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 A classifier is a function that takes feature values as 

input and outputs a label

 Majority vote classifier: always predict the most 

common label in the training dataset

 This classifier completely ignores the features…

Our first 
Machine 
Learning 
Classifier
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Yes Low Normal No

No Medium Normal No
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 A classifier is a function that takes feature values as 

input and outputs a label

 Majority vote classifier: always predict the most 

common label in the training dataset

 The training error rate is Τ2 5
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Family
History

Resting Blood 
Pressure

Cholesterol Heart 
Disease?

Predictions

Yes Low Normal No Yes

No Medium Normal No Yes

No Low Abnormal Yes Yes

Yes Medium Normal Yes Yes

Yes High Abnormal Yes Yes
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 A classifier is a function that takes feature values as      

input and outputs a label

 Memorizer: if a set of features exists in the training 

dataset, predict its corresponding label; otherwise, 

predict the majority voteOur second 
Machine 
Learning 
Classifier
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Family
History

Resting Blood 
Pressure

Cholesterol Heart 
Disease?

Yes Low Normal No

No Medium Normal No

No Low Abnormal Yes

Yes Medium Normal Yes

Yes High Abnormal Yes
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 A classifier is a function that takes feature values as      

input and outputs a label

 Memorizer: if a set of features exists in the training 

dataset, predict its corresponding label; otherwise, 

predict the majority vote

 The training error rate is 0!

Our second 
Machine 
Learning 
Classifier
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Family
History

Resting Blood 
Pressure

Cholesterol Heart 
Disease?

Predictions

Yes Low Normal No No

No Medium Normal No No

No Low Abnormal Yes Yes

Yes Medium Normal Yes Yes

Yes High Abnormal Yes Yes
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 A classifier is a function that takes feature values as      

input and outputs a label

 Memorizer: if a set of features exists in the training 

dataset, predict its corresponding label; otherwise, 

predict the majority vote

 The training error rate is 0…

Our second 
Machine 
Learning 
Classifier

Henry Chai - 5/12/25

Family
History

Resting Blood 
Pressure

Cholesterol Heart 
Disease?

Predictions

Yes Low Normal No No

No Medium Normal No No

No Low Abnormal Yes Yes

Yes Medium Normal Yes Yes

Yes High Abnormal Yes Yes
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Our second 
Machine 
Learning 
Classifier

Henry Chai - 5/12/25

 A classifier is a function that takes feature values as      

input and outputs a label

 Memorizer: if a set of features exists in the training 

dataset, predict its corresponding label; otherwise, 

predict the majority vote

 The memorizer (typically) does not generalize well, i.e., 

it does not perform well on unseen data points

 In some sense, good generalization, i.e., the ability to 

make accurate predictions given a small training 

dataset, is the whole point of machine learning!
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 Feature space, 𝒳

 Label space, 𝒴

 (Unknown) Target function, 𝑐∗: 𝒳 → 𝒴

 Training dataset: 

𝒟 = 𝒙 1 , 𝑐∗ 𝒙 1 = 𝑦 1 , 𝒙 2 , 𝑦 2 … , 𝒙 𝑁 , 𝑦 𝑁

 Data point:

𝒙 𝑛 , 𝑦 𝑛 = 𝑥1
𝑛

, 𝑥2
𝑛

, … , 𝑥𝐷
𝑛

, 𝑦 𝑛

 Classifier, ℎ ∶ 𝒳 → 𝒴

 Goal: find a classifier, ℎ, that “best approximates” 𝑐∗

Notation
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 Loss function, ℓ ∶ 𝒴 ×  𝒴 → ℝ

 Defines how “bad” predictions, ො𝑦 = ℎ(𝒙), are 

compared to the true labels, 𝑦 = 𝑐∗(𝒙)

 Common choices:

1. Squared loss (for regression): ℓ 𝑦, ො𝑦 = 𝑦 − ො𝑦 2

2. Binary or 0-1 loss (for classification):

ℓ 𝑦, ො𝑦 = ቊ
1 if 𝑦 ≠ ො𝑦
0 otherwise

= 𝟙 𝑦 ≠ ො𝑦

 Error rate:

𝑒𝑟𝑟 ℎ, 𝒟 =
1

𝑁
෍

𝑛=1

𝑁

𝟙 𝑦 𝑛 ≠ ℎ 𝒙 𝑛

Evaluation
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 Loss function, ℓ ∶ 𝒴 ×  𝒴 → ℝ

 Defines how “bad” predictions, ො𝑦 = ℎ(𝒙), are 

compared to the true labels, 𝑦 = 𝑐∗(𝒙)
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1. Squared loss (for regression): ℓ 𝑦, ො𝑦 = 𝑦 − ො𝑦 2
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 Memorizer: if a set of features exists in the training 

dataset, predict its corresponding label; 

otherwise, predict the majority vote

 𝑁 = 5 and 𝐷 = 3

 𝑥 2 = 𝑥1
2

= “No”, 𝑥2
2

= “Medium”, 𝑥3
2

= “Normal”

Notation: 
Example
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𝑥1

Family
History

𝑥2

Resting Blood 
Pressure

𝑥3

Cholesterol 
𝑦

Heart 
Disease?

