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Boosting

� An ensemble method combines the predictions of 

multiple “weak” hypotheses to learn a single, more 
powerful classifier

� Boosting is a meta-algorithm: it can be applied to a 

variety of machine learning models

� Commonly used with decision trees
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Decision Trees: 
Pros & Cons

� Pros
� Interpretable
� Efficient (computational cost and storage)
� Can be used for classification and regression tasks
� Compatible with categorical and real-valued features

� Cons
� Learned greedily: each split only considers the 

immediate impact on the splitting criterion
� Not guaranteed to find the smallest (fewest number 

of splits) tree that achieves a training error rate of 0.
� Prone to overfit
� Highly variable

� Can be addressed via bagging → random forests
� Limited expressivity (especially short trees, i.e., stumps)
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AdaBoost

� Intuition: iteratively reweight inputs, giving more weight 
to inputs that are difficult-to-predict correctly

� Analogy: 
� You all have to take a test (     ) …

� … but you’re going to be taking it one at a time. 

� After you finish, you get to tell the next person the 
questions you struggled with.

� Hopefully, they can cover for you because…

� … if “enough” of you get a question right, you’ll all 
receive full credit for that problem
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� Input: 𝒟 𝑦 0 ∈ −1,+1 , 𝑇	

� Initialize data point weights: 𝜔B
(,), … , 𝜔B

5 = ,
5

� For 𝑡 = 1,… , 𝑇
1. Train a weak learner, ℎ7, by minimizing the weighted 

training error
2. Compute the weighted training error of ℎ7: 

𝜖7 = (
02,

5

𝜔7@,
0 𝟙 𝑦 0 ≠ ℎ7 𝒙 0

3. Compute the importance of ℎ7: 

𝛼7 =
1
2
log

1 − 𝜖7
𝜖7

4. Update the data point weights: 

𝜔7
0 =

𝜔7@,
0

𝑍7
×N

𝑒@E% 	if	ℎ7 𝒙 0 = 𝑦 0

𝑒E% 	 if	ℎ7 𝒙 0 ≠ 𝑦 0 =
𝜔7@,

0 𝑒@E%F $ G% 𝒙 $

𝑍7

A
d
a
B
o
o
s
t

𝑔I 𝒙 = sign 𝐻I 𝒙

= sign (
72,

I

𝛼7ℎ7 𝒙

� Output: an 
aggregated 
hypothesis



Setting 𝛼!
� 𝛼7 determines the contribution of ℎ7 

to the final, aggregated hypothesis:

𝑔 𝒙 = sign (
72,

I

𝛼7ℎ7 𝒙

� Intuition: we want good weak 
learners to have high importances

𝛼7 =
1
2
log

1 − 𝜖7
𝜖7
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Updating 𝜔 "

� Intuition: we want incorrectly classified inputs to receive a 
higher weight in the next round

𝜔7
0 =

𝜔7@,
0

𝑍7
×N

𝑒@E% 	if	ℎ7 𝒙 0 = 𝑦 0

𝑒E% 	 if	ℎ7 𝒙 0 ≠ 𝑦 0 =
𝜔7@,

0 𝑒@E%F $ G% 𝒙 $

𝑍7

� If 𝜖7 <
,
-, then ,@J%J%

> 1

� If ,@J%J%
> 1, then 𝛼7 =

,
- log

,@J%
J%

> 0

� If 𝛼7 > 0, then 𝑒@E% < 1 and 𝑒E% > 1
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AdaBoost: 
Example
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ℎ! ℎ"

ℎ#

𝜖! = 0.3
𝛼! = 0.42

𝜖" = 0.21
𝛼" = 0.65

𝜖# = 0.14
𝛼# = 0.92



AdaBoost: 
Example
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Why 
AdaBoost?

