10-301/601: Introduction to Machine Learning Lecture 30 — Boosting

Boosting

- An *ensemble method* combines the predictions of multiple "weak" hypotheses to learn a single, more powerful classifier
- Boosting is a meta-algorithm: it can be applied to a variety of machine learning models
 - Commonly used with decision trees

Decision Trees: Pros & Cons

- Pros
 - Interpretable
 - Efficient (computational cost and storage)
 - Can be used for classification and regression tasks
 - Compatible with categorical and real-valued features
- Cons
 - Learned greedily: each split only considers the immediate impact on the splitting criterion
 - Not guaranteed to find the smallest (fewest number of splits) tree that achieves a training error rate of 0.
 - Prone to overfit
 - Highly variable
 - Can be addressed via bagging → random forests
 - Limited expressivity (especially short trees, i.e., stumps)
 - Can be addressed via boosting

AdaBoost

- Intuition: iteratively reweight inputs, giving more weight to inputs that are difficult-to-predict correctly
- Analogy:
 - You all have to take a test () ...
 - ... but you're going to be taking it one at a time.
 - After you finish, you get to tell the next person the questions you struggled with.
 - Hopefully, they can cover for you because...
 - ... if "enough" of you get a question right, you'll all receive full credit for that problem

• For t = 1, ..., T

a

B

- 1. Train a weak learner, h_t , by minimizing the weighted training error
- 2. Compute the weighted training error of h_t :

$$\epsilon_t = \sum_{n=1}^{N} \omega_{t-1}^{(n)} \mathbb{1} \left(y^{(n)} \neq h_t(\mathbf{x}^{(n)}) \right)$$

3. Compute the **importance** of h_t :

$$\alpha_t = \frac{1}{2} \log \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

4. Update the data point weights:

$$\omega_t^{(n)} = \frac{\omega_{t-1}^{(n)}}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } h_t(\boldsymbol{x}^{(n)}) = y^{(n)} \\ e^{\alpha_t} & \text{if } h_t(\boldsymbol{x}^{(n)}) \neq y^{(n)} \end{cases}$$

Output: an aggregated hypothesis

$$g_T(\mathbf{x}) = \operatorname{sign}(H_T(\mathbf{x}))$$

$$= \operatorname{sign}\left(\sum_{t=1}^{I} \alpha_t h_t(\mathbf{x})\right)$$

Setting α_t

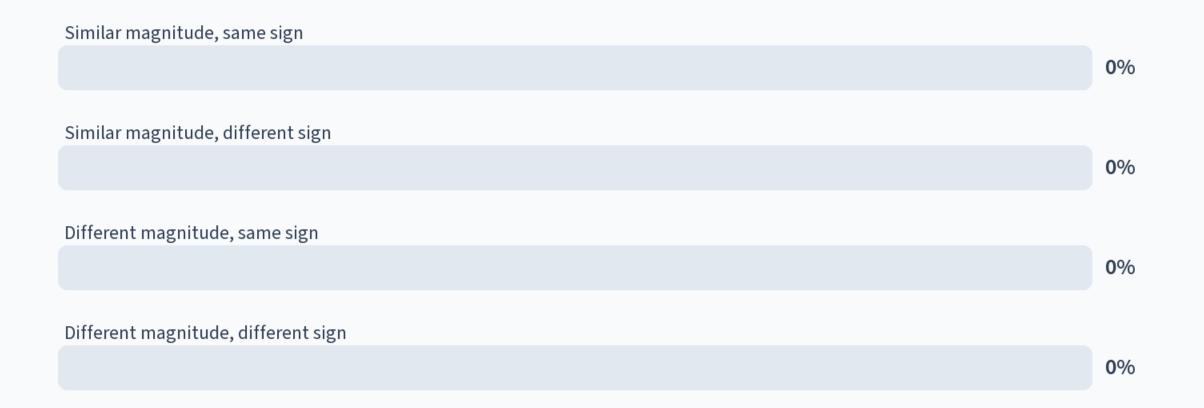
 α_t determines the contribution of h_t to the final, aggregated hypothesis:

$$g(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Intuition: we want good weak learners to have high importances

$$\alpha_t = \frac{1}{2} \log \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

How does the importance of a very bad/mostly incorrect weak learner compare to the importance of a very good/mostly correct weak learner?



