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Our first
Machine
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* A classifier is a function that takes feature values as

input and outputs a label

 Majority vote classifier: always predict the most

common label in the training dataset

features labels
A A
4 Y \
Family | RestingBlood | Cholesterc: | Heart
History | Pressure Disease?
" "~ Yes Lo Mormal No
=
= No Mediun Normal No
)
Q--< No Low Abnormal Yes
(©
1o Yes Medium Normal Yes
o
. Yes High Abrormal Yes

* This classifier completely ignores the features...
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* A classifier is a function that takes feature values as

input and outputs a label

 Majority vote classifier: always predict the most

common label in the training dataset

Our first features la bels
Machine
Lea rni ng Famlly Resting Blood | Cholesterol Heart Predlct|ons
- Hlstory Pressure Disease?
Classifier B Normal
=
S No Medium Normal No Yes
o
8. -< No Low Abnormal Yes Yes
(©
1o Yes Medium Normal Yes Yes
©
. Yes High Abnormal Yes Yes

* The training error rate is 2/5
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- A classifier is a function that takes feature values as

input and outputs a label

* Memorizer: if a set of features exists in the training

dataset, predict its corresponding label; otherwise,

predict the majority vote

Family | RestingBlood | Cholesterol | Heart
Hlstory Pressure Disease?

Normal
No Medium Normal No
No Low Abnormal Yes
Yes Medium Normal Yes

Yes High Abnormal Yes
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input and outputs a label

- A classifier is a function that takes feature values as

* Memorizer: if a set of features exists in the training

dataset, predict its corresponding label; otherwise,

predict the majority vote

Family | RestingBlood | Cholesterol | Heart Predictions
Hlstory Pressure Disease?

Normal
No Medium Normal No
No Low Abnormal Yes
Yes Medium Normal Yes
Yes High Abnormal Yes

* The training error rate is 0!

No
Yes
Yes
Yes
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input and outputs a label

- A classifier is a function that takes feature values as

* Memorizer: if a set of features exists in the training

dataset, predict its corresponding label; otherwise,

predict the majority vote

Family | RestingBlood | Cholesterol | Heart Predictions
Hlstory Pressure Disease?

Normal
No Medium Normal No
No Low Abnormal Yes
Yes Medium Normal Yes
Yes High Abnormal Yes

* The training error rate is 0...

No
Yes
Yes
Yes
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Is the memorizer learning?

Yes

0%
No

0%
Unsure

0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



Our second
Machine

Learning
Classifier
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- A classifier is a function that takes feature values as

input and outputs a label

* Memorizer: if a set of features exists in the training
dataset, predict its corresponding label; otherwise,

predict the majority vote

* The memorizer (typically) does not generalize well, i.e.,

it does not perform well on unseen data points

* In some sense, good generalization, i.e., the ability to
make accurate predictions given a small training

dataset, is the whole point of machine learning!
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* Feature space, X

* Label space, Y

* (Unknown) Target function, c*: X =» Y Q
H o
: * Training dataset: f d:—‘c; f"\“'\’&
Notation D = {(x®,c*(x®) = yD), (x@,y@) .., (x, W)}
- Data point:

(™, y™) = (xfn),xén),---,xl()n);y(n)) "QF .

£

c}(w‘ﬂ%

* Classifier, h : X = Y

- Goal: find a classifier, h, that “best approximates” c*
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Evaluation
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[ \_/ Ywo T:\GUSWA \&L{_\ 309(%&{

° Loss function, £ : Y X Y >R fromm

* Defines how “bad” predictions, ¥ = h(x), are

compared to the true labels, y = c*(x)
* Common choices:

1. Squared loss (for regression): £(y, ) = (y — 9)?

2. Binary or 0-1 loss (for classification):

- 1ify#9y
f(y, V) =
.3) {O otherwise
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Evaluation
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* Error rate:

CL(F r\,aSah’\'/ _ vzs[‘c. Gc)

