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� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’	|	𝑠, 𝑎), 𝛾
� Initialize 𝑉 ! 𝑠 = 0	∀	𝑠 ∈ 𝒮 (or randomly) and set 𝑡 = 0
� While not converged, do:

� For 𝑠 ∈ 𝒮 
� For	𝑎 ∈ 𝒜

	 𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 6
"!∈	𝒮

𝑝 𝑠&	|	𝑠, 𝑎 𝑉 𝑠&

� 𝑉 𝑠 ← max
'	∈	𝒜

	𝑄 𝑠, 𝑎

� For 𝑠 ∈ 𝒮 

	 𝜋∗ 𝑠 ← argmax
'	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 6
"!∈	𝒮

𝑝 𝑠&	|	𝑠, 𝑎 𝑉 𝑠&

� Return 𝜋∗

Recall: Value 
Iteration

2Henry Chai - 6/10/25



𝑄∗(𝑠, 𝑎) w/ 
deterministic 
rewards and 
transitions
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� 𝑄∗ 𝑠, 𝑎 = 𝔼[total discounted reward of taking action 𝑎 in 
              state 𝑠, assuming all future actions are optimal]

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉∗ 𝛿 𝑠, 𝑎 	

� 𝑉∗ 𝛿 𝑠, 𝑎 = max
'!	∈	𝒜

	𝑄∗ 𝛿 𝑠, 𝑎 , 𝑎&

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 	 max
'!	∈	𝒜

	𝑄∗ 𝛿 𝑠, 𝑎 , 𝑎& 	

𝜋∗ 𝑠 = argmax
'	∈	𝒜

	𝑄∗ 𝑠, 𝑎 	

� Insight: if we know 𝑄∗, we can compute an optimal policy 𝜋∗!



𝑄∗(𝑠, 𝑎) w/ 
deterministic 
rewards

� 𝑄∗ 𝑠, 𝑎 = 𝔼[total discounted reward of taking action 𝑎 in 
              state 𝑠, assuming all future actions are optimal]

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 6
"!∈	𝒮

𝑝 𝑠&	|	𝑠, 𝑎 𝑉∗ 𝑠&

𝑉∗ 𝑠& = max
'!	∈	𝒜

	𝑄∗ 𝑠&, 𝑎&

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 6
"!∈	𝒮

𝑝 𝑠&	|	𝑠, 𝑎 	 max
'!	∈	𝒜

	𝑄∗ 𝑠&, 𝑎&

𝜋∗ 𝑠 = argmax
'	∈	𝒜

	𝑄∗ 𝑠, 𝑎 	

� Insight: if we know 𝑄∗, we can compute an optimal policy 𝜋∗!
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Learning
𝑄∗(𝑠, 𝑎) w/
deterministic 
rewards and 
transitions

Algorithm 1: 
Online learning 
(table form) 

5

� Inputs: discount factor 𝛾, an initial state 𝑠

� Initialize 𝑄 𝑠, 𝑎 = 0	∀	𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜  array) 

� While TRUE, do
� Take a random action 𝑎

� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠& where 𝑠& = 𝛿 𝑠, 𝑎 	
� Update 𝑄 𝑠, 𝑎 : 

 𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
'!

𝑄 𝑠&, 𝑎&
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Learning
𝑄∗(𝑠, 𝑎) w/
deterministic 
rewards and 
transitions

Algorithm 2: 
𝜖-greedy online 
learning (table 
form) 

6

� Inputs: discount factor 𝛾, an initial state 𝑠,
    greediness parameter 𝜖 ∈ 0, 1
         

� Initialize 𝑄 𝑠, 𝑎 = 0	∀	𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜  array) 

� While TRUE, do
� With probability 𝜖, take the greedy action 

𝑎 = argmax
'!	∈	𝒜

	𝑄 𝑠, 𝑎&

Otherwise, with probability 1 − 𝜖, take a random action 𝑎
� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠& where 𝑠& = 𝛿 𝑠, 𝑎 	
� Update 𝑄 𝑠, 𝑎 : 

 𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
'!

𝑄 𝑠&, 𝑎&
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� Inputs: discount factor 𝛾, an initial state 𝑠,
    greediness parameter 𝜖 ∈ 0, 1 ,
         learning rate 𝛼 ∈ 0, 1  (“trust parameter”)

� Initialize 𝑄 𝑠, 𝑎 = 0	∀	𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜  array) 

� While TRUE, do
� With probability 𝜖, take the greedy action 

𝑎 = argmax
'!	∈	𝒜

	𝑄 𝑠, 𝑎&

Otherwise, with probability 1 − 𝜖, take a random action 𝑎
� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠& where 𝑠& ∼ 𝑝 𝑠&	 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 : 

 𝑄 𝑠, 𝑎 ← 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
'!

