10-301/601: Introduction to Machine Learning Lecture 26: Markov Decision Processes

Learning Paradigms

- Supervised learning $\mathcal{D} = \left\{ \left(\mathbf{x}^{(n)}, \mathbf{y}^{(n)} \right) \right\}_{n=1}^{N}$
 - Regression $y^{(n)} \in \mathbb{R}$
 - Classification $y^{(n)} \in \{1, ..., C\}$
- Unsupervised learning $\mathcal{D} = \{x^{(n)}\}_{n=1}^{N}$
 - Clustering
 - Dimensionality reduction
- Reinforcement learning $\mathcal{D} = \left\{ \mathbf{s}^{(n)}, \mathbf{a}^{(n)}, r^{(n)} \right\}_{n=1}^N$

Source: https://techobserver.net/2019/06/argo-ai-self-driving-car-research-center/

Source: https://www.wired.com/2012/02/high-speed-trading/

Reinforcement Learning: Examples

Source: https://www.cnet.com/news/boston-dynamics-robot-dog-spot-finally-goes-on-sale-for-74500/

AlphaGo

Outline

- Problem formulation
 - Time discounted cumulative reward
 - Markov decision processes (MDPs)
- Algorithms:
 - Value & policy iteration (dynamic programming) (tomorrow)
 - (Deep) Q-learning (temporal difference learning)
 (Wednesday)

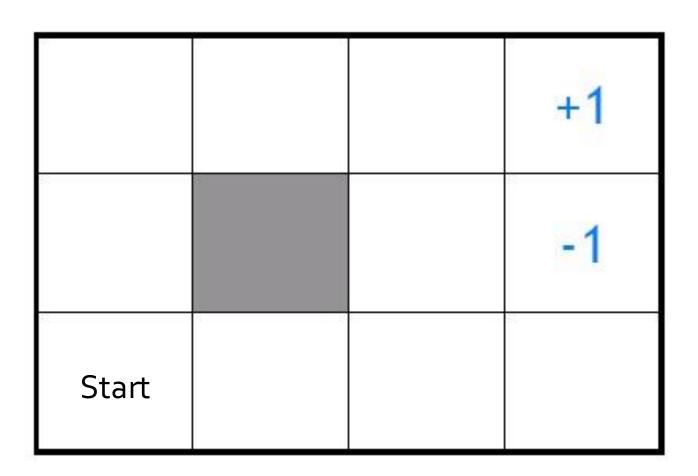
Reinforcement Learning: Problem Formulation

- State space, S
- Action space, $\mathcal A$
- Reward function
 - Stochastic, $p(r \mid s, a)$
 - Deterministic, $R: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$
- Transition function
 - Stochastic, $p(s' \mid s, a)$
 - Deterministic, δ : $\mathcal{S} \times \mathcal{A} \rightarrow \mathcal{S}$

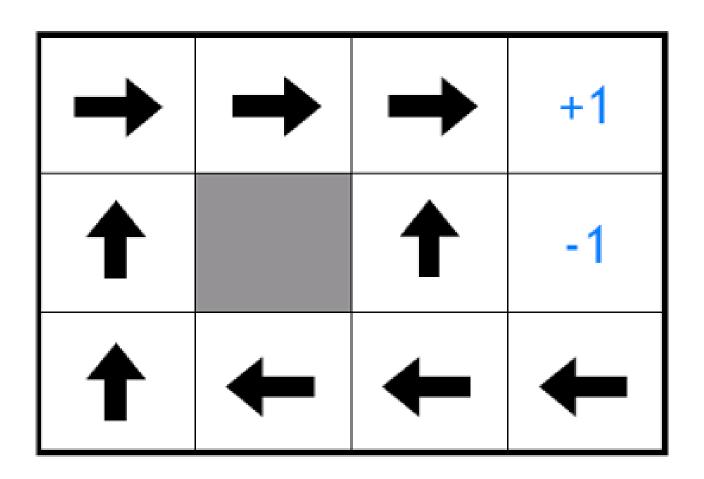
Reinforcement Learning: Problem Formulation

- Policy, $\pi:\mathcal{S}\to\mathcal{A}$
 - Specifies an action to take in every state
- Value function, $V^{\pi} \colon \mathcal{S} \to \mathbb{R}$
 - Measures the expected total payoff of starting in some state s and executing policy π , i.e., in every state, taking the action that π returns