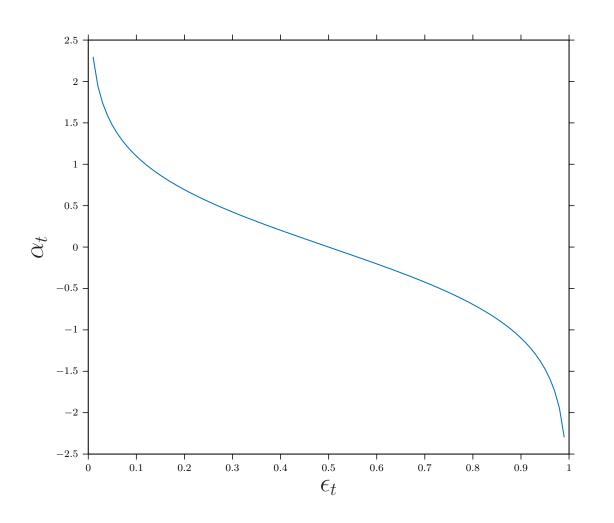
Setting α_t

 α_t determines the contribution of h_t to the final, aggregated hypothesis:

$$g(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(\mathbf{x})\right)$$

Intuition: we want good weak learners to have high importances

$$\alpha_t = \frac{1}{2} \log \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$



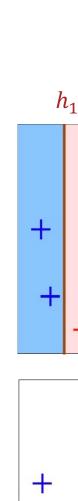
Updating $\omega^{(n)}$

 Intuition: we want incorrectly classified inputs to receive a higher weight in the next round

$$\omega_{t}^{(n)} = \frac{\omega_{t-1}^{(n)}}{Z_{t}} \times \begin{cases} e^{-\alpha_{t}} & \text{if } h_{t}(x^{(n)}) = y^{(n)} \\ e^{\alpha_{t}} & \text{if } h_{t}(x^{(n)}) \neq y^{(n)} \end{cases} = \frac{\omega_{t-1}^{(n)} e^{-\alpha_{t} y^{(n)} h_{t}(x^{(n)})}}{Z_{t}}$$

