10-301/601: Introduction to Machine Learning Lecture 28: Q-learning and Deep RL

Recall: Value Iteration

- Inputs: R(s, a), p(s' | s, a), γ
- Initialize $V^{(0)}(s) = 0 \ \forall \ s \in \mathcal{S}$ (or randomly) and set t = 0
- While not converged, do:
 - For $s \in S$
 - For $a \in \mathcal{A}$

$$Q(s,a) = R(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s,a) V(s')$$

• $V(s) \leftarrow \max_{a \in A} Q(s, a)$

• For $s \in S$

$$\pi^*(s) \leftarrow \underset{a \in \mathcal{A}}{\operatorname{argmax}} \ R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) V(s')$$

• Return π^*

$Q^*(s,a)$ w/ deterministic rewards and transitions

• $Q^*(s, a) =$ total discounted reward of taking action a in state s, assuming all future actions are optimal

$$= R(s,a) + \gamma V^*(\delta(s,a))$$

$$V^*(\delta(s,a)) = \max_{a' \in \mathcal{A}} Q^*(\delta(s,a),a')$$

$$Q^*(s,a) = R(s,a) + \gamma \max_{a' \in \mathcal{A}} Q^*(\delta(s,a),a')$$

$$\pi^*(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q^*(s,a)$$

• Insight: if we know Q^* , we can compute an optimal policy π^* !

$Q^*(s,a)$ w/ deterministic rewards

• $Q^*(s, a) = \mathbb{E}[\text{total discounted reward of taking action } a \text{ in state } s, \text{ assuming all future actions are optimal}]$

$$= R(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s,a) V^*(s')$$

$$V^*(s') = \max_{a' \in \mathcal{A}} Q^*(s',a')$$

$$Q^*(s,a) = R(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s,a) \left[\max_{a' \in \mathcal{A}} Q^*(s',a') \right]$$

$$\pi^*(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q^*(s,a)$$

• Insight: if we know Q^* , we can compute an optimal policy π^* !

Learning $Q^*(s, a)$ w/ deterministic rewards and transitions

Algorithm 1: Online learning (table form)

• Inputs: discount factor γ , an initial state s

- Initialize $Q(s, a) = 0 \ \forall \ s \in \mathcal{S}, a \in \mathcal{A} \ (Q \text{ is a } |\mathcal{S}| \times |\mathcal{A}| \text{ array})$
- While TRUE, do
 - Take a random action a

- Receive reward r = R(s, a)
- Update the state: $s \leftarrow s'$ where $s' = \delta(s, a)$
- Update Q(s, a):

$$Q(s,a) \leftarrow r + \gamma \max_{a'} Q(s',a')$$

Learning $Q^*(s, a)$ w/ deterministic rewards and transitions

Algorithm 2: ϵ -greedy online learning (table form)

• Inputs: discount factor γ , an initial state s, greediness parameter $\epsilon \in [0,1]$

- Initialize $Q(s, a) = 0 \ \forall \ s \in \mathcal{S}, a \in \mathcal{A} \ (Q \text{ is a } |\mathcal{S}| \times |\mathcal{A}| \text{ array})$
- While TRUE, do
 - With probability ϵ , take the greedy action

$$a = \underset{a' \in \mathcal{A}}{\operatorname{argmax}} \ Q(s, a')$$

Otherwise, with probability $1 - \epsilon$, take a random action a

- Receive reward r = R(s, a)
- Update the state: $s \leftarrow s'$ where $s' = \delta(s, a)$
- Update Q(s, a):

$$Q(s,a) \leftarrow r + \gamma \max_{a'} Q(s',a')$$

Learning $Q^*(s,a)$ w/ deterministic rewards

Algorithm 3: ϵ -greedy online learning (table form)

