10-301/601: Introduction to Machine Learning Lecture 24: Dimensionality Reduction

Front Matter

- Announcements
 - HW5 released on 6/3, due 6/6 (tomorrow) at 11:59 PM
 - HW6 to be released on 6/6 (tomorrow), due 6/10 at 11:59 PM
 - Quiz 3 on 6/6 (tomorrow) at 11:00 AM in BH A36

Learning Paradigms

- Supervised learning $\mathcal{D} = \left\{ \left(\boldsymbol{x}^{(n)}, \boldsymbol{y}^{(n)} \right) \right\}_{n=1}^{N}$
 - Regression $y^{(n)} \in \mathbb{R}$
 - Classification $y^{(n)} \in \{1, ..., C\}$
- Unsupervised learning $\mathcal{D} = \{x^{(n)}\}_{n=1}^{N}$
 - Clustering
 - Dimensionality reduction

Learning Paradigms

- Supervised learning $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^{N}$
 - Regression $y^{(n)} \in \mathbb{R}$
 - Classification $y^{(n)} \in \{1, ..., C\}$
- Unsupervised learning $\mathcal{D} = \{x^{(n)}\}_{n=1}^{N}$
 - Clustering
 - Dimensionality reduction

Dimensionality Reduction

- Goal: given some unlabeled data set, learn a latent (typically lower-dimensional) representation
- Use cases:
 - Reducing computational cost (runtime, storage, etc...)
 - Improving generalization
 - Visualizing data
- Applications:
 - High-resolution images/videos
 - Text data
 - Financial or transaction data

Recall: L1 (or L0) Regularization

Feature Elimination

Feature Reduction

Which projection do you prefer?

Centering the Data

- To be consistent, we will constrain principal components to be *orthogonal unit vectors* that begin at the origin
- Preprocess data to be centered around the origin:

1.
$$\mu = \frac{1}{N} \sum_{n=1}^{N} x^{(n)}$$

$$2. \ \widetilde{\boldsymbol{x}}^{(n)} = \boldsymbol{x}^{(n)} - \boldsymbol{\mu} \ \forall \ n$$

3.
$$X = \begin{bmatrix} \widetilde{\boldsymbol{x}}^{(1)^T} \\ \widetilde{\boldsymbol{x}}^{(2)^T} \\ \vdots \\ \widetilde{\boldsymbol{x}}^{(N)^T} \end{bmatrix}$$

Reconstruction Error

• The projection of $\widetilde{\pmb{x}}^{(n)}$ onto a vector \pmb{v} is

$$\mathbf{z}^{(n)} = \left(\frac{\mathbf{v}^T \widetilde{\mathbf{x}}^{(n)}}{\|\mathbf{v}\|_2}\right) \frac{\mathbf{v}}{\|\mathbf{v}\|_2}$$

Length of projection

Direction of projection

Reconstruction Error

• The projection of $\widetilde{\pmb{x}}^{(n)}$ onto a unit vector \pmb{v} is

$$\mathbf{z}^{(n)} = (\mathbf{v}^T \widetilde{\mathbf{x}}^{(n)}) \mathbf{v}$$

$$\widehat{\boldsymbol{v}} = \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmin}} \sum_{n=1}^{N} \left\| \widetilde{\boldsymbol{x}}^{(n)} - \left(\boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)} \right) \boldsymbol{v} \right\|_{2}^{2}$$

$$\begin{aligned} \left\|\widetilde{\boldsymbol{x}}^{(n)} - \left(\boldsymbol{v}^{T}\widetilde{\boldsymbol{x}}^{(n)}\right)\boldsymbol{v}\right\|_{2}^{2} \\ &= \widetilde{\boldsymbol{x}}^{(n)^{T}}\widetilde{\boldsymbol{x}}^{(n)} - 2\left(\boldsymbol{v}^{T}\widetilde{\boldsymbol{x}}^{(n)}\right)\boldsymbol{v}^{T}\widetilde{\boldsymbol{x}}^{(n)} + \left(\boldsymbol{v}^{T}\widetilde{\boldsymbol{x}}^{(n)}\right)\left(\boldsymbol{v}^{T}\widetilde{\boldsymbol{x}}^{(n)}\right)\boldsymbol{v}^{T}\boldsymbol{v} \\ &= \widetilde{\boldsymbol{x}}^{(n)^{T}}\widetilde{\boldsymbol{x}}^{(n)} - \left(\boldsymbol{v}^{T}\widetilde{\boldsymbol{x}}^{(n)}\right)\boldsymbol{v}^{T}\widetilde{\boldsymbol{x}}^{(n)} \\ &= \left\|\widetilde{\boldsymbol{x}}^{(n)}\right\|_{2}^{2} - \left(\boldsymbol{v}^{T}\widetilde{\boldsymbol{x}}^{(n)}\right)^{2} \end{aligned}$$

