
10-301/601: Introduction to
Machine Learning
Lecture 25 – Pretraining,
Fine-tuning & In-Context
Learning
Henry Chai

6/9/25

Front Matter

� Announcements:

� HW6 released on 6/6, due 6/10 (tomorrow) at 11:59 PM

� HW7 to be released on 6/10 (tomorrow), due 6/13 at
11:59 PM

� Thursday’s lecture will be a guest lecture by Alex Xie on
Reinforcement Learning for LLMs

� This content will not be covered on the quiz but…

� Everyone who attends (and stays for the duration of

the lecture) will have their lowest quiz grade down-
weighted by 50%

Henry Chai - 6/9/25 2

Recall:
PCA Algorithm

Henry Chai - 6/9/25 3

� Input: 𝒟 = 𝒙 ! 	 !"#
$

, 𝜌

1. Center the data

2. Use SVD to compute the eigenvalues and eigenvectors
of 𝑋%𝑋

3. Collect the top 𝜌 eigenvectors (corresponding to the 𝜌

largest eigenvalues), 𝑉& ∈ ℝ'×&

4. Project the data into the space defined by 𝑉&, 𝑍 = 𝑋𝑉&

� Output: 𝑍, the transformed (potentially lower-
dimensional) data

PCA Example:
MNIST Digits

Henry Chai - 6/9/25 4Figure courtesy of Matt Gormley

Shortcomings
of PCA

Henry Chai - 6/9/25 5

Insight: neural
networks implicitly
learn low-dimensional
representations of

inputs in hidden layersAutoencoders

Henry Chai - 6/9/25 6

1

𝜃

𝜃

1
𝑥!

𝑥"

1

𝑥#

⋮

� Learn the weights by minimizing the reconstruction loss:

Autoencoders

Henry Chai - 6/9/25 7

𝑜!
(%)

𝑜"
(%)

𝑜#
(%)

⋮

1

𝜃

𝜃

1
𝑥!

𝑥"

1

𝑥#

⋮

𝑒 𝒙 = 𝒙 − 𝒐 .
/
/

Autoencoders

Henry Chai - 6/9/25 8

𝑜!
(%)

𝑜"
(%)

𝑜#
(%)

⋮

1

𝜃

𝜃

1
𝑥!

𝑥"

1

𝑥#

⋮

Encoder
Decoder

Henry Chai - 6/9/25 9Source: https://en.wikipedia.org/wiki/Autoencoder#/media/File:Autoencoder_structure.png

Deep
Autoencoders

https://en.wikipedia.org/wiki/Autoencoder

PCA (A) vs. Autoencoders (B)
(Hinton and Salakhutdinov, 2006)

Henry Chai - 6/9/25 10Source: https://www.science.org/doi/10.1126/science.1127647

https://www.science.org/doi/10.1126/science.1127647

Recall:
Transformers

Henry Chai - 6/9/25 11Source: https://arxiv.org/pdf/1706.03762.pdf

� In addition to multi-head
attention, transformer
architectures use

1. Positional encodings

2. Layer normalization

3. Residual connections

4. A fully-connected
feed-forward network

https://arxiv.org/pdf/1706.03762.pdf

Okay, but how
on earth do we
go about
training these
things?

Henry Chai - 6/9/25 12Source: https://arxiv.org/pdf/1706.03762.pdf

� In addition to multi-head
attention, transformer
architectures use

1. Positional encodings

2. Layer normalization

3. Residual connections

4. A fully-connected
feed-forward network

https://arxiv.org/pdf/1706.03762.pdf

Recall:
Mini-batch
Stochastic
Gradient
Descent…

13Henry Chai - 6/9/25

� Input: 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

, 𝜂01
2 , 𝐵

1. Initialize all weights 𝑊 2
, … ,𝑊 2

. to

small, random numbers and set 𝑡 = 0 𝐺3#
4 = 0 ∗𝑊 4 	∀	𝑙

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 5 , 𝑦 5
5"#
1

b. Compute the gradient of the loss w.r.t. the sampled batch,

𝐺 4 =
1
𝐵
;
5"#

1

∇6 ! ℓ 5 𝑊 7
, … ,𝑊 7

. 	∀	𝑙

c. Update 𝑊 4 : 𝑊78#
4 ← 𝑊7

4 − 𝜂01
2 𝐺 4 	∀	𝑙

d. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝑊7
, … ,𝑊7

.

Mini-batch
Stochastic
Gradient
Descent is a lie!

14Henry Chai - 6/9/25

� Input: 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

, 𝜂01
2 , 𝐵

1. Initialize all weights 𝑊 2
, … ,𝑊 2

. to

small, random numbers and set 𝑡 = 0 𝐺3#
4 = 0 ∗𝑊 4 	∀	𝑙

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 5 , 𝑦 5
5"#
1

b. Compute the gradient of the loss w.r.t. the sampled batch,

𝐺 4 =
1
𝐵
;
5"#

1

∇6 ! ℓ 5 𝑊 7
, … ,𝑊 7

. 	∀	𝑙

c. Update 𝑊 4 : 𝑊78#
4 ← 𝑊7

4 − 𝜂01
2 𝐺 4 	∀	𝑙

d. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝑊7
, … ,𝑊7

.