- Inputs: discount factor γ , an initial state s, greediness parameter $\epsilon \in [0, 1]$, learning rate $\alpha \in [0, 1]$ ("trust parameter")
- Initialize $Q(s, a) = 0 \ \forall \ s \in \mathcal{S}, a \in \mathcal{A} \ (Q \text{ is a } |\mathcal{S}| \times |\mathcal{A}| \text{ array})$
- While TRUE, do
 - With probability ϵ , take the greedy action

$$a = \underset{a' \in \mathcal{A}}{\operatorname{argmax}} \ Q(s, a')$$

Otherwise, with probability $1 - \epsilon$, take a random action α

- Receive reward r = R(s, a)
- Update the state: $s \leftarrow s'$ where $s' \sim p(s' \mid s, a)$
- Update Q(s, a):

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \left(r + \gamma \max_{a'} Q(s',a')\right)$$
Current Update w/
value deterministic transitions

Learning $Q^*(s,a)$ w/ deterministic rewards

Algorithm 3: ϵ -greedy online learning (table form)

- Inputs: discount factor γ , an initial state s, greediness parameter $\epsilon \in [0, 1]$, learning rate $\alpha \in [0, 1]$ ("trust parameter")
- Initialize $Q(s, a) = 0 \ \forall \ s \in \mathcal{S}, a \in \mathcal{A} \ (Q \text{ is a } |\mathcal{S}| \times |\mathcal{A}| \text{ array})$
- While TRUE, do
 - With probability ϵ , take the greedy action

$$a = \underset{a' \in \mathcal{A}}{\operatorname{argmax}} \ Q(s, a')$$

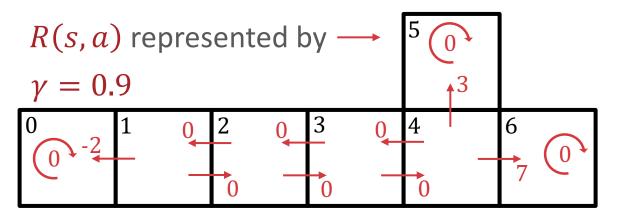
Otherwise, with probability $1 - \epsilon$, take a random action α

- Receive reward r = R(s, a)
- Update the state: $s \leftarrow s'$ where $s' \sim p(s' \mid s, a)$ Temporal
- Update Q(s, a):

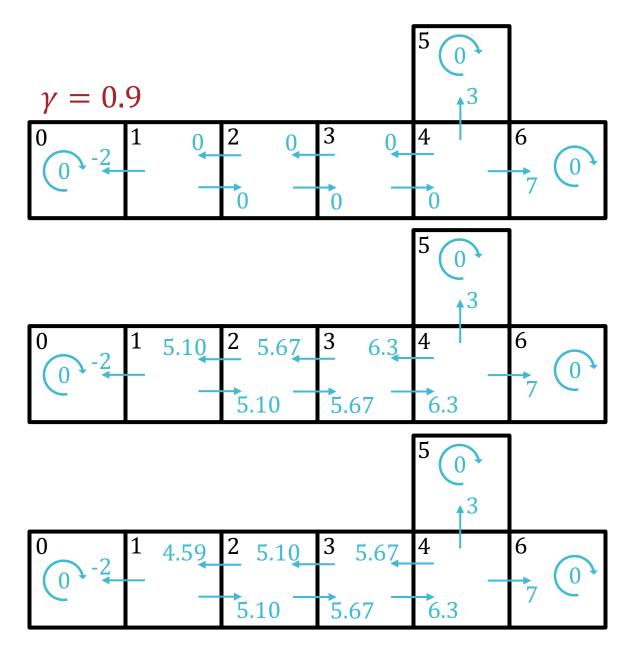
difference

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left(r + \gamma \max_{a'} Q(s',a') - Q(s,a)\right)$$
Current Temporal difference
value

