
10-301/601 Guest Lecture
Alex Xie

6/12/2025

RL for LLMs
From Parrots to Agents

Roadmap
Why RL for LLMs?

Some RL background

Policy gradients

Actor-critic

Proximal Policy Optimization & RLHF

Group-Relative Policy Optimization

2

Recap: Pretraining + Fine-tuning

• We begin by pretraining LLMs with a language modeling objective on vast amounts
of text scraped from the web

➡ Resulting model is knowledgable but not yet helpful

• Afterwards, we teach the model to accomplish specific tasks/behaviors by doing
supervised fine-tuning (SFT) on a smaller set of high quality data

• Where does this data come from?

• Human demonstrations — resource & time intensive

• Other LLMs — convenient, assumes existence of better model, legally questionable

• Itself (rejection fine-tuning) — assumes model is already pretty good at the task

• SFT teaches a model to imitate (humans, better models, or it’s own successes)
3

Why train LLMs with RL? (or, why is SFT not sufficient?)

• RL allows us to directly optimize for (proxies of) desired constructs that are not
differentiable

• Human preference, factuality, safety, alignment with human values, correctness, etc.

• RL allows the model to explore multiple ways to solve a problem

• Helps with math, coding, reasoning

• Also allows the model to learn from both good and bad trajectories

• SFT encourages/cannot fix hallucination (and other pathologies)

• If we teach the model a new fact in SFT, we’re actually teaching it how to make up more new
“facts” at test time

• RL can teach models to abstain based on what they know

4

Text generation

LLM

My favorite profess is Henryor

Oolong

Matcha

Coffee

0.45
0.30

0.25

Autoregressive
token-by-token

generation

5

Text generation as RL

LLM

My favorite profess is Henryor

Oolong

Matcha

Coffee

0.45
0.30

0.25

State
Action
Transition
Reward

Policy
Value

We use the current
text prefix as the

state

6

Text generation as RL

LLM

My favorite profess is Henryor

Oolong

Matcha

Coffee

0.45
0.30

0.25

State
Action
Transition
Reward

Policy
Value

7

The chosen next
token is the action

Text generation as RL

LLM

My favorite profess is Henryor

Oolong

Matcha

Coffee

0.45
0.30

0.25

State
Action
Transition
Reward

Policy
Value

Transitions are trivially
deterministic here; we
just append the next
token to the prefix.

8

Text generation as RL

LLM

My favorite profess is Henryor

Oolong

Matcha

Coffee

0.45
0.30

0.25

State
Action
Transition
Reward

Policy
Value

After done
generating full

sequence

Human
(or Learned Proxy)

-1.0

Real-valued score

In this environment, we only
get one reward at the very end.

In some cases we may have
intermediate process rewards,
but we won’t consider those
today.

9

My favorite professor is Henry Oolong

Text generation as RL

LLM

My favorite profess is Henryor

Oolong

Matcha

Coffee

0.45
0.30

0.25

State
Action
Transition
Reward

Policy
Value

After done
generating full

sequence

Human
(or Learned Proxy)

+1.0

Real-valued score

Different trajectories (i.e. full
sequences) will have different
rewards.

(the annotator really likes
matcha)

10

My favorite professor is Henry Matcha

Text generation as RL

LLM

My favorite profess is Henryor

Oolong

Matcha

Coffee

0.45
0.30

0.25

State
Action
Transition
Reward

Policy
Value

After done
generating full

sequence

Human
(or Learned Proxy)

-0.25

Real-valued score

Different trajectories will have
different rewards!

(and they’re lukewarm about
coffee)

11

My favorite professor is Henry Coffee

Text generation as RL

LLM

My favorite profess is Henryor

Oolong

Matcha

Coffee

0.45
0.30

0.25

State
Action
Transition
Reward

Policy
Value

12

Unlike past lectures, we’re
going to be considering a
stochastic policy, which
yields a distribution over
next actions.

Text generation as RL

LLM

My favorite profess is Henryor

Oolong

Matcha

Coffee

0.45
0.30

0.25

State
Action
Transition
Reward

Policy
Value

We can estimate
value for the
current state

Value Model

0.7

13

Roadmap
Why RL for LLMs?

Some RL background

Policy gradients

Actor-critic

Proximal Policy Optimization & RLHF

Group-Relative Policy Optimization

14

Policy Gradients

Previous approaches we’ve discussed focused on estimating certain quantities (i.e.
values, q-values) and deriving a policy from them.

What if we directly learn a policy to maximize the reward?

15

Notation

Let’s assume we have a stochastic policy π parameterized by θ. Our aim is to learn
parameters θ* to optimize the reward of trajectories sampled from our policy (and the
environment)

Reward of entire trajectory

Probability of trajectory

Trajectory (or episode)

Environment
transitions

Policy

16

Why don’t we just differentiate the reward?

The natural first step here is just to take the gradient of the expectation w.r.t. θ.