$$= \frac{1 - C_{t}}{C_{t}} > 1$$

AdaBoost: Example

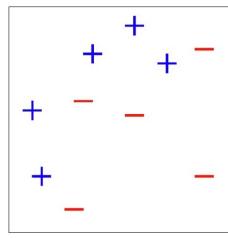


$$\epsilon_1 = 0.3$$

$$\alpha_1 = 0.42$$

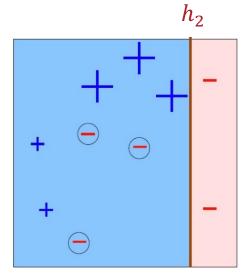
$$h_1$$

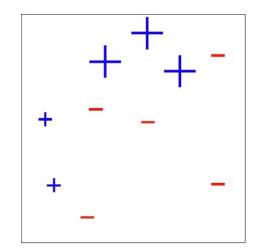
$$+ - -$$



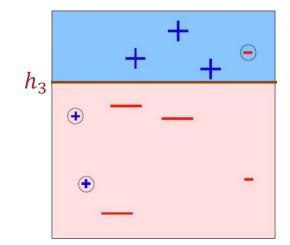
$$\epsilon_2 = 0.21$$

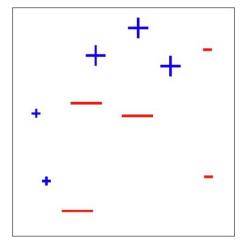
$$\alpha_2 = 0.65$$



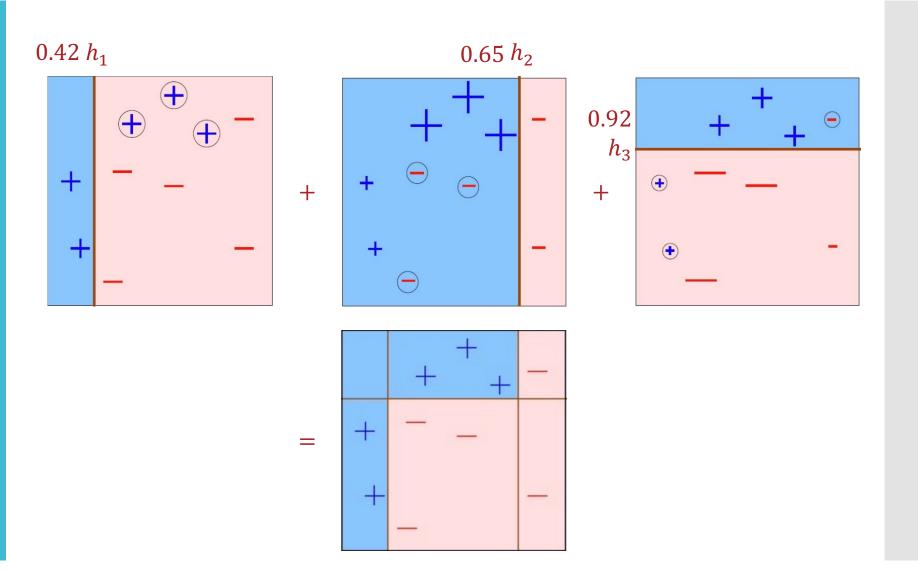


$$\epsilon_3 = 0.14$$
 $\alpha_3 = 0.92$





AdaBoost: Example



Why AdaBoost?

- 1. If you want to use weak learners ...
- 2. ... and want your final hypothesis to be a weighted combination of weak learners, ...
- 3. ... then Adaboost greedily minimizes the exponential loss:

$$e(h(\mathbf{x}), y) = e^{\left(-yh(\mathbf{x})\right)}$$

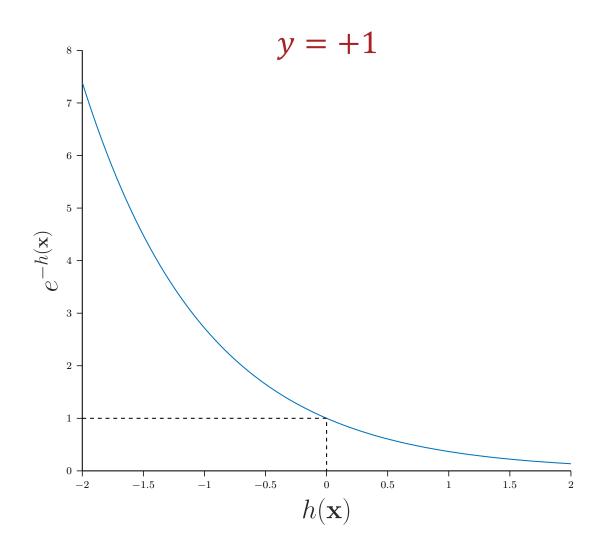
- 1. Because they're low variance / computational constraints
- 2. Because weak learners are not great on their own

3. Because the exponential loss upper bounds binary error

Exponential Loss

$$e(h(\mathbf{x}), y) = e^{(-yh(\mathbf{x}))}$$

The more h(x) "agrees with" y, the smaller the loss and the more h(x) "disagrees with" y, the greater the loss



· Claim:

$$\frac{1}{N} \sum_{n=1}^{N} e^{\left(-y^{(n)}h\left(x^{(n)}\right)\right)} \ge \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}\left(\operatorname{sign}\left(h\left(x^{(n)}\right)\right) \ne y^{(n)}\right)$$

Exponential Loss

· Consequence:

$$\frac{1}{N} \sum_{n=1}^{N} e^{\left(-y^{(n)}h(x^{(n)})\right)} \to 0$$

$$\Rightarrow \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}\left(\operatorname{sign}\left(h(\mathbf{x}^{(n)})\right) \neq y^{(n)}\right) \to 0$$