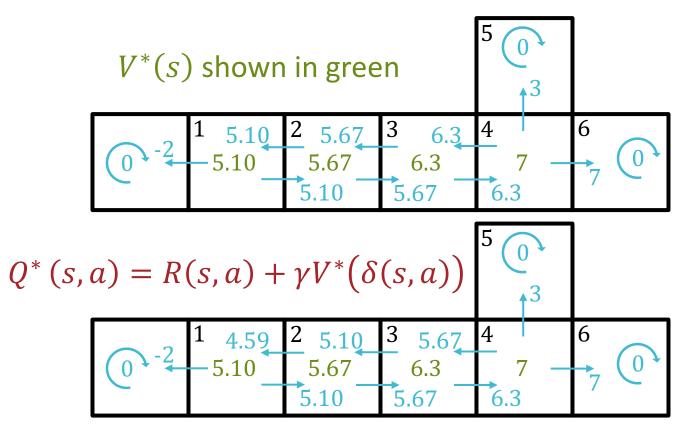
Henry Chai - 6/10/25 Value Larget

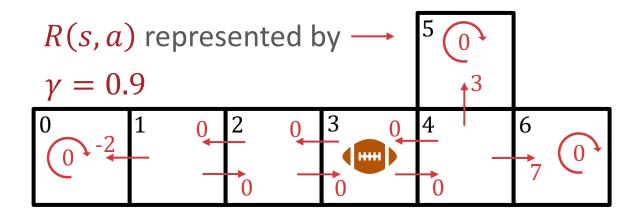


Which set of blue arrows (roughly) corresponds to $Q^*(s,a)$?

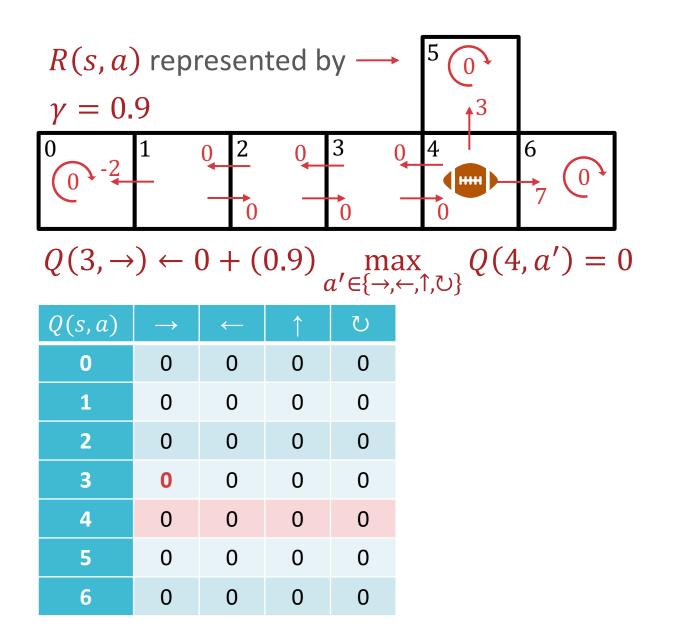


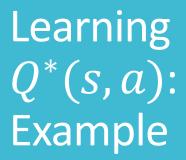
Which set of blue arrows (roughly) corresponds to $Q^*(s,a)$?

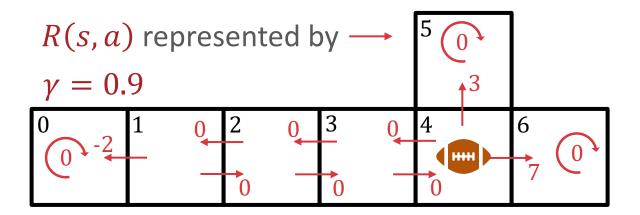




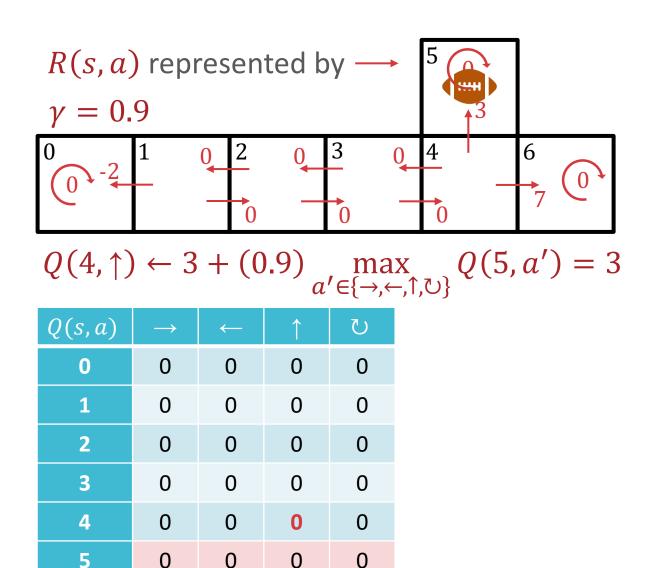
Q(s,a)	\rightarrow	←	↑	U
0	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0
5	0	0	0	0
6	0	0	0	0