ො𝑦
Predictions

Yes Low Normal No No

No Medium Normal No No

No Low Abnormal Yes Yes

Yes Medium Normal Yes Yes

Yes High Abnormal Yes Yes

𝒙 2
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Our second 
Machine 
Learning 
Classifier:
Pseudocode
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 Memorizer:

 def train(𝒟):

      store 𝒟 

 def majority_vote(𝒟):

      return mode(𝑦 1 , 𝑦 2 , … , 𝑦 𝑁 )

 def predict(𝒙′):

      if ∃ 𝒙 𝑛 ∈ 𝒟 s.t. 𝒙′ = 𝒙 𝑛 :

           return 𝑦 𝑛

      else 

           return majority_vote(𝒟)
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Our third 
Machine 
Learning 
Classifier
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𝑥1

Family
History

𝑥2

Resting Blood 
Pressure

𝑥3

Cholesterol 
𝑦

Heart 
Disease?

Yes Low Normal No

No Medium Normal No

No Low Abnormal Yes

Yes Medium Normal Yes

Yes High Abnormal Yes

 Alright, let’s actually (try to) extract a pattern from the data

 Decision stump: based on a single feature, 𝑥𝑑, predict the 

most common label in the training dataset among all data 

points that have the same value for 𝑥𝑑
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𝑥1

Family
History

𝑥2

Resting Blood 
Pressure

𝑥3

Cholesterol 
𝑦

Heart 
Disease?

Yes Low Normal No

No Medium Normal No

No Low Abnormal Yes

Yes Medium Normal Yes

Yes High Abnormal Yes

Our third 
Machine 
Learning 
Classifier:
Example

 Alright, let’s actually (try to) extract a pattern from the data

 Decision stump on 𝑥1: 

ℎ 𝒙′ = ℎ 𝑥1
′ , … , 𝑥𝐷

′ = ቊ
? ? ? if 𝑥1

′ = “Yes”
? ? ? otherwise
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𝑥1

Family
History

𝑥2

Resting Blood 
Pressure

𝑥3

Cholesterol 
𝑦

Heart 
Disease?

Yes Low Normal No

No Medium Normal No

No Low Abnormal Yes

Yes Medium Normal Yes

Yes High Abnormal Yes

Our third 
Machine 
Learning 
Classifier:
Example

 Alright, let’s actually (try to) extract a pattern from the data

 Decision stump on 𝑥1: 

ℎ 𝒙′ = ℎ 𝑥1
′ , … , 𝑥𝐷

′ = ቊ
“Yes” if 𝑥1

′ = “Yes”
? ? ? otherwise
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 Alright, let’s actually (try to) extract a pattern from the data

 Decision stump on 𝑥1: 

ℎ 𝒙′ = ℎ 𝑥1
′ , … , 𝑥𝐷

′ = ቊ
“Yes” if 𝑥1

′ = “Yes”
“No” otherwise

𝑥1

Family
History

𝑥2

Resting Blood 
Pressure

𝑥3

Cholesterol 
𝑦

Heart 
Disease?

Yes Low Normal No

No Medium Normal No

No Low Abnormal Yes

Yes Medium Normal Yes

Yes High Abnormal Yes

Our third 
Machine 
Learning 
Classifier:
Example
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 Alright, let’s actually (try to) extract a pattern from the data

ℎ 𝒙 = ℎ 𝑥1, … , 𝑥𝑑 = ቊ
“Yes” if 𝑥1 = “Yes”
“No” otherwise

𝑥1

Family
History

𝑥2

Resting Blood 
Pressure

𝑥3

Cholesterol 
𝑦

Heart 
Disease?