𝑄 𝑠&, 𝑎&

Current 
value

Update w/ 
deterministic transitions

Learning
𝑄∗(𝑠, 𝑎) w/
deterministic 
rewards 

Algorithm 3: 
𝜖-greedy online 
learning (table 
form) 
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� Inputs: discount factor 𝛾, an initial state 𝑠,
    greediness parameter 𝜖 ∈ 0, 1 ,
         learning rate 𝛼 ∈ 0, 1  (“trust parameter”)

� Initialize 𝑄 𝑠, 𝑎 = 0	∀	𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜  array) 

� While TRUE, do
� With probability 𝜖, take the greedy action 

𝑎 = argmax
'!	∈	𝒜

	𝑄 𝑠, 𝑎&

Otherwise, with probability 1 − 𝜖, take a random action 𝑎
� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠& where 𝑠& ∼ 𝑝 𝑠&	 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 : 

 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
'!

𝑄 𝑠&, 𝑎& − 𝑄 𝑠, 𝑎

Learning
𝑄∗(𝑠, 𝑎) w/
deterministic 
rewards 

Algorithm 3: 
𝜖-greedy online 
learning (table 
form) 

Current 
value

Temporal difference 
target

Temporal 
difference
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0

5

61 2 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑅 𝑠, 𝑎  represented by 
𝛾 = 0.9

Learning
𝑄∗(𝑠, 𝑎): 
Example
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0

5

61 2 3 40

0

0

0

0

0 7

3

-2

0

0 0

Which set of 
blue arrows
(roughly) 
corresponds to 
𝑄∗(𝑠, 𝑎)?

5

2 3 4

5.10

5.67

5.67

6.3

6.3 7

3

-2

0

0 0

5

2 3 44.59

5.10 5.67

5.67

6.3 7

3

-2

0

0 0

0 61

0 61

5.10

5.10

𝛾 = 0.9
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Which set of 
blue arrows
(roughly)  
corresponds to 
𝑄∗(𝑠, 𝑎)?

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉∗ 𝛿 𝑠, 𝑎 	

5.10 5.67 6.3 7

5

2 3 4

5.10

5.67

5.67

6.3

6.3 7

3

-2

0

0 0

5.10 5.67 6.3 7

5

2 3 44.59

5.10 5.67

5.67

6.3 7

3

-2

0

0 0

61

61

5.10

5.10

𝑉∗ 𝑠  shown in green
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6

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0
0 1

Learning
𝑄∗(𝑠, 𝑎): 
Example

𝑅 𝑠, 𝑎  represented by 
𝛾 = 0.9
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6

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0
0 1

𝑄 3,→ ← 0 + 0.9 max
'!∈ →,←,↑,↻

𝑄 4, 𝑎& = 0Learning
𝑄∗(𝑠, 𝑎): 
Example

𝑅 𝑠, 𝑎  represented by 
𝛾 = 0.9
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6

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0
0 1

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

Learning
𝑄∗(𝑠, 𝑎): 
Example

𝑅 𝑠, 𝑎  represented by 
𝛾 = 0.9
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6

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0
0 1

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

𝑄 4, ↑ ← 3 + 0.9 max
'!∈ →,←,↑,↻

𝑄 5, 𝑎& = 3Learning
𝑄∗(𝑠, 𝑎): 
Example

𝑅 𝑠, 𝑎  represented by 
𝛾 = 0.9
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6

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 3 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0
0 1

𝑄 3,→ ← 0 + 0.9 max
'!∈ →,←,↑,↻

𝑄 4, 𝑎& = 2.7Learning
𝑄∗(𝑠, 𝑎): 
Example

𝑅 𝑠, 𝑎  represented by 
𝛾 = 0.9
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6

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0
0 1

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 2.7 0 0 0

4 0 0 3 0

5 0 0 0 0

6 0 0 0 0

𝑄 3,→ ← 0 + 0.9 max
'!∈ →,←,↑,↻

𝑄 4, 𝑎& = 2.7Learning
𝑄∗(𝑠, 𝑎): 
Example

𝑅 𝑠, 𝑎  represented by 
𝛾 = 0.9

Henry Chai - 6/10/25



Learning
𝑄∗(𝑠, 𝑎): 
Convergence

18

� For Algorithms 1 & 2 (deterministic transitions),             
𝑄 converges to 𝑄∗ if

1.  Every valid state-action pair is visited infinitely often

� Q-learning is exploration-insensitive: any visitation 

strategy that satisfies this property will work!

2.  0 ≤ 𝛾 < 1 

3.  ∃	𝛽 s.t. 𝑅 𝑠, 𝑎 < 𝛽 ∀	𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜

4.  Initial 𝑄 values are finite
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Learning
𝑄∗(𝑠, 𝑎): 
Convergence

19

� For Algorithm 3 (temporal difference learning),              

𝑄 converges to 𝑄∗ if

1.  Every valid state-action pair is visited infinitely often 

� Q-learning is exploration-insensitive: any visitation 

strategy that satisfies this property will work!