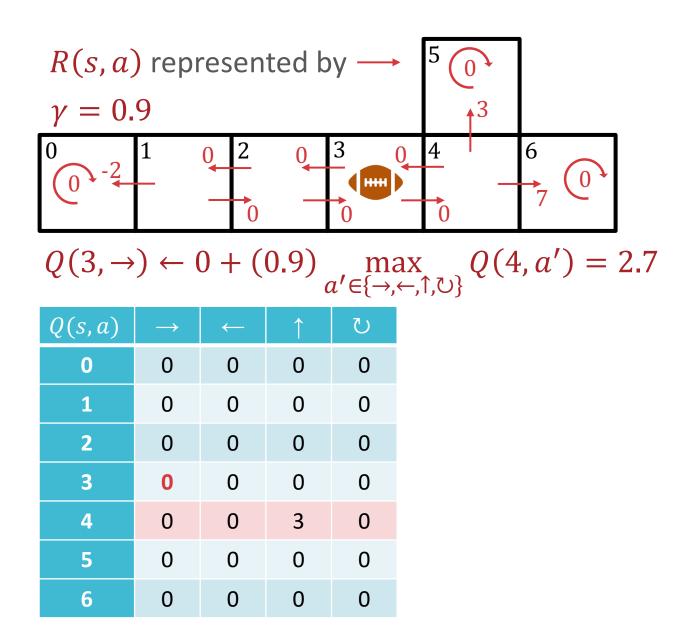


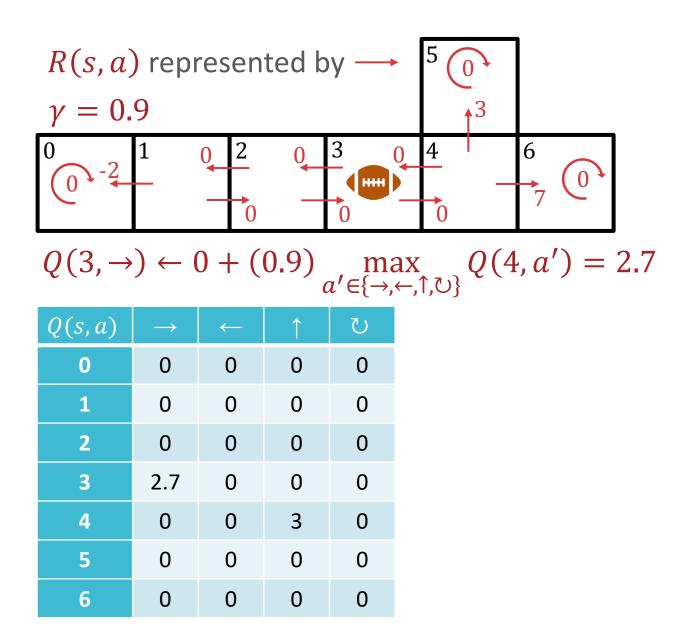


Q(s,a)	\rightarrow	\leftarrow	↑	ひ
0	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0
5	0	0	0	0
6	0	0	0	0



Henry Chai - 6/10/25





Learning $Q^*(s, a)$: Convergence

- For Algorithms 1 & 2 (deterministic transitions),
 Q converges to Q* if
 - 1. Every valid state-action pair is visited infinitely often
 - Q-learning is exploration-insensitive: any visitation strategy that satisfies this property will work!
 - 2. $0 \le \gamma < 1$
 - 3. $\exists \beta \text{ s.t. } |R(s,a)| < \beta \forall s \in S, a \in A$
 - 4. Initial *Q* values are finite

