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Learning 
Paradigms

� Supervised learning - 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

� Regression - 𝑦 ! ∈ ℝ

� Classification - 𝑦 ! ∈ 1,… , 𝐶

�  Unsupervised learning - 𝒟 = 𝒙 !
!"#
$

� Clustering 
� Dimensionality reduction

� Reinforcement learning - 𝒟 = 𝒔 ! , 𝒂 ! , 𝑟 !
!"#
$
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Reinforcement 
Learning: 
Examples
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Source: https://techobserver.net/2019/06/argo-ai-self-driving-car-research-center/

Source: https://www.cnet.com/news/boston-dynamics-robot-dog-spot-finally-goes-on-sale-for-74500/

Source: https://www.wired.com/2012/02/high-speed-trading/

Source: https://twitter.com/alphagomovie
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AlphaGo
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Reinforcement 
Learning: 
Problem 
Formulation

� State space, 𝒮

� Action space, 𝒜

� Reward function 

� Stochastic, 𝑝 𝑟	 𝑠, 𝑎)

� Deterministic, 𝑅: 	𝒮	×	𝒜 → ℝ

� Transition function

� Stochastic, 𝑝 𝑠9	 𝑠, 𝑎)

� Deterministic, 𝛿: 	𝒮	×	𝒜 → 𝒮
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Reinforcement 
Learning: 
Problem 
Formulation

� Policy, 𝜋 ∶ 𝒮 → 𝒜

� Specifies an action to take in every state

� Value function, 𝑉:: 	𝒮 → ℝ

� Measures the expected total payoff of starting in 

some state 𝑠 and executing policy 𝜋, i.e., in every 
state, taking the action that 𝜋 returns 
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Toy Example

� 𝒮 =	all empty squares in the grid

�𝒜 = {up, down, left, right}

� Deterministic transitions

� Rewards of +1 and -1 for entering 
the labelled squares

� Terminate after receiving either 
reward
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Is this policy optimal?
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Toy Example

Figure courtesy of Eric Xing
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Toy Example

Figure courtesy of Eric Xing

Optimal policy given a 
reward of -2 per step
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Toy Example

Figure courtesy of Eric Xing

Optimal policy given a 
reward of -0.1 per step



Markov 
Decision 
Process (MDP)

� Assume the following model for our data:

1. Start in some initial state 𝑠2

2. For time step 𝑡:
1. Agent observes state 𝑠7
2. Agent takes action 𝑎7 = 𝜋 𝑠7
3. Agent receives reward 𝑟7 ∼ 𝑝 𝑟	 𝑠7, 𝑎7)

4. Agent transitions to state 𝑠78# ∼ 𝑝 𝑠9	 𝑠7, 𝑎7)	

3. Total reward is

� MDPs make the Markov assumption: the reward and 
next state only depend on the current state and action.
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;
7"2

;

𝛾7𝑟7	
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Reinforcement 
Learning: 
3 Key 
Challenges

1. The algorithm has to gather its own training data

2. The outcome of taking some action is often stochastic 
or unknown until after the fact

3. Decisions can have a delayed effect on future 

outcomes (exploration-exploitation tradeoff)
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MDP Example: 
Multi-armed bandit

� Single state: 𝒮 = 1

� Three actions: 𝒜 = 1, 2, 3

� Deterministic transitions

� Rewards are stochastic
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MDP Example: 
Multi-armed 
bandit

Bandit 1 Bandit 2 Bandit 3

1 2 1

1 0 0

1 0 3

1 0 2

0 0 4

1 2 2

0 0 1

1 2 4

1 0 0

1 2 3

1 0 3

0 0 1
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Reinforcement 
Learning: 
Objective 
Function

� Find a policy 𝜋∗ = argmax
:

	 𝑉: 𝑠 	∀	𝑠 ∈ 𝒮

� 𝑉: 𝑠 = 𝔼[discounted total reward of starting in state            
           𝑠 and executing policy 𝜋 forever]

� 𝑉: 𝑠 = 𝔼= >"	 >,	A)[𝑅 𝑠2 = 𝑠, 𝜋 𝑠2 	

�  −	+ 	𝛾𝑅 𝑠#, 𝜋 𝑠# + 𝛾/𝑅 𝑠/, 𝜋 𝑠/ +⋯]

𝑉: 𝑠 =;
7"2

;

𝛾7𝔼= >"	 >,	A) 𝑅 𝑠7, 𝜋 𝑠7 	

� where 0 < 𝛾 < 1 is some discount factor for future rewards

61Henry Chai - 6/9/25



Value Function: 
Example
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7

3

−2

𝑅 𝑠, 𝑎 =

−2	if	entering	state	0 safety 	
3	if	entering	state	5 iield	goal 	
7	if	entering	state	6	(touch	down)
	0	otherwise	

0

5
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𝛾 = 0.9
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Value Function: 
Example
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Value Function: 
Example
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Okay, now how 
do we go 
about learning 
this optimal 
policy?



Key Takeaways

� In reinforcement learning, we assume our data comes 

from a Markov decision process

� The goal is to compute an optimal policy or function that 
maps states to actions

� Value function can be defined in terms of values of all 
other states; this is called the Bellman equations
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