° Loss function, £ : Y X Y - R (‘f_’s(ufi\ Yﬂ\

* Defines how “bad” predictions, ¥ = h(x), are

compared to the true labels, y = c*(x)
* Common choices

1. Squared loss (for regression): £(y, ) = (y — 9)?

2. Binary or 0-1 loss (for classification):
I s Y S ST
(v, ) =1y #9)

/

N .
ec(h, D) = -ir §1(y B LGE'G‘))
T2 ]
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- Memorizer: if a set of features exists in the training
dataset, predict its corresponding label;

otherwise, predict the majority vote

Family | RestingBlood | Cholesterol | Heart Predictions
NOtat|On History | Pressure Disease?
! Yes Low Normal No No
Example x| No Medium Normal No No
No Low Abnormal Yes Yes
Yes Medium Normal Yes Yes
Yes High Abnormal Yes Yes

N=5andD =3
- x(2) = ( (2) = “No”, x (2) “Medium”, x( 2) — “Normal’ )
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Our second
Machine

Learning
Classifier:
Pseudocode
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* Memorizer:

def train(D):
Store D

def majority vote(D): (N\
o mede (O 5@y ™)
def predict(x’): 5
£ 3 DD sk X 22X
l‘d’ujn >/U\3

Q\qe

Fﬂ"l’um m’nr‘f\' — \fﬂ_[7t CD)
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Our third
Machine

Learning
Classifier

Henry Chai - 5/12/25

* Alright, let’s actually (try to) extract a pattern from the data

Resting Blood | Cholesterol | Heart

Pressure Disease?
Yes Low Normal No
No Medium Normal No
No Low Abnormal Yes
Yes Medium Normal Yes
Yes High Abnormal Yes

* Decision stump: based on a single feature, x4, predict the
most common label in the training dataset among all data

points that have the same value for x4
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Our third
Machine
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* Alright, let’s actually (try to) extract a pattern from the data

X2 X3

Farﬁily Resting Blood | Cholesterol
History | Pressure

—| Yes Low Normal No
— No Medium Normal No
No Low Abnormal Yes
Yes Medium Normal Yes
Yes High Abnormal Yes

* Decision stump on x:

h(x") = h(x!, ..., x}) = {

??7? |if x; = “Yes”
77?77 otherwise
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* Alright, let’s actually (try to) extract a pattern from the data

Pressure
Our th”-d Yes Low Normal No
h. No Medium Normal No
Mac .Ine No Low Abnormal Yes
Lea nl ng Yes Medium Normal Yes
Classiﬁer: Yes High Abnormal  Yes

Example

* Decision stump on x:

h(x") = h(x!, ..., xb) = {

“Yes” if x; = “Yes”
77?77 |otherwise

Henry Chai - 5/12/25



Our third
Machine

Learning
Classifier:
Example
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* Alright, let’s actually (try to) extract a pattern from the data

Pressure
Yes Low Normal No
No Medium Normal No
No Low Abnormal Yes
Yes Medium Normal Yes
Yes High Abnormal Yes

* Decision stump on x:

h(x") = h(x!, ..., xb) = {

“Yes” if x; = “Yes”
“No” otherwise
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Our third
Machine

Learning
Classifier:
Example
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* Alright, let’s actually (try to) extract a pattern from the data

X1 X3
Family Restmg BIood Cholesterol Heart Predlctlons
Hlstory Pressure Disease?

Normal
No Medium Normal No No
No Low Abnormal Yes No
Yes Medium Normal Yes Yes
Yes High Abnormal Yes Yes
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def train(D):
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Questions
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1. How can we pick which feature to split on?

2. Why stop at just one feature?
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Questions
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1. How can we pick which feature to split on?