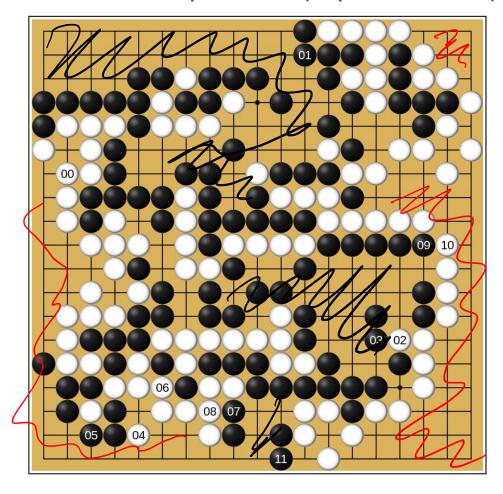
Learning $Q^*(s, a)$: Convergence

- For Algorithm 3 (temporal difference learning), Q converges to Q^* if
 - 1. Every valid state-action pair is visited infinitely often
 - Q-learning is exploration-insensitive: any visitation strategy that satisfies this property will work!
 - 2. $0 \le \gamma < 1$
 - 3. $\exists \beta \text{ s.t. } |R(s,a)| < \beta \forall s \in S, a \in A$
 - 4. Initial *Q* values are finite
 - 5. Learning rate α_t follows some "schedule" s.t. $\sum_{t=0}^{\infty} \alpha_t = \infty \text{ and } \sum_{t=0}^{\infty} \alpha_t^2 < \infty \text{ e.g., } \alpha_t = \frac{1}{t+1}$

Two big Q's

- 1. What can we do if the reward and/or transition functions/distributions are unknown?
 - Use online learning to gather data and learn $Q^*(s, a)$
- 2. How can we handle infinite (or just very large) state/action spaces?

AlphaGo (Black) vs. Lee Sedol (White) Game 2 final position (AlphaGo wins)



Playing Go

- 19-by-19 board
- Players alternate placing black and white stones
- The goal is claim more territory than the opponent

Source: https://en.wikipedia.org/wiki/AlphaGo versus Lee Sedol

Source: https://en.wikipedia.org/wiki/Go and mathematics

Which of the following is the closest approximation to the number of legal board states in a game of Go?

The number of stars in the universe $\sim 10^{24}$

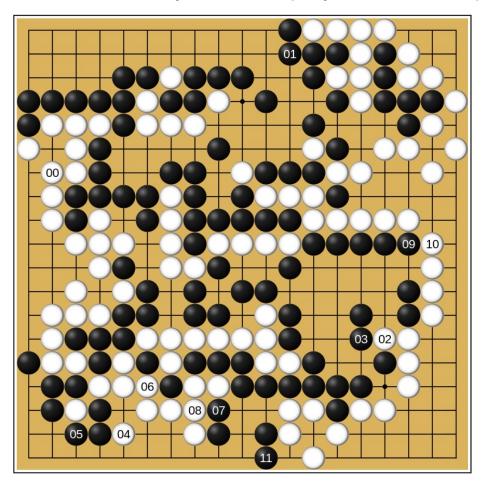
The number of atoms in the universe $\sim 10^{80}$

 ${\rm A\,googol}=10^{100}$

The number of possible $\it games$ of chess $\sim 10^{120}$

A googolplex $=10^{
m googol}$

AlphaGo (Black) vs. Lee Sedol (White) Game 2 final position (AlphaGo wins)



Playing Go

- 19-by-19 board
- Players alternate placing black and white stones
- The goal is claim more territory than the opponent
- There are ~10¹⁷⁰ legal Go board states!