Mini-batch
Stochastic
Gradient
Descent is a lie!
just the
beginning!

15Henry Chai - 6/9/25

� Input: 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

, 𝜂01
2 , 𝐵

1. Initialize all weights 𝑊 2
, … ,𝑊 2

. to

small, random numbers and set 𝑡 = 0 𝐺3#
4 = 0 ∗𝑊 4 	∀	𝑙

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 5 , 𝑦 5
5"#
1

b. Compute the gradient of the loss w.r.t. the sampled batch,

𝐺 4 =
1
𝐵
;
5"#

1

∇6 ! ℓ 5 𝑊 7
, … ,𝑊 7

. 	∀	𝑙

c. Update 𝑊 4 : 𝑊78#
4 ← 𝑊7

4 − 𝜂01
2 𝐺 4 	∀	𝑙

d. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝑊7
, … ,𝑊7

.

Traditional
Supervised
Learning

Henry Chai - 6/9/25 16

� You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

Reality

� You have some niche task that you want to apply machine

learning to e.g., predicting how Henry will get to work

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

Henry Chai - 6/9/25 17

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised pre-
training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

• “gradient-based
optimization starting
from random initialization
appears to often get

stuck in poor solutions for
such deep networks.”

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Reality

� You have some niche task that you want to apply machine

learning to e.g., predicting how Henry will get to work

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

Henry Chai - 6/9/25 18

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised pre-
training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

• Idea: if shallow
networks are easier to
train, let’s just
decompose our deep

network into a series
of shallow networks!

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training
(Bengio et al.,
2006)

Henry Chai - 6/9/25 19Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer� Train each layer of the
network iteratively using
the training dataset

� Start at the input layer
and move towards the
output layer

� Once a layer has been
trained, fix its weights

and use those to train
subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training
(Bengio et al.,
2006)

Henry Chai - 6/9/25 20Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

Output layer

� Train each layer of the

network iteratively using
the training dataset

� Start at the input layer

and move towards the
output layer

� Once a layer has been
trained, fix its weights

and use those to train
subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training
(Bengio et al.,
2006)

Henry Chai - 6/9/25 21Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

Output layer

� Train each layer of the

network iteratively using
the training dataset

� Start at the input layer

and move towards the
output layer

� Once a layer has been
trained, fix its weights

and use those to train
subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training
(Bengio et al.,
2006)

Henry Chai - 6/9/25 22Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer� Train each layer of the

network iteratively using
the training dataset

� Start at the input layer

and move towards the
output layer

� Once a layer has been
trained, fix its weights

and use those to train
subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Fine-tuning
(Bengio et al.,
2006)

Henry Chai - 6/9/25 23Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer� Train each layer of the

network iteratively using
the training dataset

� Use the pre-trained

weights as an
initialization and

fine-tune the entire
network e.g., via SGD

with the training dataset

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Supervised
Pre-training
(Bengio et al.,
2006)

Henry Chai - 6/9/25 24

� Use the pre-trained weights as

an initialization and fine-tune
the entire network e.g., via SGD
with the training dataset

� Train each layer of the

network iteratively using
the training dataset

� Use the pre-trained

weights as an
initialization and

fine-tune the entire
network e.g., via SGD
with the training dataset

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

� Train each layer of the

network iteratively using
the training dataset to
predict the labels

� Use pre-trained weights
as an initialization and

fine-tune the entire
network e.g., via SGD
with the training dataset

Supervised
Pre-training
(Bengio et al.,
2006)

Henry Chai - 6/9/25 25

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

� Use the pre-trained weights as

an initialization and fine-tune
the entire network e.g., via SGD
with the training dataset

� Train each layer of the

network iteratively using
the training dataset to
predict the labels

� Use pre-trained weights
as an initialization and

fine-tune the entire
network e.g., via SGD
with the training dataset

Is this the only
thing we could
do with the
training data?