• Claim: if $g_T = \text{sign}(H_T)$ is the Adaboost hypothesis, then

$$\frac{1}{N} \sum_{n=1}^{N} e^{\left(-y^{(n)}H_T(x^{(n)})\right)} = \prod_{t=1}^{T} Z_t$$

Exponential Loss

• Proof:
$$\omega_{0}^{(n)} = \frac{1}{N}, \quad \omega_{1}^{(n)} = \frac{e^{-\alpha \sqrt{n}} h_{1}(\vec{x}^{(n)})}{2} \omega_{0}^{(n)} = \frac{e^{-\alpha \sqrt{n}} h_{1}(\vec{x}^{(n)})}{2} \omega_{0}^{(n)} = \frac{e^{-\alpha \sqrt{n}} h_{1}(\vec{x}^{(n)})}{2} \omega_{0}^{(n)} = \frac{e^{-\alpha \sqrt{n}} h_{1}(\vec{x}^{(n)})}{2} = \frac{e^{-\alpha \sqrt{n}} h_{1}(\vec$$

• Claim: if $g_T = \text{sign}(H_T)$ is the Adaboost hypothesis, then

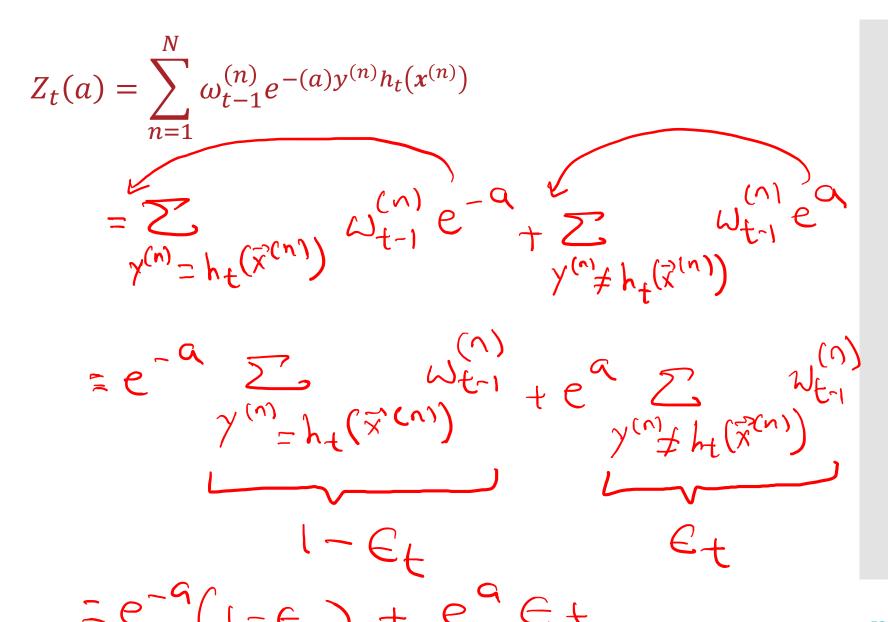
$$\frac{1}{N} \sum_{n=1}^{N} e^{\left(-y^{(n)}H_{T}(x^{(n)})\right)} = \prod_{t=1}^{T} Z_{t}$$