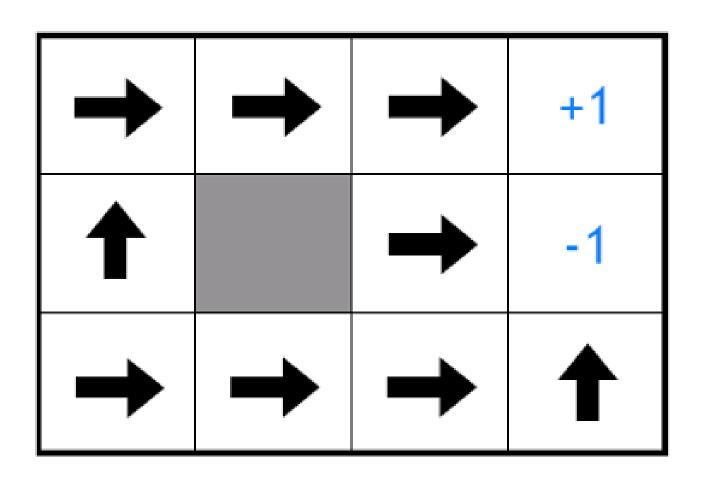
- S = all empty squares in the grid
- $\mathcal{A} = \{\text{up, down, left, right}\}$
- Deterministic transitions
- Rewards of +1 and -1 for entering the labelled squares
- Terminate after receiving either reward



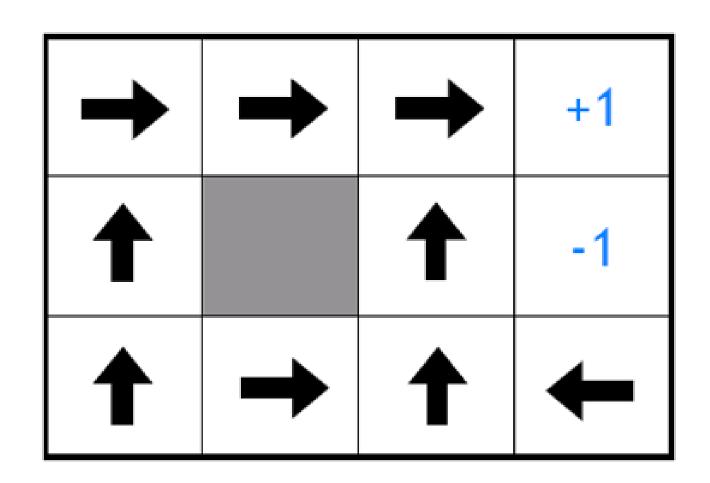
Is this policy optimal?



Optimal policy given a reward of -2 per step



Optimal policy given a reward of -0.1 per step



Markov Decision Process (MDP)

- Assume the following model for our data:
- 1. Start in some initial state s_0
- 2. For time step *t*:
 - 1. Agent observes state s_t
 - 2. Agent takes action $a_t = \pi(s_t)$
 - 3. Agent receives reward $r_t \sim p(r \mid s_t, a_t)$
 - 4. Agent transitions to state $s_{t+1} \sim p(s' \mid s_t, a_t)$
- 3. Total reward is $\sum_{t=0}^{\infty} \gamma^t r_t$
- MDPs make the *Markov assumption*: the reward and next state only depend on the current state and action.

Reinforcement Learning: 3 Key Challenges

- 1. The algorithm has to gather its own training data
- 2. The outcome of taking some action is often stochastic or unknown until after the fact
- 3. Decisions can have a delayed effect on future outcomes (exploration-exploitation tradeoff)

MDP Example: Multi-armed bandit

- Single state: $|\mathcal{S}| = 1$
- Three actions: $A = \{1, 2, 3\}$
- Deterministic transitions
- Rewards are stochastic

MDP Example: Multi-armed bandit

Bandit 1	Bandit 2	Bandit 3
1	???	???
1	???	???
1	???	???
???	???	???
???	???	???
???	???	???
???	???	???
???	???	???
???	???	???
???	???	???
???	???	???
???	???	???

