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Front Matter

� Announcements:

� HW6 released on 6/6, due 6/10 (tomorrow) at 11:59 PM

� HW7 to be released on 6/10 (tomorrow), due 6/13 at 
11:59 PM

� Thursday’s lecture will be a guest lecture by Alex Xie on 
Reinforcement Learning for LLMs

� This content will not be covered on the quiz but…

� Everyone who attends (and stays for the duration of 

the lecture) will have their lowest quiz grade down-
weighted by 50%
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Recall: 
PCA Algorithm

Henry Chai - 6/9/25 3

� Input: 𝒟 = 𝒙 ! 	 !"#
$

, 𝜌

1. Center the data 

2. Use SVD to compute the eigenvalues and eigenvectors 
of 𝑋%𝑋

3. Collect the top 𝜌 eigenvectors (corresponding to the 𝜌 

largest eigenvalues), 𝑉& ∈ ℝ'×& 

4. Project the data into the space defined by 𝑉&, 𝑍 = 𝑋𝑉&

� Output: 𝑍, the transformed (potentially lower-
dimensional) data



PCA Example: 
MNIST Digits

Henry Chai - 6/9/25 4Figure courtesy of Matt Gormley



Shortcomings 
of PCA

Henry Chai - 6/9/25 5



Insight: neural 
networks implicitly 
learn low-dimensional 
representations of 

inputs in hidden layersAutoencoders
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� Learn the weights by minimizing the reconstruction loss: 

Autoencoders
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Autoencoders
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Deep
Autoencoders

https://en.wikipedia.org/wiki/Autoencoder


PCA (A) vs. Autoencoders (B)
(Hinton and Salakhutdinov, 2006)
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https://www.science.org/doi/10.1126/science.1127647


Recall: 
Transformers

Henry Chai - 6/9/25 11Source: https://arxiv.org/pdf/1706.03762.pdf 

� In addition to multi-head 
attention, transformer 
architectures use

1. Positional encodings

2. Layer normalization

3. Residual connections

4. A fully-connected 
feed-forward network

https://arxiv.org/pdf/1706.03762.pdf


Okay, but how 
on earth do we 
go about 
training these 
things? 
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� In addition to multi-head 
attention, transformer 
architectures use

1. Positional encodings

2. Layer normalization

3. Residual connections

4. A fully-connected 
feed-forward network

https://arxiv.org/pdf/1706.03762.pdf


Recall: 
Mini-batch
Stochastic
Gradient 
Descent…
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� Input: 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

, 𝜂01
2 , 𝐵

1. Initialize all weights 𝑊 2
# , … ,𝑊 2

.  to 

small, random numbers and set 𝑡 = 0 𝐺3#
4 = 0 ∗𝑊 4 	∀	𝑙

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 5 , 𝑦 5
5"#
1

b. Compute the gradient of the loss w.r.t. the sampled batch,

𝐺 4 =
1
𝐵
;
5"#

1

∇6 ! ℓ 5 𝑊 7
# , … ,𝑊 7

. 	∀	𝑙

c. Update 𝑊 4 : 𝑊78#
4 ← 𝑊7

4 − 𝜂01
2 𝐺 4 	∀	𝑙

d. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝑊7
# , … ,𝑊7

.



Mini-batch
Stochastic 
Gradient 
Descent is a lie!
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� Input: 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

, 𝜂01
2 , 𝐵

1. Initialize all weights 𝑊 2
# , … ,𝑊 2

.  to 

small, random numbers and set 𝑡 = 0 𝐺3#
4 = 0 ∗𝑊 4 	∀	𝑙

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 5 , 𝑦 5
5"#
1

b. Compute the gradient of the loss w.r.t. the sampled batch,

𝐺 4 =
1
𝐵
;
5"#

1

∇6 ! ℓ 5 𝑊 7
# , … ,𝑊 7

. 	∀	𝑙

c. Update 𝑊 4 : 𝑊78#
4 ← 𝑊7

4 − 𝜂01
2 𝐺 4 	∀	𝑙

d. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝑊7
# , … ,𝑊7

.