Exponential Loss

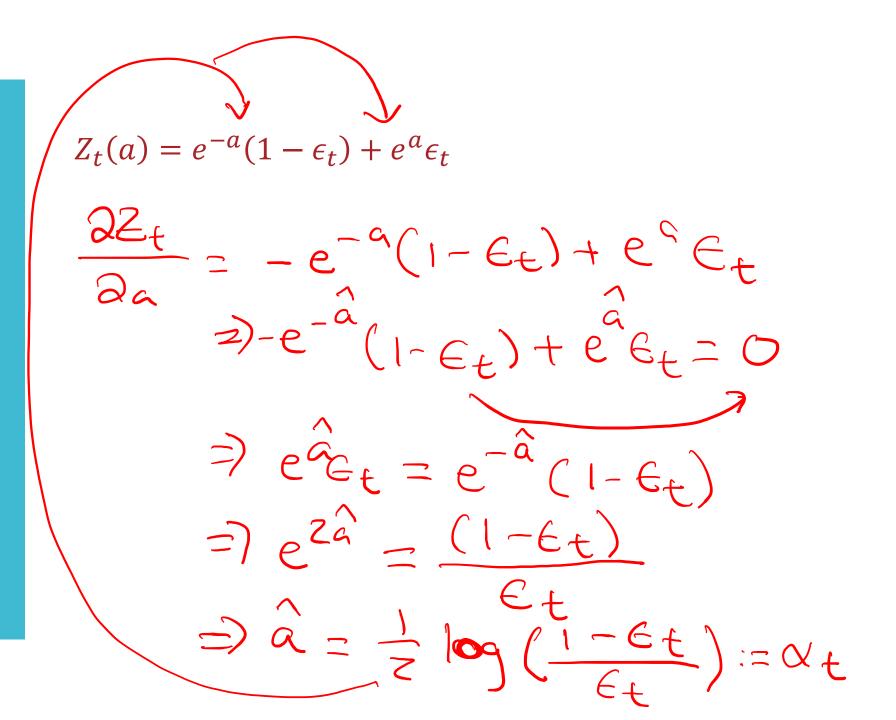
• Consequence: one way to minimize the exponential training loss is to greedily minimize Z_t , i.e., in each iteration, make the normalization constant as small as possible by tuning α_t .

$$Z_{t}(\alpha_{t}) = \sum_{n=1}^{N} \omega_{t-1}^{(n)} e^{-\alpha_{t} \gamma^{(n)} h_{t}(\overline{\chi}^{(n)})}$$

Greedy Exponential Loss Minimization



Greedy Exponential Loss Minimization



Normalizing $\omega^{(n)}$

$$Z_{t} = \sum_{n=1}^{N} \omega_{t-1}^{(n)} e^{-\alpha_{t} y^{(n)} h_{t}(x^{(n)})}$$

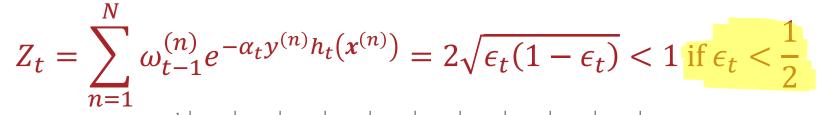
$$= e^{-\alpha_{t}} (1 - \epsilon_{t}) + e^{\alpha_{t}} \epsilon_{t}$$

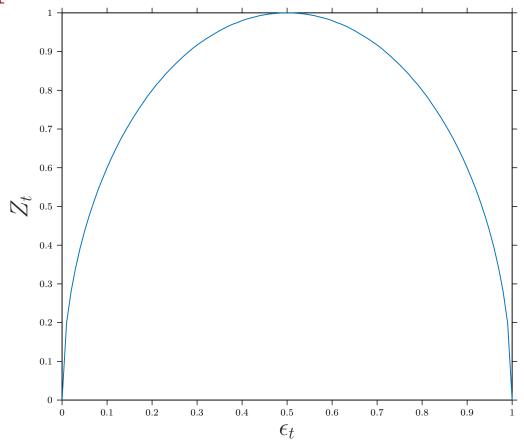
$$= e^{-\frac{1}{2} \log \left(\frac{1 - \epsilon_{t}}{\epsilon_{t}} \right)} (1 - \epsilon_{t}) + e^{\frac{1}{2} \log \left(\frac{1 - \epsilon_{t}}{\epsilon_{t}} \right)} \epsilon_{t}$$

$$= e^{\log \sqrt{\frac{\epsilon_{t}}{1 - \epsilon_{t}}}} (1 - \epsilon_{t}) + e^{\log \sqrt{\frac{1 - \epsilon_{t}}{\epsilon_{t}}}} \epsilon_{t}$$

$$= \sqrt{\epsilon_{t}} (1 - \epsilon_{t}) + \sqrt{(1 - \epsilon_{t}) \epsilon_{t}}$$

$$= 2\sqrt{\epsilon_{t}} (1 - \epsilon_{t})$$





Training Error

$$\frac{1}{N}\sum_{n=1}^{N}\mathbb{1}\left(y^{(n)}\neq g_{T}(x^{(n)})\right) \leq \frac{1}{N}\sum_{n=1}^{N}e^{\left(-y^{(n)}H_{T}(x^{(n)})\right)}$$

$$= \frac{1}{N}\sum_{n=1}^{N}e^{\left(-y^{(n)}$$

True Error (Freund & Schapire, 1995)