Henry Chai - 6/9/25 26

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

� Use the pre-trained weights as

an initialization and fine-tune
the entire network e.g., via SGD
with the training dataset

Unsupervised
Pre-training
(Bengio et al.,
2006)

Henry Chai - 6/9/25 27

� Idea: a good representation is

one preserves a lot of
information and could be used
to recreate the inputs

� Train each layer of the

network iteratively using
the training dataset to
learn useful representations

� Use pre-trained weights as
an initialization and
fine-tune the entire network
e.g., via SGD with the

training dataset
0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

� Train each layer of the

network iteratively using
the training dataset by
minimizing the

reconstruction error
𝒙 − ℎ 𝒙 /

� This objective defines an
autoencoder

Unsupervised
Pre-training
(Bengio et al.,
2006)

Henry Chai - 6/9/25 28Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

� Train each layer of the

network iteratively using
the training dataset by
minimizing the
reconstruction error

𝒙 − ℎ 𝒙 /

� This architecture/
objective defines an

autoencoder

Unsupervised
Pre-training
(Bengio et al.,
2006)

Henry Chai - 6/9/25 29Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

⋯
Reconstructed

input

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

� Train each layer of the

network iteratively using
the training dataset by
minimizing the
reconstruction error

𝒙 − ℎ 𝒙 /

� This architecture/
objective defines an

autoencoder

Unsupervised
Pre-training
(Bengio et al.,
2006)

Henry Chai - 6/9/25 30Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

⋯

⋯

2nd hidden layer

Reconstructed
hidden layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

� Train each layer of the

network iteratively using
the training dataset by
minimizing the
reconstruction error

𝒙 − ℎ 𝒙 /

� This architecture/
objective defines an

autoencoder

Unsupervised
Pre-training
(Bengio et al.,
2006)

Henry Chai - 6/9/25 31Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

⋯

⋯

2nd hidden layer

Reconstructed
hidden layer

⋯3rd hidden layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Fine-tuning
(Bengio et al.,
2006)

Henry Chai - 6/9/25 32Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

⋯2nd hidden layer

⋯3rd hidden layer

Output layer� Train each layer of the

network iteratively using
the training dataset by
minimizing the
reconstruction error

𝒙 − ℎ 𝒙 /

� When fine-tuning, we’re
effectively swapping out

the last layer and fitting
all the weights to the
training dataset

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

� Train each layer of the

network iteratively using
the training dataset by
minimizing the
reconstruction error

𝒙 − ℎ 𝒙 /

� When fine-tuning, we’re
effectively swapping out

the last layer and fitting
all the weights to the
training dataset

Unsupervised
Pre-training
(Bengio et al.,
2006)

Henry Chai - 6/9/25 33

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

� Idea: a good representation is

one preserves a lot of
information and could be used
to recreate the inputs

Another
dose of
Reality

� You have some niche task that you want to apply machine

learning to e.g., predicting how Henry will get to work

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

Henry Chai - 6/9/25 34

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised pre-
training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

• Problem: what if you
don’t even have
enough data to train a
single layer/fine-tune

the pre-trained
network?

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Another
dose of
Reality

� You have some niche task that you want to apply machine
learning to e.g., predicting how Henry will get to work

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

� Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

� Ideally, you want to use a large dataset related to your

goal task

Henry Chai - 6/9/25 35

Another
dose of
Reality

� You have some niche task that you want to apply machine

learning to e.g., predicting how Henry will get to work

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

� Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

� GPT-3 pre-training data:

Henry Chai - 6/9/25 36Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

� You have some niche task that you want to apply machine

learning to e.g., predicting how Henry will get to work

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

� Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

� Okay that’s great for pre-training and all, but what if you
don’t even have enough data to fine-tune your model?

Another
dose of
Reality

Henry Chai - 6/9/25 37

In-context
Learning

� Problem: given their size, effectively fine-tuning LLMs

can require lots of labelled data points.

� Idea: leverage the LLM’s context window by passing a
few one zero(!) examples to the model as input,

without performing any updates to the parameters

� Intuition: during training, the LLM is exposed to a
massive number of examples/tasks and the input
conditions the model to “locate” the relevant concepts

Henry Chai - 6/9/25 38Source: https://arxiv.org/pdf/2111.02080.pdf

https://arxiv.org/pdf/2111.02080.pdf

Few-shot,
One-shot &
Zero-shot
(in-context)
Learning

� Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,
without performing any updates to the parameters

Henry Chai - 6/9/25 39Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

Few-shot,
One-shot &
Zero-shot
(in-context)
Learning

� Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,
without performing any updates to the parameters

Henry Chai - 6/9/25 40Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

Few-shot,
One-shot &
Zero-shot
(in-context)
Learning

� Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,
without performing any updates to the parameters

Henry Chai - 6/9/25 41Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

Few-shot,
One-shot &
Zero-shot
(in-context)
Learning

� Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,
without performing any updates to the parameters

Henry Chai - 6/9/25 42Source: https://arxiv.org/pdf/2005.14165.pdf

• Key Takeaway: LLMs can perform well on novel tasks
without having to fine-tune the model, sometimes even
with just one or zero labelled training data points!

https://arxiv.org/pdf/2005.14165.pdf

Key Takeaways

� Instead of random initializations, modern deep learning

typically initializes weights via pretraining, then fine-
tunes them to the specific task

� Supervised vs. unsupervised fine-tuning

� Pretraining need not occur on the task of interest

� Some tasks can be performed by a pretrained LLM
without any fine-tuning via in-context learning

43Henry Chai - 6/9/25