Mini-batch
Stochastic 
Gradient 
Descent is a lie!
just the 
beginning!
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� Input: 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

, 𝜂01
2 , 𝐵

1. Initialize all weights 𝑊 2
# , … ,𝑊 2

.  to 

small, random numbers and set 𝑡 = 0 𝐺3#
4 = 0 ∗𝑊 4 	∀	𝑙

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 5 , 𝑦 5
5"#
1

b. Compute the gradient of the loss w.r.t. the sampled batch,

𝐺 4 =
1
𝐵
;
5"#

1

∇6 ! ℓ 5 𝑊 7
# , … ,𝑊 7

. 	∀	𝑙

c. Update 𝑊 4 : 𝑊78#
4 ← 𝑊7

4 − 𝜂01
2 𝐺 4 	∀	𝑙

d. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝑊7
# , … ,𝑊7

.



Traditional 
Supervised 
Learning
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� You have some niche task that you want to apply machine 

learning to e.g., predicting the author of children’s books

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset



Reality

� You have some niche task that you want to apply machine 

learning to e.g., predicting how Henry will get to work

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high
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• “gradient-based 
optimization starting 
from random initialization 
appears to often get 

stuck in poor solutions for 
such deep networks.” 

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf 

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Reality

� You have some niche task that you want to apply machine 
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• Idea: if shallow 
networks are easier to 
train, let’s just 
decompose our deep 

network into a series 
of shallow networks!

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf 

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Pre-training
(Bengio et al., 
2006)
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⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer� Train each layer of the 
network iteratively using 
the training dataset

� Start at the input layer 
and move towards the 
output layer

� Once a layer has been 
trained, fix its weights 

and use those to train 
subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Pre-training
(Bengio et al., 
2006)
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⋯

⋯

Input layer

1st hidden layer

Output layer

� Train each layer of the 

network iteratively using 
the training dataset

� Start at the input layer 

and move towards the 
output layer

� Once a layer has been 
trained, fix its weights 

and use those to train 
subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Pre-training
(Bengio et al., 
2006)
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⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

Output layer

� Train each layer of the 

network iteratively using 
the training dataset

� Start at the input layer 

and move towards the 
output layer

� Once a layer has been 
trained, fix its weights 

and use those to train 
subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Pre-training
(Bengio et al., 
2006)
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⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer� Train each layer of the 

network iteratively using 
the training dataset

� Start at the input layer 

and move towards the 
output layer

� Once a layer has been 
trained, fix its weights 

and use those to train 
subsequent layers
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Fine-tuning
(Bengio et al., 
2006)
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⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer� Train each layer of the 

network iteratively using 
the training dataset

� Use the pre-trained 

weights as an 
initialization and 

fine-tune the entire 
network e.g., via SGD 

with the training dataset

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Supervised
Pre-training
(Bengio et al., 
2006)
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� Use the pre-trained weights as 

an initialization and fine-tune 
the entire network e.g., via SGD 
with the training dataset

� Train each layer of the 

network iteratively using 
the training dataset

� Use the pre-trained 

weights as an 
initialization and 

fine-tune the entire 
network e.g., via SGD 
with the training dataset
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� Train each layer of the 

network iteratively using 
the training dataset to 
predict the labels

� Use  pre-trained weights 
as an initialization and 

fine-tune the entire 
network e.g., via SGD 
with the training dataset

Supervised
Pre-training
(Bengio et al., 
2006)
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� Use the pre-trained weights as 

an initialization and fine-tune 
the entire network e.g., via SGD 
with the training dataset



� Train each layer of the 

network iteratively using 
the training dataset to 
predict the labels

� Use  pre-trained weights 
as an initialization and 

fine-tune the entire 
network e.g., via SGD 
with the training dataset

Is this the only 
thing we could 
do with the 
training data? 
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� Use the pre-trained weights as 

an initialization and fine-tune 
the entire network e.g., via SGD 
with the training dataset



Unsupervised
Pre-training
(Bengio et al., 
2006)
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� Idea: a good representation is 

one preserves a lot of 
information and could be used 
to recreate the inputs

� Train each layer of the 

network iteratively using 
the training dataset to 
learn useful representations

� Use  pre-trained weights as 
an initialization and 
fine-tune the entire network 
e.g., via SGD with the 

training dataset
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� Train each layer of the 

network iteratively using 
the training dataset by 
minimizing the 

reconstruction error
𝒙 − ℎ 𝒙 /

� This objective defines an 
autoencoder

Unsupervised
Pre-training
(Bengio et al., 
2006)
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⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


� Train each layer of the 

network iteratively using 
the training dataset by 
minimizing the 
reconstruction error

𝒙 − ℎ 𝒙 /

� This architecture/ 
objective defines an 

autoencoder

Unsupervised
Pre-training
(Bengio et al., 
2006)
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⋯