1. If you want to use weak 
learners …

2. … and want your final 
hypothesis to be a 

weighted combination of 
weak learners, …

3. … then Adaboost greedily 
minimizes the 

exponential loss:

𝑒 ℎ 𝒙 , 𝑦 = 𝑒 @FG 𝒙

1. Because they’re low 
variance / computational 
constraints

2. Because weak learners 
are not great on their own

3. Because the exponential 

loss upper bounds binary 
error
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Exponential Loss

The more ℎ 𝒙  “agrees with” 𝑦, 
the smaller the loss and the more 
ℎ 𝒙  “disagrees with” 𝑦, the 

greater the loss 
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𝑦 = +1
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𝑒 ℎ 𝒙 , 𝑦 = 𝑒 @FG 𝒙



Exponential 
Loss
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� Claim: 

1
𝑁
(
02,

5

𝑒 @F $ G 𝒙 $
≥
1
𝑁
(
02,

5

𝟙 sign ℎ 𝒙 0 ≠ 𝑦 0 	

� Consequence:

1
𝑁
(
02,

5

𝑒 @F $ G 𝒙 $
→ 0

⟹
1
𝑁
(
02,

5

𝟙 sign ℎ 𝒙 0 ≠ 𝑦 0 → 0



Exponential 
Loss

� Claim: if 𝑔I = sign 𝐻I  is the Adaboost hypothesis, then

1
𝑁
(
02,

5

𝑒 @F $ Q& 𝒙 $
=W

72,

I

𝑍7	

� Proof: 

𝜔B
0 = ,

5 , 𝜔,
0 = >#'()

$ *( 𝒙 $

5R(
 , 𝜔-

0 = >#'()
$ *( 𝒙 $

>#'!)
$ *! 𝒙 $

5R(R!

𝜔I
0 =

∏72,
I 𝑒@E%F $ G% 𝒙 $

𝑁∏72,
I 𝑍7

=
𝑒@F $ ∑%,(& E%G% 𝒙 $

𝑁∏72,
I 𝑍7

=
𝑒@F $ Q& 𝒙 $

𝑁∏72,
I 𝑍7

(
02,

5

𝜔I
0 = (

02,

5
𝑒@F $ Q& 𝒙 $

𝑁∏72,
I 𝑍7

= 1 ⟹
1
𝑁
(
02,

5

𝑒@F $ Q& 𝒙 $ =W
72,

I

𝑍7∎
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Exponential 
Loss
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� Claim: if 𝑔I = sign 𝐻I  is the Adaboost hypothesis, then

1
𝑁
(
02,

5

𝑒 @F $ Q& 𝒙 $
=W

72,

I

𝑍7	

� Consequence: one way to minimize the exponential training loss is to 
greedily minimize 𝑍7, i.e., in each iteration, make the normalization 
constant as small as possible by tuning 𝛼7.



Greedy 
Exponential 
Loss 
Minimization
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𝑍7 = (
F $ 2G% 𝒙 $

𝜔7@,
0 𝑒@ 9 + (

F $ TG% 𝒙 $

𝜔7@,
0 𝑒 9

𝑍7 = 𝑒@ 9 (
F $ 2G% 𝒙 $

𝜔7@,
0 + 𝑒 9 (

F $ TG% 𝒙 $

𝜔7@,
0

𝑍7 = 𝑒@9 1 − 𝜖7 + 𝑒9𝜖7
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𝑍7 𝑎 = (
02,

5

𝜔7@,
0 𝑒@ 9 F $ G% 𝒙 $



Greedy 
Exponential 
Loss 
Minimization
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𝜕𝑍7
𝜕𝑎 = −𝑒@9 1 − 𝜖7 + 𝑒9𝜖7 ⟹−𝑒@U9 1 − 𝜖7 + 𝑒 U9𝜖7 = 0

