size as policy, learned) 

• Reward model weights (same size as policy, frozen) 

The weights that are not frozen need another ~2x additional memory for an optimizer 
like Adam! 

For an 8B parameter LLM (16GB with fp16):  

3 * 16GB policy + 16GB reference + 3 * 16GB critic + 16GB reward  
= 8 * 16GB = 128GB                 (pessimistic estimate)
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Why do we need the value model anyway?

Recall that we use the value model to compute advantages, which reduces variance. 

Variance in rewards is a major issue for a lot of RL tasks, but it turns out that for LLMs, 
rewards are usually very well-behaved. 

Ten students come to lecture. Half 
leave out of boredom, then another 
falls asleep. How many are students 
are still paying attention to lecture?

(10 - 1) / 2 = 9 / 2 = 4.5

10 / 2 - 1 = 10 / 1 = 10

10 / 2 - 1 = 5 - 1 = 4

0

1

0

RewardTrajectory
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GRPO: seizing the means of PPOduction

For each prompt, sample G outputs o1, o2, …, oG and get their sequence-level rewards 
r1, r2, …, rG 

where advantages are obtained by simply normalizing the rewards

Taken from [3]

3 Shao, Zhihong, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang et al. "Deepseekmath: Pushing the limits of mathematical reasoning in 
open language models." arXiv preprint arXiv:2402.03300 (2024).

PPO objective KL penalty 
(regularization)

R
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GRPO: seizing the means of PPOduction

For each prompt, sample G outputs o1, o2, …, oG and get their sequence-level rewards 
r1, r2, …, rG 

New memory footprint for 8B LLM: 

3 * 16GB policy + 16GB reference + 3 * 16GB critic + 16GB reward  
= 5 * 16GB = 80GB

Taken from [3]

3 Shao, Zhihong, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang et al. "Deepseekmath: Pushing the limits of mathematical reasoning in 
open language models." arXiv preprint arXiv:2402.03300 (2024).

PPO objective KL penalty 
(regularization)

R
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Do we need RL anyway?

RL lets us learn from both good and bad 
outputs, but is RL the only way to do this? 

What if we just do SFT, but with a loss that 
increases the likelihood of “good" things and 
decreases the likelihood of “bad” things?
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Direct Preference Optimization

Suppose we have a dataset of tuples (x, yw, yl) where x is a prompt, is yw a preferred 
response, and yl is a dispreferred response. 

Intuition: use the difference between the LLM’s probabilities of the good & bad 
responses as the reward (DPO doesn’t exactly do this, but another algo, SimPO, does). 

Note that this increases the gap between good and bad responses, but doesn’t 
guarantee that the probability of good responses will go up!

Likelihood ratio for 
good response

Likelihood ratio for 
bad response
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Is DPO still RL?

We can view DPO as an offline RL algorithm since we often sample the preferred/
dispreferred responses from the original LLM (you can also use response pairs from 
another model, but it usually doesn’t work as well) — this is similar to doing Q-learning 
with a replay buffer consisting only of trajectories from the initial policy. 

DPO significantly cuts downs on memory/computation costs, but loses the exploration 
aspect of online RL algorithms.
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