2. Why stop at just one feature?
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Splitting
Criterion
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* A splitting criterion is a function that measures how
good or useful splitting on a particular feature is for a

specified dataset

* Insight: use the feature that optimizes the splitting

criterion for our decision stump.
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Training error
rate as a

Splitting
Criterion
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X2 X3 y

Resting Blood | Cholesterol | Heart

Pressure Disease?
— —) Yes Low Normal @
— — No Medium Normal No
2 —2 No Low Abnormal
- — Yes Medium Normal Yes
— Yes High Abnormal Yes

Training error Training error

rate: Z/g' rate: Z/S_ rate: VS-
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* Which feature would you

split on using training error

- rate as the splitting criterion?
0 1
0 1
J(T'a.i*nmc) ecrof (xR T%’
3
Henry Chai - 5/12/25 L\ 69
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Training error
rate as a

Splitting
Criterion?

e S S O Wy =t
_ R R kRO O O O
o O = i = O = E




* A splitting criterion is a function that measures how

good or useful splitting on a particular feature is for a

specified dataset

* Insight: use the feature that optimizes the splitting

criterion for our decision stump.

Splitting .
Criterion * Potential splitting criteria:

* Training error rate (minimize)

* Gini impurity (minimize) = CART algorithm

* Mutual information (maximize) — ID3 algorithm
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* A splitting criterion is a function that measures how

good or useful splitting on a particular feature is for a

specified dataset

* Insight: use the feature that optimizes the splitting

criterion for our decision stump.

Splitting .
Criterion * Potential splitting criteria:

* Training error rate (minimize)

* Gini impurity (minimize) = CART algorithm

* Mutual information (maximize) — ID3 algorithm
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* The entropy of a random variable describes the
uncertainty of its outcome: the higher the entropy, the

less certain we are about what the outcome will be.

H(X) = — z P(X = v)log,(P(X =v))

veV(X)

where X is a (discrete) random variable

V(X) is the set of possible values X can take on
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* The entropy of a set describes how uniform or pure it is:
the higher the entropy, the more impure or “mixed-up”

the set is grze of " 4C 'ﬁmmlscr

"-/ ot tl.Wb)
H(S) = — Sol 0 (lsv|)
e ISI RS

where S is a collection of values,

V(S) is the set of unique valuesin S

S, is the collection of elements in S with value v

- If all the elements in S are the same, then

HCS)T"_ [1032\ = O
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* The entropy of a set describes how uniform or pure it is:
the higher the entropy, the more impure or “mixed-up”

the set is

) Sl (1S
HO == ) Is 1og2(|5|)

v eV(S)

where S is a collection of values,
V(S) is the set of unique valuesin S

S, is the collection of elements in S with value v

- If Sis split fifty-fifty between two values, then
\
= - -\ =
H CS) ajﬁ 5 [Dj?- > — L{_ 2 \
(—-l) (-1 4



Mutual
Information
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* The mutual information between two random variables
describes how much clarity knowing the value of one

random variables provides about the other
[(Y;X) =H(Y) —H(Y|X)

=Hwy-§:pa=umww=m

veV(X)

where X and Y are (discrete) random variables

V(X) is the set of possible values X can take on

H(Y|X = v) is the conditional entropy of Y given X = v
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Mutual
Information
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* The mutual information between a feature and the label
describes how much clarity knowing the feature provides
about the label

I(y; xq) = H(y) — H(y|x4)

=H(y)_ z fv*H(de=v)

veV(xg)

where x; is a feature and y is the set of all labels
V(x,) is the set of possible values x; can take on
f,, is the fraction of data points where x; = v

Yy ,=v is the set of all labels where x; = v
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Mutual
Information

as a
Splitting
Criterion

Henry Chai - 5/12/25

e S S O Wy =t
_ R R kRO O O O
o O = i = O = E

Mutual Information: H(Y) — %H(szzo) - %H(szzl)
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Mutual
Information

as a
Splitting
Criterion

Henry Chai - 5/12/25

Mutual Information: 0
0 1

Mutual Information: (—§10g2 g - glogz g) - %(1) —%(O) ~ 0.31

e S S O Wy =t
_ R R kRO O O O
o O = i = O = E
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* Memorization as a form of learning
* Generalization
* Notation for datasets and evaluation

* Mutual information as a splitting criterion for decision

stumps/trees
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