⟹ 𝑒 U9𝜖7 = 𝑒@U9 1 − 𝜖7

⟹ 𝑒- U9 =
1 − 𝜖7
𝜖7

⟹ \𝑎 =
1
2
log

1 − 𝜖7
𝜖7

= 𝛼7

𝜕-𝑍7
𝜕𝑎-

= 𝑒@9 1 − 𝜖7 + 𝑒9𝜖7 > 0
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𝑍7 𝑎 = 𝑒@9 1 − 𝜖7 + 𝑒9𝜖7



Normalizing  
𝜔 "
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𝑍7 = 𝑒@E% 1 − 𝜖7 + 𝑒E%𝜖7

𝑍7 = 𝑒@
,
-VWX

,@J%
J% 1 − 𝜖7 + 𝑒

,
-VWX

,@J%
J% 𝜖7

𝑍7 = 𝜖7 1 − 𝜖7 + 𝜖7 1 − 𝜖7 = 2 𝜖7 1 − 𝜖7
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𝑍7 = (
02,

5

𝜔7@,
0 𝑒@E%F $ G% 𝒙 $



𝑍!
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𝑍7 = (
02,

5

𝜔7@,
0 𝑒@E%F $ G% 𝒙 $ = 2 𝜖7 1 − 𝜖7 < 1	if	𝜖7 <

1
2



Training Error
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1
𝑁
(
02,

5

𝟙 𝑦 0 ≠ 𝑔I 𝒙 0 ≤
1
𝑁
(
02,

5

𝑒 @F $ Q& 𝒙 $

1
𝑛(
:2,

0

𝑓 𝑥⃗ ≠ 𝑔I 𝑥⃗ =W
72,

I

𝑍7

1
𝑛
(
:2,

0

𝑓 𝑥⃗ ≠ 𝑔I 𝑥⃗ =W
72,

I

2 𝜖7 1 − 𝜖7 → 0	as	T → ∞

1
𝑛
(
:2,

0

𝑓 𝑥⃗ ≠ 𝑔I 𝑥⃗ as	long	as	𝜖7 <
1
2
	∀	𝑡
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True Error
(Freund & 
Schapire, 1995) 

� For AdaBoost, with high probability:

True	Error ≤ Training	Error + h𝑂
𝑑<Y ℋ 𝑇

𝑁

where 𝑑<Y ℋ  is the VC-dimension of the weak learners 
and 𝑇 is the number of weak learners.

� Empirical results indicate that increasing 𝑇 does not 
lead to overfitting as this bound would suggest!
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http://rob.schapire.net/papers/FreundSc95.pdf
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Test Error
(Schapire, 1989)
 

𝑇

er
ro

r
Training error

Test error

Source: http://rob.schapire.net/papers/msri.pdf 

http://rob.schapire.net/papers/msri.pdf


Margins

� The margin of training point 𝒙 : , 𝑦 :  is defined as:

� The margin can be interpreted as how confident 𝑔I is in 

its prediction: the bigger the margin, the more confident.

59

𝑚 𝒙 : , 𝑦 : =
𝑦 : ∑72,I 𝛼7ℎ7 𝒙 :

∑72,I 𝛼7
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1-1 0

Increasing confidenceIncreasing confidence 
(but wrong)

Margin



True Error
(Schapire, 
Freund et al., 
1998) 
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True	Error ≤
1
𝑁
(
:2,

5

𝑚 𝒙 : , 𝑦 : ≤ 𝜖 + h𝑂
𝑑<Y ℋ
𝑁𝜖-
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� For AdaBoost, with high probability:

where 𝑑<Y ℋ  is the VC-dimension of the weak learners 
and 𝜖 > 0 is a tolerance parameter.

� Even after AdaBoost has driven the training error to 0, it 
continues to target the “training margin”

http://rob.schapire.net/papers/SchapireFrBaLe98.pdf


Key Takeaways

� Boosting targets high bias models, i.e., weak learners

� Greedily minimizes the exponential loss, an upper bound 
of the classification error

� Theoretical (and empirical) results show resilience to 

overfitting by targeting training margin 
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