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* An ensemble method combines the predictions of

multiple “weak” hypotheses to learn a single, more
powerful classifier

Boosting

* Boosting is a meta-algorithm: it can be applied to a

variety of machine learning models

- Commonly used with decision trees
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Decision Trees:
Pros & Cons

Henry Chai - 6/11/25

* Pros

* Interpretable

* Efficient (computational cost and storage)

* Can be used for classification and regression tasks

* Compatible with categorical and real-valued features

* Cons

* Learned greedily: each split only considers the
immediate impact on the splitting criterion

* Not guaranteed to find the smallest (fewest number
of splits) tree that achieves a training error rate of 0.

* Prone to overfit

* Highly variable
* Can be addressed via bagging — random forests

* Limited expressivity (especially short trees, i.e., stumps)
- Can be addressed via boosting



AdaBoost
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* Intuition: iteratively reweight inputs, giving more weight

to inputs that are difficult-to-predict correctly

- Analogy:

* You all have to take a test () ...
* ... but you’re going to be taking it one at a time.

- After you finish, you get to tell the next person the
guestions you struggled with.

* Hopefully, they can cover for you because...

- ... if “enough” of you get a question right, you’ll all
receive full credit for that problem



* Input: D (y(”) € {—1, +1}), T ™~

* Initialize data point weights: a)( ). ,a)(gN) ==

A *Fort=1,..,T
1. Train a weak learner, h¢, by minimizing the weighted
d training error
3 2. Compute the weighted training error of h;: * Output: an
aggregated
B €, = z a)(") 1 y(n) £ ht(x("))) > hypothesis
O — sion(H
3. Compute the importance of h;: gr(x) = sign(Hr(x))
O
S
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_ 11 (1 — et) T
e = 5108 € = sign (Z atht(x)>

4. Update the data point weights: t=1

.
(n) (Ut(ﬁ)l e %t if ht(x(n)) - y(n)

Zs \eat ifht(x(n)) + y(n)




Setting a;

a; determines the contribution of h;
to the final, aggregated hypothesis:

T
g(x) = sign (Z atht<x>)

t=1

Intuition: we want good weak

learners to have high importances

1 1_Et
%t zzlog( €t )
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Setting a;
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* Intuition: we want incorrectly classified inputs to receive a

higher weight in the next round

( n n
wgr_l?]_ e—at lf ht(x(n)) — y(n) _ wigtl)le_aty( )ht(x( ))

w™ = =1y =
: (n) t Zt et if ht(x(")) =y Z;
Updating w \
‘If ; < =, then —£ > 1
2 €t
. 1_Et _ l 1_Et
If -, >1,thenat—210g( Et)>0

“Ifay > 0,thene ™ < lande% > 1
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62 == 021 63 == 014‘

AdaBoost:
Example
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AdaBoost:
Example
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0.65 h,
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Why

AdaBoost?
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1.

If you want to use weak 1.

learners ...

... and want your final
hypothesis to be a 2.
weighted combination of

weak learners, ...

... then Adaboost greedily 3
minimizes the

exponential loss:
e(h(x),y) = e(-¥h(®)

Because they’re low
variance / computational

constraints

Because weak learners

are not great on their own

Because the exponential
loss upper bounds binary

error
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Exponential Loss

e(h(x),y) = e(-yh®)

The more h(x) “agrees with” y,
the smaller the loss and the more
h(x) “disagrees with” y, the

greater the loss
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Exponential

Loss
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* Claim:

N N

1 (n) (n) 1

: —y®h(x™)) __22 m) (n)

NZ > sign h(x ) *y )
n= n=1

- Consequence:
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* Claim: if g = sign(H7) is the Adaboost hypothesis, then

1 N ( ) r
_y(M) (n)
_ y™WHp(x™)) _ l
N z ¢ | 4t
n=1 t=1
* Proof:
Exponential w1y e PmED) ey () ey Mg (x0)
LOSS wO B N’ wl N NZ, / (1)2 o NZ,Z,
(n) '11;_1 —aty (n) ht(x(n)) _y(n) ZZ=1 a; ht(x(")) —y(") Hop (x("))
W = _ B
T Nli=1Z: N [¢=1 Z¢ N [1t=1Z:
N N _,m (n) N T
y ™ Hr () 1
z w;n) - T =1=—= ~yM™WH (x™) — ‘ ‘ Z;
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Exponential

Loss
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* Claim: if g = sign(H7) is the Adaboost hypothesis, then

T

N
1 (_y(n) HT(x<")))
VD -] |2
n=1

t=1

- Consequence: one way to minimize the exponential training loss is to

greedily minimize Z¢, i.e., in each iteration, make the normalization
constant as small as possible by tuning a;.
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Greedy
Exponential

Loss
Minimization
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Ze@) = Y @ e~ @Y ")

a)?_l)l e~ (@ 4 w,@l e(@)

yM=h, (x(n)) yM£h, (x(n))

= e~ @ a)f'_l)l + e(@ a)g_l)l

yMW=h, (x(n)) yM£h, (x(n))

=e (1 —¢€) + e%;

16



Zi(a) =e 1 —¢€;) + e

0Z A A
O_at =——e%1—¢)+e%c = —e*(1—¢€)+e% =0

Greedy . = ele, = e (1 —¢,)
Exponential e _lze
Loss €t

o 1. /1-
Minimization :&:Elog( Et)=at

€t
0°Zy

a2 = e Y (1—€)+e% >0
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Normalizing

()
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=e % (1 —¢€;) + e%e;

= e_%log(lgtet)(l — Et) 4+ e%log(lgtet)et

= \/Et(l —€;) + \/et(l — €p) = 2\/Et(1 — €;)
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Training Error
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Z y(n) Hrp (x(")))
[
t A

=1

ZIF—‘

T
1_[2\/615(1 —€;) > 0asT -
t=1

1
(as longas e; < > v t)
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* For AdaBoost, with high probability:

. ~ [ [|Quc(F)T
True Error < Training Error + O N
True Error \

(Freund &

where d,.(H) is the VC-dimension of the weak learners

Schapire, 1995)

and T is the number of weak learners.

* Empirical results indicate that increasing T does not

lead to overfitting as this bound would suggest!
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Test Error
(Schapire, 1989)
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20:

o Test error

error

\:/ Training error

T

Source: http://rob.schapire.net/papers/msri.pdf

10 100

~ 1000
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Margins
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* The margin of training point (x(i),y(i)) is defined as:

o D YT - o h (2D
m(x(‘),y(l)) _ y Zt—; At t(x )
t=1 ¢

* The margin can be interpreted as how confident g7 is in

its prediction: the bigger the margin, the more confident.

Increasing confidence Increasing confidence
(but wrong)

Margin
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True Error
(Schapire,

Freund et al.,
1998)
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* For AdaBoost, with high probability:

N
True Error < %Z[[m(x(l),y(l)) < E]] + 6 dvc(}[)

2
- \ Ne

where d,.(H) is the VC-dimension of the weak learners

and € > 0 is a tolerance parameter.

* Even after AdaBoost has driven the training error to O, it

continues to target the “training margin”

Source: http://rob.schapire.net/papers/SchapireFrBaleg8.pdf
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- Boosting targets high bias models, i.e., weak learners

* Greedily minimizes the exponential loss, an upper bound

of the classification error

* Theoretical (and empirical) results show resilience to

overfitting by targeting training margin
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