⋯

Input layer

1st hidden layer

⋯
Reconstructed

input

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


� Train each layer of the 

network iteratively using 
the training dataset by 
minimizing the 
reconstruction error

𝒙 − ℎ 𝒙 /

� This architecture/ 
objective defines an 

autoencoder

Unsupervised
Pre-training
(Bengio et al., 
2006)
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⋯

⋯

Input layer

1st hidden layer

⋯

⋯

2nd hidden layer

Reconstructed
hidden layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


� Train each layer of the 

network iteratively using 
the training dataset by 
minimizing the 
reconstruction error

𝒙 − ℎ 𝒙 /

� This architecture/ 
objective defines an 

autoencoder

Unsupervised
Pre-training
(Bengio et al., 
2006)
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⋯

⋯

Input layer

1st hidden layer

⋯

⋯

2nd hidden layer

Reconstructed
hidden layer

⋯3rd hidden layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Fine-tuning
(Bengio et al., 
2006)
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⋯

⋯

Input layer

1st hidden layer

⋯2nd hidden layer

⋯3rd hidden layer

Output layer� Train each layer of the 

network iteratively using 
the training dataset by 
minimizing the 
reconstruction error

𝒙 − ℎ 𝒙 /

� When fine-tuning, we’re 
effectively swapping out 

the last layer and fitting 
all the weights to the 
training dataset

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


� Train each layer of the 

network iteratively using 
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� Idea: a good representation is 

one preserves a lot of 
information and could be used 
to recreate the inputs



Another 
dose of
Reality

� You have some niche task that you want to apply machine 

learning to e.g., predicting how Henry will get to work

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high
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• Problem: what if you 
don’t even have 
enough data to train a 
single layer/fine-tune 

the pre-trained 
network? 

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf 

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Another 
dose of
Reality

� You have some niche task that you want to apply machine 
learning to e.g., predicting how Henry will get to work

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

� Key observation: you can pre-train on basically any labelled 

or unlabelled dataset!

� Ideally, you want to use a large dataset related to your 

goal task
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Another 
dose of
Reality

� You have some niche task that you want to apply machine 

learning to e.g., predicting how Henry will get to work

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

� Key observation: you can pre-train on basically any labelled 

or unlabelled dataset!

� GPT-3 pre-training data:

Henry Chai - 6/9/25 36Source: https://arxiv.org/pdf/2005.14165.pdf 

https://arxiv.org/pdf/2005.14165.pdf


� You have some niche task that you want to apply machine 

learning to e.g., predicting how Henry will get to work

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

� Key observation: you can pre-train on basically any labelled 

or unlabelled dataset!

� Okay that’s great for pre-training and all, but what if you 
don’t even have enough data to fine-tune your model?

Another 
dose of
Reality
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In-context 
Learning

� Problem: given their size, effectively fine-tuning LLMs 

can require lots of labelled data points. 

� Idea: leverage the LLM’s context window by passing a 
few one zero(!) examples to the model as input, 

without performing any updates to the parameters

� Intuition: during training, the LLM is exposed to a 
massive number of examples/tasks and the input 
conditions the model to “locate” the relevant concepts 

Henry Chai - 6/9/25 38Source: https://arxiv.org/pdf/2111.02080.pdf 
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Few-shot, 
One-shot & 
Zero-shot 
(in-context) 
Learning

� Idea: leverage the LLM’s context window by passing a 

few one zero(!) examples to the model as input, 
without performing any updates to the parameters
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Few-shot, 
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(in-context) 
Learning
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without performing any updates to the parameters
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Few-shot, 
One-shot & 
Zero-shot 
(in-context) 
Learning

� Idea: leverage the LLM’s context window by passing a 

few one zero(!) examples to the model as input, 
without performing any updates to the parameters
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Few-shot, 
One-shot & 
Zero-shot 
(in-context) 
Learning

� Idea: leverage the LLM’s context window by passing a 

few one zero(!) examples to the model as input, 
without performing any updates to the parameters
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• Key Takeaway: LLMs can perform well on novel tasks 
without having to fine-tune the model, sometimes even 
with just one or zero labelled training data points! 

https://arxiv.org/pdf/2005.14165.pdf


Key Takeaways

� Instead of random initializations, modern deep learning 

typically initializes weights via pretraining, then fine-
tunes them to the specific task

� Supervised vs. unsupervised fine-tuning

� Pretraining need not occur on the task of interest

� Some tasks can be performed by a pretrained LLM 
without any fine-tuning via in-context learning
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