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* Announcements

* HWS5 released on 6/3, due 6/6 (tomorrow) at 11:59 PM

Front Matter - HW6 to be released on 6/6 (tomorrow), due 6/10 at
11:59 PM

* Quiz 3 on 6/6 (tomorrow) at 11:00 AM in BH A36
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- Supervised learning - D = {(x("),y("))}zzl
- Regression - y™ € R
Lea rning - Classification - y(™ € {1, ..., C}

Paradigms

. i I - — (n) N
Unsupervised learning - D {x }n=1
* Clustering

- Dimensionality reduction
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- Goal: given some unlabeled data set, learn a latent
(typically lower-dimensional) representation

* Use cases:

* Reducing computational cost (runtime, storage, etc...)
Dimensiona“ty * Improving generalization

Reduction * Visualizing data

* Applications:
* High-resolution images/videos
* Text data

* Financial or transaction data
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J(B) J(B) J(B)

Ridge or L2 Lassoor L1 LO

Recall: L1 (or LO) Regularization
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Feature Elimination
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Feature Reduction
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Option A Option B

Which projection do you prefer?
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* To be consistent, we will constrain principal components

to be orthogonal unit vectors that begin at the origin

* Preprocess data to be centered around the origin:

N
1
: — (n)
Centering the LH Nzx
n=1

Data 2. %™ = xW —yvn

_%(1)’1"_

7@

)T
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Reconstruction
Error
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- The projection of ™ onto a

vector v is

) — <vT§(n)
vl

_—

Length of projection

) T
O\

Direction of projection
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Reconstruction
Error
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* The projection of %™ onto a unit vector v is

z(W = (vT'g(n))v

¥ = argmin Z”x(") (vT ("))v ||2

v IIvIIZ—l

2 — (TE™)w ||
= %M Fm) _ 2(vT¥ W) + (V1MW) (T )y

= %™ F™ _ (pT )T %M

= [[E; - (@"=™)’
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Minimizing the
Reconstruction
Error

()
Maximizing the
Variance
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D = argmin ZHx(n) M

v IIvIIZ—l

argmin z ||x(”) || — (v

v IIvIIz—l

(n))z

Variance of projections
= argmax Z(v x(")) — Pro)

vi|lv|l5=1 =1

N

oy T

= argmax vT< E ¥ () x()
vi|lv|l5=1 =1

= argmax v! XTX)v
vilvll5=1

%™ are centered)

)s
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Maximizing the
Variance
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D = argmax v (XTX)v
vi|vll5=1
L, ) = v XTX)v - A(lvll5 — 1)
= v XTX)v-A1v'v-1)

0L
. X' X)v—Av

> XTX)W-1w=0-X'X)p=1p

AN .

- D is an eigenvector of X' X and A is the

corresponding eigenvalue! But which one?
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Maximizing the
Variance
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D = argmax v (XTX)v
vi|lv|l5=1

XTX)o =10 - T XTX)p=9"Dp=2

- The first principal component is the eigenvector v, that
corresponds to the largest eigenvalue 14
- The second principal component is the eigenvector v,
that corresponds to the second largest eigenvalue A,
- V1 and D, are orthogonal
- Etc...

- A; is a measure of how much variance falls along v;
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Principal

Components:
Example
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Source: https://en.wikipedia.org/wiki/Principal component analysis#/media/File:GaussianScatterPCA.svg
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https://en.wikipedia.org/wiki/Principal_component_analysis

How can we
efficiently find

principal
components
(eigenvectors)?
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Source: https://en.wikipedia.org/wiki/Principal component analysis#/media/File:GaussianScatterPCA.svg
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https://en.wikipedia.org/wiki/Principal_component_analysis

]RNXD

* Every real-valued matrix X € can be expressed as

X=USsvT
- where:
Singular Value
Decomposition 1. U € R¥*N _columns of U are eigenvectors of XX T
(SVD) for PCA 2. Ve RP*P - columns of V are eigenvectors of XTX

3. S € RM*P _djagonal matrix whose entries are the

eigenvalues of X — squared entries are the
eigenvalues of XX and XTX
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* Input: D = {(x™ )}Zzl,p
1. Center the data

2. Use SVD to compute the eigenvalues and eigenvectors
of XTX

PCA Algorithm

3. Collect the top p eigenvectors (corresponding to the p

largest eigenvalues), V, € RP*P

4. Project the data into the space defined by ,, Z = XV,

* OQutput: Z, the transformed (potentially lower-

dimensional) data
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* Input: D = {(x™ )}Zzl,p
1. Center the data

2. Use SVD to compute the eigenvalues and eigenvectors
of XTX

How many PCs

should we use? 3. Collect the top p eigenvectors (corresponding to the p

largest eigenvalues), V, € RP*P

4. Project the data into the space defined by ,, Z = XV,

* OQutput: Z, the transformed (potentially lower-

dimensional) data
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Choosing the

number of PCs
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- Define a percentage of explained variance for the it PC:

Ayé%

» Select all PCs above some threshold of explained

variance, e.g., 5%

- Keep selecting PCs until the total explained variance

exceeds some threshold, e.g., 90%

* Evaluate on some downstream metric
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Figures courtesy of Matt Gormley
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Figure courtesy of Matt Gormley
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PCA Example:

MNIST Digits o
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* PCA finds an orthonormal basis where the first principal
component maximizes the variance < minimizes the

reconstruction error

Key Takeaways

- Autoencoders use neural networks to automatically
learn a latent representation that minimizes the

reconstruction error
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