Reinforcement Learning: Objective Function

- Find a policy $\pi^* = \underset{\pi}{\operatorname{argmax}} V^{\pi}(s) \ \forall \ s \in \mathcal{S}$
- $V^{\pi}(s) = \mathbb{E}[discounted \text{ total reward of starting in state}]$ $s \text{ and executing policy } \pi \text{ forever}]$

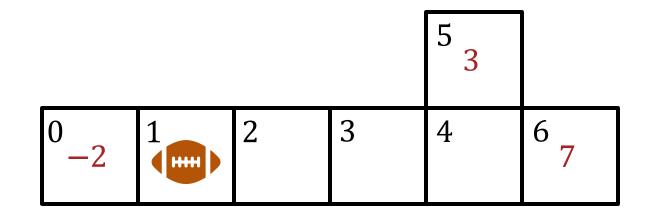
$$= \mathbb{E}_{p(s'|s,a)} [R(s_0 = s, \pi(s_0))$$

$$+ \gamma R(s_1, \pi(s_1)) + \gamma^2 R(s_2, \pi(s_2)) + \cdots]$$

$$= \sum_{t=0}^{\infty} \gamma^t \mathbb{E}_{p(s'\mid s, a)} [R(s_t, \pi(s_t))]$$

where $0 < \gamma < 1$ is some discount factor for future rewards

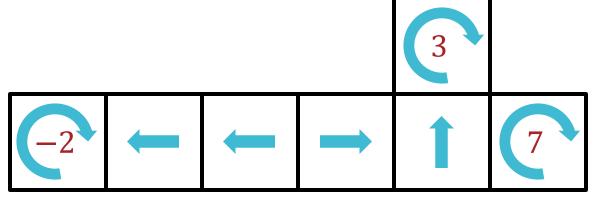
Value Function: Example

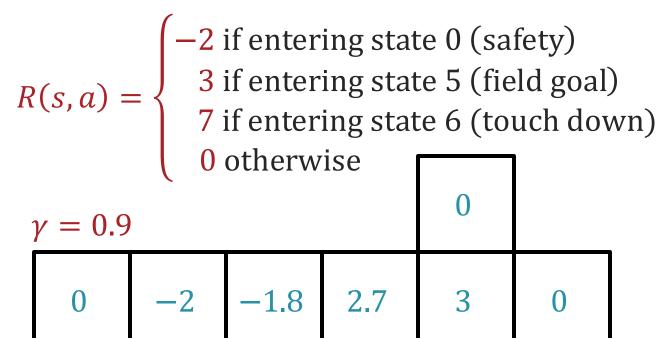


$$R(s,a) = \begin{cases} -2 & \text{if entering state 0 (safety)} \\ 3 & \text{if entering state 5 (field goal)} \\ 7 & \text{if entering state 6 (touch down)} \\ 0 & \text{otherwise} \end{cases}$$

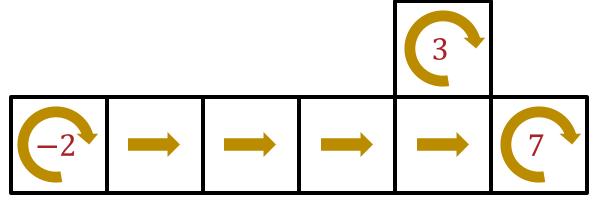
$$\gamma = 0.9$$

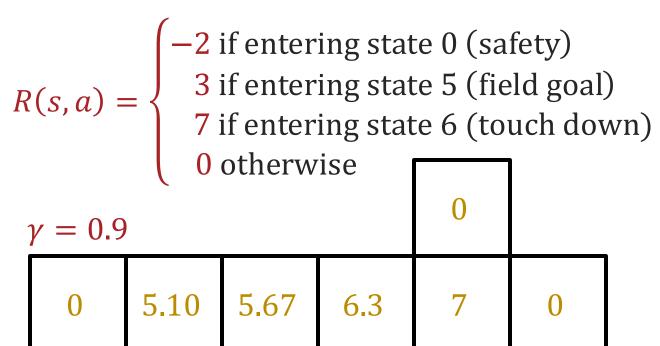
Value Function: Example





Value Function: Example





Key Takeaways

- In reinforcement learning, we assume our data comes from a Markov decision process
- The goal is to compute an optimal policy or function that maps states to actions
- Value function can be defined in terms of values of all other states; this is called the Bellman equations