Usually, the next step is to bring the gradient operator inside the expectation.
But now, the quantity we’re differentiating by is also part of the expectation — is that
still allowed?

no!
17

Let’s open up the expectation

Recall the definition of expectation:

Applying it to our gradient expression, we get

Has no explicit dependency on θ,
so we can treat it as a constant.

The states and actions are
derived from the policy/env via

sampling, which is not a
differentiable operation. Thus,
we treat them as constants.

18

From sum to expectation

This is better, but still intractable due to the infinite sum over trajectories. What if we
turn it into an expectation over trajectories? 1

Why is this a better
way to express the

policy gradient?

19

Sidenote: Monte Carlo estimation
We can estimate expected value of a random variable by drawing a bunch of samples
and taking their mean — this is a Monte Carlo estimate.

Monte Carlo methods trade off between speed and accuracy; taking more samples
gets the estimate closer to the true value, but can be very costly (esp. for LLMs!)

To estimate the policy gradient, we can draw N trajectories from Pθ, compute the
quantity in brackets for each of them, and take the average.

This is very similar to what we did with (mini-batch) stochastic gradient descent to
estimate the average gradient over the entire dataset.

20

The log derivative trick

Let’s do something clever here! Observe that:

Which lands us here:

21

Policy Gradients

Let’s plug in the expression for the probability of
trajectory, giving us the following final-ish
expression.

Note that we’re sampling N trajectories for the
Monte Carlo estimate.

Contains no
θ terms

22

Credit Assignment

Let’s inspect our final expression:

Credit for at
Direction to increase

probability of at

Suppose the agent commits a big mistake and gets a huge negative reward at T = 1,
but is perfect for the rest of the trajectory. However, the overall trajectory has a large
negative R(τ). Should we punish later actions for rewards obtained at earlier steps?

No! Let’s only scale by rewards caused by the action.
23

Better Credit Assignment

Instead of scaling each gradient by the total reward, let’s scale only by future rewards:

This gives us the REINFORCE policy gradient.

24

REINFORCE

1. Sample trajectories τ1, …, τN from the policy and environment

2. Compute policy gradients

3. Apply gradient updates

25

Roadmap
Why RL for LLMs?

Some RL background

Policy gradients

Actor-critic

Proximal Policy Optimization & RLHF

Group-Relative Policy Optimization

26

Limitations of REINFORCE

Naive REINFORCE usually doesn’t work too well — why?

Variance!
The rewards may vary wildly depending on the states in the trajectory, meaning that for
stability, we often need a very large N. —> This results in unstable gradient updates!

How can we reduce variance in our gradient estimator?

27

Accounting for Variance

Recall our interpretation of the policy gradient:

Observe that we don’t need the credit term to be exactly the rewards — it just has to
be anything that gives some signal for which actions are better/worse in a given state.

Solution: For each state, subtract a specific baseline value from all the rewards to
remove the variance across states.

Credit for at
Direction to increase

probability of at

28

Why state-dependent baselines?

We don’t need the credit term to be exactly the rewards — it just has to be anything
that gives some signal for which actions are better/worse in a given state.

Solution: For each state, subtract a specific baseline value to remove the variance in
rewards across states.

A

C

B
-99

-101

101

99

Observe that
the bad action
in B will have a

greater gradient
than a good
action in A.

Terminal 29

But if we
subtract away a
baseline value
for each state,

we will have the
desired gradient

behavior.

Why state-dependent baselines?

We don’t need the credit term to be exactly the rewards — it just has to be anything
that gives some signal for which actions are better/worse in a given state.

Solution: For each state, subtract a specific baseline value to remove the variance in
rewards across states.

A

C

B
-1

1

1

-1

Terminal

Subtract -100 Subtract 100

We’ll call these
remaining quantities

the advantages.
30

Learning baselines

To normalize the rewards, we’ll subtract the mean observed rewards Gt for each state.

If the number of states is small we can use a table (like tabular q-learning), but if there
are lots of states (which there are for LLMs) then we can learn a critic model.

Then, in the gradient, instead of using the raw reward Gt, we’ll use the advantage At

31

Recall the definition of values and Q-values (assuming deterministic transitions)

Q-learning returns

Note that this is no
longer a max since our

policy is stochastic

So our Gt quantities are q-value estimates, our
critic is estimating values, and our advantages

are gaps between q-value and value!
32

Actor-Critic

1. Sample trajectories τ1, …, τN from the policy and environment

2. Update critic

3. Compute policy gradients using advantages.

4. Update actor

33

Roadmap
Why RL for LLMs?

Some RL background

Policy gradients

Actor-critic

Proximal Policy Optimization & RLHF

Group-Relative Policy Optimization

34

Proximal Policy Optimization

Modifying the policy too quickly can cause instability in training.

Ideally, we’d like to limit the amount that the policy distribution changes in each
update, i.e.