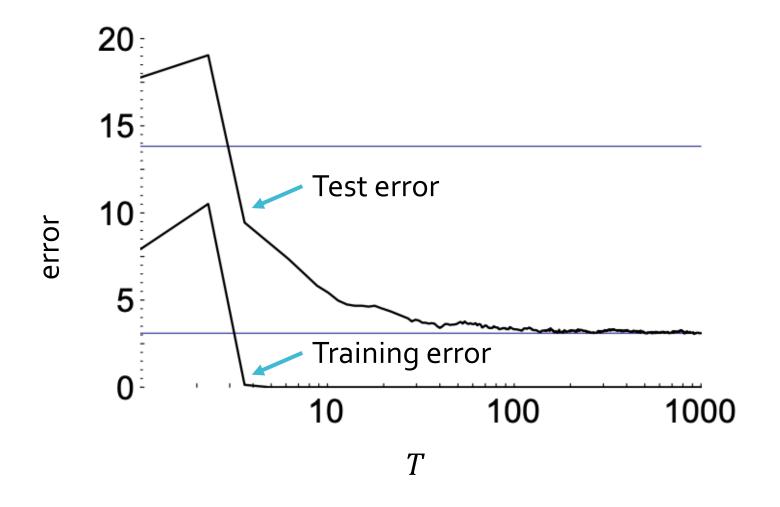
For AdaBoost, with high probability:

True Error
$$\leq$$
 Training Error $+ \tilde{O}\left(\sqrt{\frac{d_{vc}(\mathcal{H})T}{N}}\right)$

where $d_{vc}(\mathcal{H})$ is the VC-dimension of the weak learners and T is the number of weak learners.

• Empirical results indicate that increasing T does not lead to overfitting as this bound would suggest!

Test Error (Schapire, 1989)

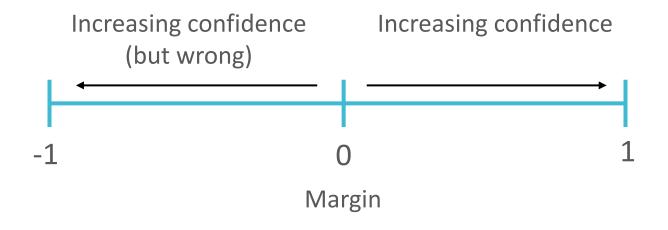


Margins

• The margin of training point $(x^{(i)}, y^{(i)})$ is defined as:

$$m(\mathbf{x}^{(i)}, y^{(i)}) = \frac{y^{(i)} \sum_{t=1}^{T} \alpha_t h_t(\mathbf{x}^{(i)})}{\sum_{t=1}^{T} \alpha_t}$$

• The margin can be interpreted as how confident g_T is in its prediction: the bigger the margin, the more confident.



True Error (Schapire, Freund et al., 1998)

For AdaBoost, with high probability:

True Error
$$\leq \frac{1}{N} \sum_{i=1}^{N} \left[m(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \leq \epsilon \right] + \tilde{O}\left(\sqrt{\frac{d_{vc}(\mathcal{H})}{N\epsilon^2}}\right)$$

where $d_{vc}(\mathcal{H})$ is the VC-dimension of the weak learners and $\epsilon>0$ is a tolerance parameter.

• Even after AdaBoost has driven the training error to 0, it continues to target the "training margin"

Key Takeaways

- Boosting targets high bias models, i.e., weak learners
- Greedily minimizes the exponential loss, an upper bound of the classification error
- Theoretical (and empirical) results show resilience to overfitting by targeting training margin