Minimizing the Reconstruction Error

1

Maximizing the Variance

$$\widehat{\boldsymbol{v}} = \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmin}} \sum_{n=1}^{N} \left\| \widetilde{\boldsymbol{x}}^{(n)} - \left(\boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)} \right) \boldsymbol{v} \right\|_{2}^{2}$$

$$= \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmin}} \sum_{n=1}^{N} \left\| \widetilde{\boldsymbol{x}}^{(n)} \right\|_{2}^{2} - \left(\boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)} \right)^{2}$$

$$= \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmax}} \sum_{n=1}^{N} \left(\boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)} \right)^{2} \longleftarrow \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\text{Variance of projections}}$$

$$= \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmax}} \boldsymbol{v}^{T} \left(\sum_{n=1}^{N} \widetilde{\boldsymbol{x}}^{(n)} \widetilde{\boldsymbol{x}}^{(n)}^{T} \right) \boldsymbol{v}$$

$$= \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmax}} \boldsymbol{v}^{T} (X^{T} X) \boldsymbol{v}$$

$$= \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmax}} \boldsymbol{v}^{T} (X^{T} X) \boldsymbol{v}$$

Maximizing the Variance

$$\widehat{\boldsymbol{v}} = \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_2^2 = 1}{\operatorname{argmax}} \, \boldsymbol{v}^T (X^T X) \boldsymbol{v}$$

$$\mathcal{L}(\boldsymbol{v}, \lambda) = \boldsymbol{v}^T (X^T X) \boldsymbol{v} - \lambda (\|\boldsymbol{v}\|_2^2 - 1)$$
$$= \boldsymbol{v}^T (X^T X) \boldsymbol{v} - \lambda (\boldsymbol{v}^T \boldsymbol{v} - 1)$$

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{v}} = (X^T X) \boldsymbol{v} - \lambda \boldsymbol{v}$$
$$\rightarrow (X^T X) \hat{\boldsymbol{v}} - \lambda \hat{\boldsymbol{v}} = 0 \rightarrow (X^T X) \hat{\boldsymbol{v}} = \lambda \hat{\boldsymbol{v}}$$

• \hat{v} is an eigenvector of X^TX and λ is the corresponding eigenvalue! But which one?

Maximizing the Variance

$$\widehat{\boldsymbol{v}} = \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmax}} \, \boldsymbol{v}^{T}(X^{T}X) \boldsymbol{v}$$

$$(X^{T}X) \widehat{\boldsymbol{v}} = \lambda \widehat{\boldsymbol{v}} \, \rightarrow \, \widehat{\boldsymbol{v}}^{T}(X^{T}X) \widehat{\boldsymbol{v}} = \lambda \widehat{\boldsymbol{v}}^{T} \widehat{\boldsymbol{v}} = \lambda$$

- The first principal component is the eigenvector $\widehat{m v}_1$ that corresponds to the largest eigenvalue λ_1
- The second principal component is the eigenvector $\widehat{m v}_2$ that corresponds to the second largest eigenvalue λ_2
 - $\widehat{oldsymbol{v}}_1$ and $\widehat{oldsymbol{v}}_2$ are orthogonal
- Etc ...
- λ_i is a measure of how much variance falls along $\widehat{m{v}}_i$

Principal Components: Example

How can we efficiently find principal components (eigenvectors)?

Singular Value Decomposition (SVD) for PCA

• Every real-valued matrix $X \in \mathbb{R}^{N \times D}$ can be expressed as

$$X = USV^T$$

where:

- 1. $U \in \mathbb{R}^{N \times N}$ columns of U are eigenvectors of XX^T
- 2. $V \in \mathbb{R}^{D \times D}$ columns of V are eigenvectors of $X^T X$
- 3. $S \in \mathbb{R}^{N \times D}$ diagonal matrix whose entries are the eigenvalues of $X \to \text{squared entries}$ are the eigenvalues of XX^T and X^TX

PCA Algorithm

• Input:
$$\mathcal{D} = \left\{ \left(\boldsymbol{x}^{(n)} \right) \right\}_{n=1}^{N}, \rho$$

- 1. Center the data
- 2. Use SVD to compute the eigenvalues and eigenvectors of X^TX
- 3. Collect the top ρ eigenvectors (corresponding to the ρ largest eigenvalues), $V_{\rho} \in \mathbb{R}^{D \times \rho}$
- 4. Project the data into the space defined by V_{ρ} , $Z=XV_{\rho}$
- Output: Z, the transformed (potentially lowerdimensional) data

How many PCs should we use?

• Input:
$$\mathcal{D} = \left\{ \left(\mathbf{x}^{(n)} \right) \right\}_{n=1}^{N}, \rho$$

- Center the data
- 2. Use SVD to compute the eigenvalues and eigenvectors of X^TX
- 3. Collect the top ρ eigenvectors (corresponding to the ρ largest eigenvalues), $V_{\rho} \in \mathbb{R}^{D \times \rho}$
- 4. Project the data into the space defined by V_{ρ} , $Z=XV_{\rho}$
- Output: Z, the transformed (potentially lowerdimensional) data

Choosing the number of PCs

• Define a percentage of explained variance for the i^{th} PC:

$$\frac{\lambda_i}{\sum \lambda_j}$$

- Select all PCs above some threshold of explained variance, e.g., 5%
- Keep selecting PCs until the total explained variance exceeds some threshold, e.g., 90%
- Evaluate on some downstream metric

PCA Example: MNIST Digits

PCA Example: MNIST Digits

PCA Example: MNIST Digits

Key Takeaways

- PCA finds an orthonormal basis where the first principal component maximizes the variance
 ⇔ minimizes the reconstruction error
- Autoencoders use neural networks to automatically learn a latent representation that minimizes the reconstruction error