ො𝑦
Predictions

Yes Low Normal No Yes

No Medium Normal No No

No Low Abnormal Yes No

Yes Medium Normal Yes Yes

Yes High Abnormal Yes Yes

Our third 
Machine 
Learning 
Classifier:
Example
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𝑥1

“Yes” “No”

“Yes” “No”
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𝑦
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Yes Low Normal No

No Medium Normal No

No Low Abnormal Yes

Yes Medium Normal Yes

Yes High Abnormal Yes



Decision 
Stumps: 
Pseudocode

def train(𝒟):

1. pick a feature, 𝑥𝑑

2. split 𝒟 according to 𝑥𝑑

 for  𝑣  in 𝑉 𝑥𝑑 , all possible values of  𝑥𝑑:

      𝒟𝑣 = 𝑥 𝑖 , 𝑦 𝑖 ∈ 𝒟 | 𝑥𝑑
𝑖

= 𝑣

3. Compute the majority vote for each split

 for  𝑣  in 𝑉 𝑥𝑑 , all possible values of  𝑥𝑑:

      ො𝑦𝑣 = majority_vote(𝒟𝑣)

def predict(𝒙′):

 for  𝑣  in 𝑉 𝑥𝑑 , all possible values of  𝑥𝑑:

          if  𝒙’ =  𝑣: return  ො𝑦𝑣
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Decision 
Stumps: 
Questions

1. How can we pick which feature to split on?

2. Why stop at just one feature?
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Decision 
Stumps: 
Questions

1. How can we pick which feature to split on?

2. Why stop at just one feature?
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Splitting 
Criterion

 A splitting criterion is a function that measures how 

good or useful splitting on a particular feature is for a 

specified dataset

 Insight: use the feature that optimizes the splitting 

criterion for our decision stump.

 Potential splitting criteria:

 Training error rate (minimize)

 Gini impurity (minimize) → CART algorithm

 Mutual information (maximize) → ID3 algorithm
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Training error 
rate as a 
Splitting 
Criterion

Henry Chai - 5/12/25

𝑥1

𝑥1

Family
History

𝑥2

Resting Blood 
Pressure

𝑥3

Cholesterol 
𝑦

Heart 
Disease?

Yes Low Normal No

No Medium Normal No

No Low Abnormal Yes

Yes Medium Normal Yes

Yes High Abnormal Yes

“Yes” “No”

𝑥2

“High” “Low”

𝑥3

“Abnormal” “Normal”

Training error 
rate: Τ2 5

Training error 
rate: Τ2 5

Training error 
rate: Τ1 5
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𝑥1 𝑥2 𝑦

1 0 0

1 0 0

1 0 1

1 0 1

1 1 1

1 1 1

1 1 1

1 1 1

 Which feature would you 

split on using training error 

rate as the splitting criterion?
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Training error 
rate as a 
Splitting 
Criterion?

𝑥1
0 1

𝑥2
0 1
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Splitting 
Criterion

 A splitting criterion is a function that measures how 

good or useful splitting on a particular feature is for a 

specified dataset

 Insight: use the feature that optimizes the splitting 

criterion for our decision stump.

 Potential splitting criteria:

 Training error rate (minimize)

 Gini impurity (minimize) → CART algorithm

 Mutual information (maximize) → ID3 algorithm
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Entropy

Henry Chai - 5/12/25

 The entropy of a random variable describes the 

uncertainty of its outcome: the higher the entropy, the 

less certain we are about what the outcome will be.

𝐻 𝑋 = − ෍

𝑣 ∈ 𝑉 𝑋

𝑃 𝑋 = 𝑣 log2 𝑃 𝑋 = 𝑣

where 𝑋 is a (discrete) random variable

             𝑉 𝑋  is the set of possible values 𝑋 can take on

             𝑆𝑣 is the collection of elements in 𝑆 with value 𝑣 

 If all the elements in 𝑆 are the same, then              

H 𝑆 = −1 log2 1 = 0
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Entropy
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 The entropy of a set describes how uniform or pure it is: 

the higher the entropy, the more impure or “mixed-up” 

the set is

𝐻 𝑆 = − ෍

𝑣 ∈ 𝑉 𝑆

|𝑆𝑣|

|𝑆|
log2

|𝑆𝑣|

|𝑆|

where 𝑆 is a collection of values,

             𝑉 𝑆  is the set of unique values in 𝑆  

             𝑆𝑣 is the collection of elements in 𝑆 with value 𝑣 

 If all the elements in 𝑆 are the same, then              

H 𝑆 = −1 log2 1 = 0
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Entropy
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 The entropy of a set describes how uniform or pure it is: 

the higher the entropy, the more impure or “mixed-up” 