Source: https://en.wikipedia.org/wiki/AlphaGo versus Lee Sedol

Source: https://en.wikipedia.org/wiki/Go and mathematics

Two big Q's

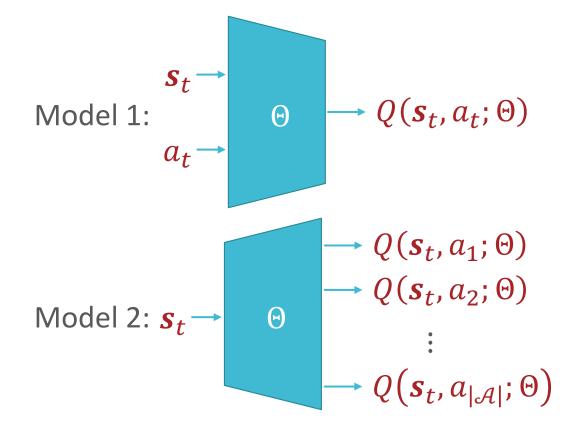
- 1. What can we do if the reward and/or transition functions/distributions are unknown?
 - Use online learning to gather data and learn $Q^*(s, a)$
- 2. How can we handle infinite (or just very large) state/action spaces?
 - Throw a neural network at it!

Deep Q-learning

- Use a "parametric function", $Q(s,a;\Theta)$, to approximate $Q^*(s,a)$
 - Learn the parameters using SGD
 - Training data (s_t, a_t, r_t, s_{t+1}) gathered online by the agent/learning algorithm

Deep Q-learning: Model

- Represent states using some feature vector $\mathbf{s}_t \in \mathbb{R}^M$ e.g. for Go, $\mathbf{s}_t = [1, 0, -1, ..., 1]^T$
- Define a neural network architecture



Deep Q-learning: Loss Function

- "True" loss $\ell(\Theta) = \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} (Q^*(s, a) Q(s, a; \Theta))^2$
 - 1. S too big to compute this sum
- 1. Use stochastic gradient descent: just consider one state-action pair in each iteration
- 2. Use temporal difference learning:
 - Given current parameters $\Theta^{(t)}$ the temporal difference target is

$$Q^*(s,a) \approx r + \gamma \max_{a'} Q(s',a';\Theta^{(t)}) \coloneqq y(\Theta^{(t)})$$

• Set the parameters in the next iteration $\Theta^{(t+1)}$ such that $Q(s,a;\Theta^{(t+1)})\approx y(\Theta^{(t)})$

$$\ell(\Theta^{(t)}, \Theta) = \left(y(\Theta^{(t)}) - Q(s, a; \Theta)\right)^{2}$$

Deep Q-learning

Algorithm 4: Online learning (parametric form)

- Inputs: discount factor γ , an initial state s_0 , learning rate α
- Initialize parameters $\Theta^{(0)}$
- For t = 0, 1, 2, ...

- For t=0,1,2,...• Gather training sample (s_t,a_t,r_t,s_{t+1}) Update $\Theta^{(t)}$ by taking a step opposite the gradient

$$\Theta^{(t+1)} \leftarrow \Theta^{(t)} - \alpha \nabla_{\Theta} \ell(\Theta^{(t)}, \Theta)$$

where

$$\nabla_{\Theta} \ell(\Theta^{(t)}, \Theta) = 2 \left(y(\Theta^{(t)}) - Q(s, a; \Theta) \right) \nabla_{\Theta} Q(s, a; \Theta)$$

50

Deep Q-learning: Experience Replay

- SGD assumes i.i.d. training samples but in RL, samples are highly correlated
- Idea: keep a "replay memory" $\mathcal{D} = \{e_1, e_2, \dots, e_N\}$ of the N most recent experiences $e_t = (s_t, a_t, r_t, s_{t+1})$ (Lin, 1992)
 - Also keeps the agent from "forgetting" about recent experiences
- Alternate between:
 - 1. Sampling some e_i uniformly at random from \mathcal{D} and applying a Q-learning update (repeat T times)
 - 2. Adding a new experience to \mathcal{D}
- Can also sample experiences from \mathcal{D} according to some distribution that prioritizes experiences with high error (Schaul et al., 2016)

Key Takeaways

- We can use (deep) Q-learning when the reward/transition functions are unknown and/or when the state/action spaces are too large to be modelled directly
 - Also guaranteed to converge under certain assumptions
 - Experience replay can help address non-i.i.d. samples