2.  0 ≤ 𝛾 < 1 

3.  ∃	𝛽 s.t. 𝑅 𝑠, 𝑎 < 𝛽 ∀	𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜

4.  Initial 𝑄 values are finite

5.  Learning rate 𝛼> follows some “schedule” s.t.    
∑>?!@ 𝛼> = ∞ and ∑>?!@ 𝛼>A < ∞ e.g., 𝛼> = ⁄B >CB 
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Two big Q’s
1. What can we do if the reward and/or transition 

functions/distributions are unknown? 

• Use online learning to gather data and learn 𝑄∗ 𝑠, 𝑎

2. How can we handle infinite (or just very large) 

state/action spaces?
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Playing Go

21

AlphaGo (Black) vs. Lee Sedol (White) 
Game 2 final position (AlphaGo wins) 

Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
Henry Chai - 6/10/25

� 19-by-19 board 
� Players alternate 

placing black and 
white stones

� The goal is claim 
more territory 
than the opponent

� There are ~10170  

legal Go board 
states!

Source: https://en.wikipedia.org/wiki/Go_and_mathematics



Two big Q’s
1. What can we do if the reward and/or transition 

functions/distributions are unknown? 

• Use online learning to gather data and learn 𝑄∗ 𝑠, 𝑎

2. How can we handle infinite (or just very large) 

state/action spaces?

• Throw a neural network at it! 
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Deep 
Q-learning

� Use a “parametric function”, 𝑄 𝑠, 𝑎; Θ , to approximate 
𝑄∗ 𝑠, 𝑎

� Learn the parameters using SGD

� Training data 𝒔>, 𝑎>, 𝑟>, 𝒔>CB  gathered online by 

the agent/learning algorithm 
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� Represent states using some feature vector 𝒔> ∈ ℝD 
e.g. for Go, 𝒔> = 1, 0, −1,… , 1 E

� Define a neural network architecture 

Deep 
Q-learning:
Model

24

𝒔>

𝑎>
Θ 𝑄 𝒔>, 𝑎>; Θ

𝒔> Θ

𝑄 𝒔>, 𝑎B; Θ
𝑄 𝒔>, 𝑎A; Θ

𝑄 𝒔>, 𝑎 𝒜 ; Θ
⋮

Model 1:

Model 2:
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� “True” loss

ℓ Θ = 6
"	∈	𝒮

6
'	∈	𝒜

𝑄∗ 𝑠, 𝑎 − 𝑄 𝑠, 𝑎; Θ
A

1. Use stochastic gradient descent: just consider one 
state-action pair in each iteration

2. Use temporal difference learning: 
� Given current parameters Θ F  the temporal 

difference target is 
𝑄∗ 𝑠, 𝑎 ≈ 𝑟 + 𝛾max

'!	
𝑄 𝑠&, 𝑎&; Θ > ≔ 𝑦 Θ >

� Set the parameters in the next iteration Θ FCB  such 
that 𝑄 𝑠, 𝑎; Θ FCB ≈ 𝑦 Θ >

ℓ Θ F , Θ = 𝑦 Θ > − 𝑄 𝑠, 𝑎; Θ
A

1. 𝒮 too big to compute this sum

Deep 
Q-learning:
Loss Function

25

2. Don’t know 𝑄∗ 

Henry Chai - 6/10/25



Deep 
Q-learning

Algorithm 4: 
Online learning 
(parametric 
form)

26

� Inputs: discount factor 𝛾, an initial state 𝑠!,

    learning rate 𝛼

� Initialize parameters Θ !  

� For 𝑡 = 0, 1, 2,	 …
� Gather training sample 𝒔>, 𝒂>, 𝑟>, 𝒔>CB
� Update Θ >  by taking a step opposite the gradient

Θ >CB ← Θ > − 𝛼∇Gℓ Θ > , Θ

where

∇Gℓ Θ > , Θ = 2 𝑦 Θ > − 𝑄 𝑠, 𝑎; Θ ∇G𝑄 𝑠, 𝑎; Θ
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Deep 
Q-learning:
Experience
Replay

27

� SGD assumes i.i.d. training samples but in RL, samples are 
highly correlated

� Idea: keep a “replay memory” 𝒟 = {𝑒1, 𝑒2, …	, 𝑒𝑁} of the 𝑁 
most recent experiences 𝑒𝑡 = 𝒔𝑡, 𝒂>, 𝑟>, 𝒔>CB  (Lin, 1992)

� Also keeps the agent from “forgetting” about recent 
experiences

� Alternate between:
1. Sampling some 𝑒𝑖 uniformly at random from 𝒟 and 

applying a Q-learning update (repeat 𝛵 times)

2. Adding a new experience to 𝒟

� Can also sample experiences from 𝒟 according to some 
distribution that prioritizes experiences with high error 
(Schaul et al., 2016)
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Key Takeaways

� We can use (deep) Q-learning when the reward/transition 
functions are unknown and/or when the state/action 
spaces are too large to be modelled directly

� Also guaranteed to converge under certain assumptions

� Experience replay can help address non-i.i.d. samples
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