the set is

𝐻 𝑆 = − ෍

𝑣 ∈ 𝑉 𝑆

|𝑆𝑣|

|𝑆|
log2

|𝑆𝑣|

|𝑆|

where 𝑆 is a collection of values,

             𝑉 𝑆  is the set of unique values in 𝑆  

             𝑆𝑣 is the collection of elements in 𝑆 with value 𝑣 

 If 𝑆 is split fifty-fifty between two values, then 

H 𝑆 = −
1

2
log2

1

2
−

1

2
log2

1

2
= −log2

1

2
= 1
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 The mutual information between two random variables 

describes how much clarity knowing the value of one 

random variables provides about the other

𝐼 𝑌; 𝑋 = 𝐻 𝑌 − 𝐻 𝑌 𝑋

𝐼 𝑌; 𝑋 = 𝐻 𝑌 − ෍

𝑣 ∈ 𝑉 𝑋

𝑃 𝑋 = 𝑣 𝐻 𝑌 𝑋 = 𝑣

where 𝑋 and 𝑌 are (discrete) random variables

             𝑉 𝑋  is the set of possible values 𝑋 can take on

             

 𝐻 𝑌 𝑋 = 𝑣  is the conditional entropy of 𝑌 given 𝑋 = 𝑣 

Mutual 
Information
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Mutual 
Information

Henry Chai - 5/12/25

 The mutual information between a feature and the label 

describes how much clarity knowing the feature provides 

about the label

𝐼 𝑦; 𝑥𝑑 = 𝐻 𝑦 − 𝐻 𝑦 𝑥𝑑

𝐼 𝑦; 𝑥𝑑 = 𝐻 𝑦 − ෍

𝑣 ∈ 𝑉 𝑥𝑑

𝑓𝑣 ∗ 𝐻 𝑌𝑥𝑑=𝑣

where 𝑥𝑑  is a feature and 𝑦 is the set of all labels

             𝑉 𝑥𝑑  is the set of possible values 𝑥𝑑  can take on

             𝑓𝑣 is the fraction of data points where 𝑥𝑑 = 𝑣 

 𝑌𝑥𝑑=𝑣 is the set of all labels where 𝑥𝑑 = 𝑣 
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Mutual 
Information:
Example

𝑥𝑑 𝑦

1 1

1 1

0 0

0 0

𝐼 𝑥𝑑 , 𝑌 = 𝐻 𝑌 − ෍

𝑣 ∈ 𝑉 𝑥𝑑

𝑓𝑣 ∗ 𝐻 𝑌𝑥𝑑=𝑣

Henry Chai - 5/12/25

𝐼 𝑥𝑑 , 𝑦 = 1 −
1

2
𝐻 𝑌𝑥𝑑=0 −

1

2
𝐻 𝑌𝑥𝑑=1

𝐼 𝑥𝑑 , 𝑦 = 1 −
1

2
0 −

1

2
0 = 1
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Mutual 
Information:
Example

𝑥𝑑 𝑦

1 1

0 1

1 0

0 0

𝐼 𝑥𝑑 , 𝑌 = 𝐻 𝑌 − ෍

𝑣 ∈ 𝑉 𝑥𝑑

𝑓𝑣 ∗ 𝐻 𝑌𝑥𝑑=𝑣
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𝐼 𝑥𝑑 , 𝑦 = 1 −
1

2
𝐻 𝑌𝑥𝑑=0 −

1

2
𝐻 𝑌𝑥𝑑=1

𝐼 𝑥𝑑 , 𝑦 = 1 −
1

2
1 −

1

2
1 = 0
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𝑥1 𝑥2 𝑦

1 0 0

1 0 0

1 0 1

1 0 1

1 1 1

1 1 1

1 1 1

1 1 1
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Mutual 
Information
as a 
Splitting 
Criterion

𝑥1

1

0 1

𝑥2

1

0 1

79
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Mutual Information: 𝐻 𝑌 −
1

2
𝐻 𝑌𝑥2=0 −

1

2
𝐻 𝑌𝑥2=1



𝑥1 𝑥2 𝑦

1 0 0

1 0 0

1 0 1

1 0 1

1 1 1

1 1 1

1 1 1

1 1 1
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Mutual 
Information
as a 
Splitting 
Criterion

𝑥1

0 or 1 1

0 1

𝑥2

1

0 1

Mutual Information: 0

Mutual Information: −
2

8
log2

2

8
−

6

8
log2

6

8
−

1

2
1 −

1

2
0 ≈ 0.31
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Key Takeaways

 Memorization as a form of learning

 Generalization

 Notation for datasets and evaluation

 Mutual information as a splitting criterion for decision 

stumps/trees

Henry Chai - 5/12/25 81
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