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Front Matter

� Announcements

� HW5 released on 6/3, due 6/6 at 11:59 PM

� Schedule change: two recitations this week 

� Recitation on 6/4 (today!) will be a PyTorch 

tutorial

� Recitation on 6/5 will be Quiz 3 preparation
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Recall:
Transformers

Henry Chai - 6/4/25 3Source: https://arxiv.org/pdf/1706.03762.pdf 

� In addition to multi-head 
attention, transformer 
architectures use

1. Positional encodings

2. Layer normalization

3. Residual connections

4. A fully-connected feed-

forward network

https://arxiv.org/pdf/1706.03762.pdf


Layer 
Normalization
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� Issue: for certain activation functions, the weights in later 

layers are highly sensitive to changes in the earlier layers

� Small changes to weights in early layers are amplified 
so weights in deeper layers have to deal with massive 

dynamic ranges → slow optimization convergence

� Idea: normalize the output of a layer to always have the 

same (learnable) mean, 𝛽, and variance, 𝛾!

𝐻" = 𝛾
𝐻 − 𝜇
𝜎

+ 𝛽

where 𝜇 is the mean and 𝜎 is the standard deviation of the 
values in the vector 𝐻
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Residual 
Connections

� Observation: early deep neural networks suffered from the 

“degradation” problem where adding more layers actually 
made performance worse!

� Wait but this is ridiculous: if the later layers aren’t helping, 
couldn’t they just learn the identity transformation???

� Insight: neural network layers actually have a hard time 
learning the identity function
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Residual 
Connections

Henry Chai - 6/4/25 7

� Observation: early deep neural networks suffered from the 
“degradation” problem where adding more layers actually 
made performance worse!

� Idea: add the input embedding back to the output of a layer

𝐻" = 𝐻 𝑥 # + 𝑥 #

� Suppose the target function is 𝑓

� Now instead of having to learn 𝑓 𝑥 # , the hidden layer 

just needs to learn the residual 𝑟 = 𝑓 𝑥 # − 𝑥 #

� If 𝑓 is the identity function, then the hidden layer just 

needs to learn 𝑟 = 0, which is easy for a neural network!
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Learning 
Paradigms

� Supervised learning - 𝒟 = 𝒙 $ , 𝑦 $
$%&
'

� Regression - 𝑦 $ ∈ ℝ

� Classification - 𝑦 $ ∈ 1,… , 𝐶

�  Unsupervised learning - 𝒟 = 𝒙 $
$%&
'

� Clustering 

� Dimensionality reduction
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Clustering

� Goal: split an unlabeled data set into groups or clusters of 
“similar” data points

� Use cases:
� Organizing data
� Discovering patterns or structure
� Preprocessing for downstream machine learning tasks

� Applications:
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Recall:
Similarity for 
𝑘NN

� Intuition: predict the label of a data point to be the label of 

the “most similar” training point two points are “similar” if 
the distance between them is small 

� Euclidean distance: 𝑑 𝒙, 𝒙′ = 𝒙 − 𝒙" !
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Partition-Based 
Clustering

� Given a desired number of clusters, 𝐾, return a partition 

of the data set into 𝐾 groups or clusters, 𝐶&, … , 𝐶( , 
that optimize some objective function

1. What objective function should we optimize?

2. How can we perform optimization in this setting?
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Which do you prefer and why?
14Henry Chai - 6/4/25

Option A Option B









General 
Recipe 
for 
Machine 
Learning
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� Define a model and model parameters

� Write down an objective function

:
#%&

'

𝒙 # − 𝝁) ! !

� Optimize the objective w.r.t. the model parameters



Recipe 
for 
𝐾-means
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� Define a model and model parameters
� Assume 𝐾 clusters and use the Euclidean distance
� Parameters: 𝝁&, … , 𝝁( and 𝑧 & , … , 𝑧 '

� Write down an objective function

:
$%&

'

𝒙 $ − 𝝁) " !

� Optimize the objective w.r.t. the model parameters
� Use (block) coordinate descent



Coordinate 
Descent

� Goal: minimize some objective 
=𝜽 = argmin	 𝐽 𝜽

� Idea: iteratively pick one variable and minimize the 
objective w.r.t. just that variable, keeping all others fixed. 

20

𝜃&

𝜃!

𝜽 *

𝜽 &

𝜽 ! 𝜽 +
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Block 
Coordinate 
Descent

21

� Goal: minimize some objective 

H𝜶, =𝜷 = argmin	 𝐽 𝜶, 𝜷

� Idea: iteratively pick one block of variables (𝜶	or	𝜷) and 
minimize the objective w.r.t. that block, keeping the 

other(s) fixed. 

� Ideally, blocks should be the largest possible set of 

variables that can be efficiently optimized 
simultaneously
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H𝝁&, … , H𝝁(, 𝑧 & , … , 𝑧 , = argmin:
$%&

'

𝒙 $ − 𝝁) " !

� If 𝝁&, … , 𝝁( are fixed

𝑧̂ $ = argmin
-	∈ &,	…	,(

𝒙 $ − 𝝁- !

� If 𝑧 & , … , 𝑧 '  are fixed

H𝝁- = argmin
𝝁	

:
$	∶) " 	%	-

𝒙 $ − 𝝁 !

H𝝁- =
1
𝑁-

:
$	∶) " %-

𝒙 $ 	
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Optimizing the 
𝐾-means 
objective



𝐾-means 
Algorithm
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� Input: 𝒟 = 𝒙 $ 	 $%&
'

, 𝐾

1. Initialize cluster centers 𝝁&, … , 𝝁(
2. While NOT CONVERGED

a. Assign each data point to the cluster with the 
nearest cluster center:
𝑧($) = argmin

-
𝒙 $ − 𝝁- !

b. Recompute the cluster centers:

𝝁- =
1
𝑁-

:
$	∶) " %-

𝒙 $

where 𝑁- is the number of data points in cluster 𝑘

� Output: cluster centers 𝝁&, … , 𝝁( and cluster 
assignments 𝑧 & , … , 𝑧 '



𝐾-means: 
Example
(𝐾 = 3)
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𝐾-means: 
Example
(𝐾 = 2)
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Setting 𝐾

� Idea: choose the value of 𝐾 that minimizes the 
objective function 

� Better Idea: look for the characteristic “elbow” or 
largest decrease when going from 𝐾 − 1 to 𝐾
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� Common choice: choose 𝐾 data points at random to be 
the initial cluster centers (Lloyd’s method)

Initializing 
𝐾-means
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Initializing 
𝐾-means
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� Common choice: choose 𝐾 data points at random to be 
the initial cluster centers (Lloyd’s method)

� Lloyd’s method converges to a local minimum and that 
local minimum can be arbitrarily bad (relative to the 
optimal clusters)

� Intuition: want initial cluster centers to be far apart 
from one another



𝐾-means++ 
(Arthur and 
Vassilvitskii, 
2007)

1. Choose the first cluster center randomly from the 
data points.

2. For each other data point 𝒙, compute 𝐷 𝒙 , the 
distance between 𝒙 and the closest cluster center.

3. Select the next cluster center proportional to 𝐷 𝒙 !.

4. Repeat 2 and 3 𝐾 − 1 times.

� 𝐾-means++ achieves a 𝑂 log𝐾  approximation to the 
optimal clustering in expectation 

� Both Lloyd’s method and 𝐾-means++ can benefit from 
multiple random restarts. 
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Key Takeaways

� 𝐾-means objective function & model parameters

� Block-coordinate descent

� Setting 𝐾

� Initializing 𝐾 means
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