35

KL divergence is a measure of the “distance” between two
distributions; here, we want the distance between the old

and updated policies to be under some threshold.

Proximal Policy Optimization

Modifying the policy too quickly can cause instability in training.

Ideally, we’d like to limit the amount that the policy distribution changes in each
update, i.e.

However, limiting update size in this manner is difficult and expensive to implement.
Instead, PPO optimizes the following proxy objective:

Note that this is the clipped version of the objective for language models.

36

Making sense of PPO

As in actor-critic, we’re optimizing the advantage-adjusted reward At . However, we’re
also scaling the advantage by some odd-looking terms.

Likelihood ratio r between
our current policy vs. policy

at the start of training

hyperparameterLimits the quantity to be
between 1-ε and 1+ε

37

Making sense of PPO

Limit step size
toward good

action

1 Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Figure taken from [1]

38

Likelihood ratio r

When bad action is more
probable under current

policy, make step large so
we can revert back to

original policy.

TLDR: new policy is not
allowed to move far away

from original policy

RL from Human Feedback

SFT + learning a
reward model

based on human
preferences

PPO!

This is what
ChatGPT did
(circa 2022)

392 Ouyang, Long, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang et al. "Training language models to follow instructions with human
feedback." Advances in neural information processing systems 35 (2022): 27730-27744.

Figure from [2]

Roadmap
Why RL for LLMs?

Some RL background

Policy gradients

Actor-critic

Proximal Policy Optimization & RLHF

Group-Relative Policy Optimization

40

PPO is expensive!

To do PPO, we need to keep in memory:

• Policy weights

• Reference model weights (same size as policy, frozen)

• Value/critic model weights (same size as policy, learned)

• Reward model weights (same size as policy, frozen)

The weights that are not frozen need another ~2x additional memory for an optimizer
like Adam!

For an 8B parameter LLM (16GB with fp16):

3 * 16GB policy + 16GB reference + 3 * 16GB critic + 16GB reward
= 8 * 16GB = 128GB (pessimistic estimate)

41

Why do we need the value model anyway?

Recall that we use the value model to compute advantages, which reduces variance.

Variance in rewards is a major issue for a lot of RL tasks, but it turns out that for LLMs,
rewards are usually very well-behaved.

Ten students come to lecture. Half
leave out of boredom, then another
falls asleep. How many are students
are still paying attention to lecture?

(10 - 1) / 2 = 9 / 2 = 4.5

10 / 2 - 1 = 10 / 1 = 10

10 / 2 - 1 = 5 - 1 = 4

0

1

0

RewardTrajectory

42

GRPO: seizing the means of PPOduction

For each prompt, sample G outputs o1, o2, …, oG and get their sequence-level rewards
r1, r2, …, rG

where advantages are obtained by simply normalizing the rewards

Taken from [3]

3 Shao, Zhihong, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang et al. "Deepseekmath: Pushing the limits of mathematical reasoning in
open language models." arXiv preprint arXiv:2402.03300 (2024).

PPO objective KL penalty
(regularization)

R

43

GRPO: seizing the means of PPOduction

For each prompt, sample G outputs o1, o2, …, oG and get their sequence-level rewards
r1, r2, …, rG

New memory footprint for 8B LLM:

3 * 16GB policy + 16GB reference + 3 * 16GB critic + 16GB reward
= 5 * 16GB = 80GB

Taken from [3]

3 Shao, Zhihong, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang et al. "Deepseekmath: Pushing the limits of mathematical reasoning in
open language models." arXiv preprint arXiv:2402.03300 (2024).

PPO objective KL penalty
(regularization)

R

44

Roadmap
Why RL for LLMs?

Some RL background

Policy gradients

Actor-critic

Proximal Policy Optimization & RLHF

Group-Relative Policy Optimization

Direct Policy Optimization

45

Do we need RL anyway?

RL lets us learn from both good and bad
outputs, but is RL the only way to do this?

What if we just do SFT, but with a loss that
increases the likelihood of “good" things and
decreases the likelihood of “bad” things?

46

Direct Preference Optimization

Suppose we have a dataset of tuples (x, yw, yl) where x is a prompt, is yw a preferred
response, and yl is a dispreferred response.

Intuition: use the difference between the LLM’s probabilities of the good & bad
responses as the reward (DPO doesn’t exactly do this, but another algo, SimPO, does).

Note that this increases the gap between good and bad responses, but doesn’t
guarantee that the probability of good responses will go up!

Likelihood ratio for
good response

Likelihood ratio for
bad response

47

Is DPO still RL?

We can view DPO as an offline RL algorithm since we often sample the preferred/
dispreferred responses from the original LLM (you can also use response pairs from
another model, but it usually doesn’t work as well) — this is similar to doing Q-learning
with a replay buffer consisting only of trajectories from the initial policy.

DPO significantly cuts downs on memory/computation costs, but loses the exploration
aspect of online RL algorithms.

48

