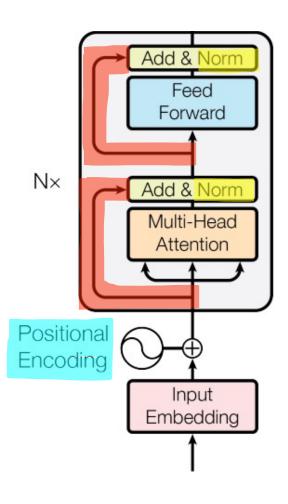
10-301/601: Introduction to Machine Learning Lecture 23: Clustering

Front Matter

- Announcements
 - HW5 released on 6/3, due 6/6 at 11:59 PM
 - Schedule change: two recitations this week
 - Recitation on 6/4 (today!) will be a PyTorch tutorial
 - Recitation on 6/5 will be Quiz 3 preparation

Recall: Transformers



- In addition to multi-head attention, transformer architectures use
 - 1. Positional encodings
 - 2. Layer normalization
 - 3. Residual connections
 - A fully-connected feedforward network

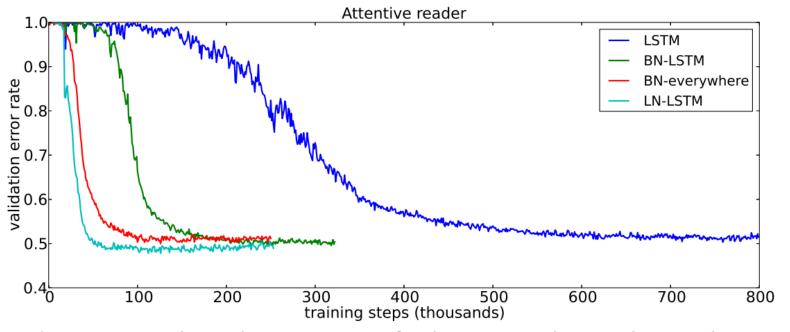
Layer Normalization

- Issue: for certain activation functions, the weights in later layers are **highly sensitive** to changes in the earlier layers
 - Small changes to weights in early layers are amplified so weights in deeper layers have to deal with massive dynamic ranges → slow optimization convergence
- Idea: normalize the output of a layer to always have the same (learnable) mean, β , and variance, γ^2

$$H' = \gamma \left(\frac{H - \mu}{\sigma} \right) + \beta$$

where μ is the mean and σ is the standard deviation of the values in the vector H

Layer Normalization



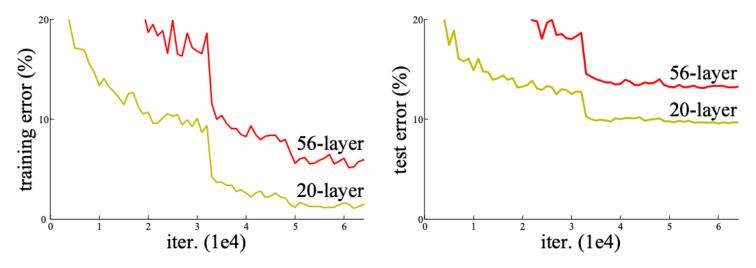
• Idea: normalize the output of a layer to always have the same (learnable) mean, β , and variance, γ^2

$$H' = \gamma \left(\frac{H - \mu}{\sigma} \right) + \beta$$

where μ is the mean and σ is the standard deviation of the values in the vector H

Residual Connections

 Observation: early deep neural networks suffered from the "degradation" problem where adding more layers actually made performance worse!



- Wait but this is ridiculous: if the later layers aren't helping,
 couldn't they just learn the identity transformation???
- Insight: neural network layers actually have a hard time learning the identity function

Source: https://arxiv.org/pdf/1512.03385.pdf

Residual Connections

- Observation: early deep neural networks suffered from the "degradation" problem where adding more layers actually made performance worse!
- Idea: add the input embedding back to the output of a layer

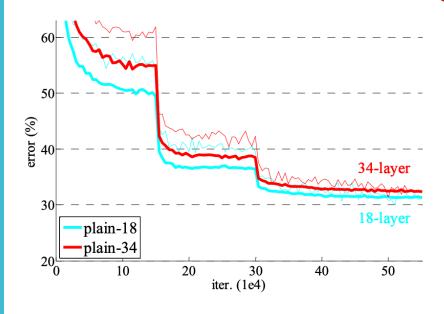
$$H' = H(x^{(i)}) + x^{(i)}$$

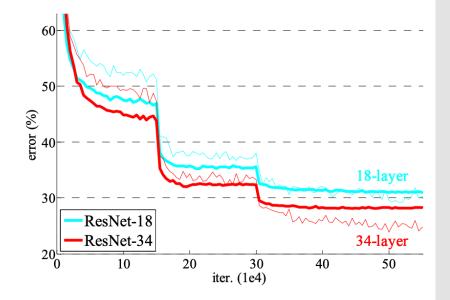
- Suppose the target function is f
 - Now instead of having to learn $f(x^{(i)})$, the hidden layer just needs to learn the residual $r = f(x^{(i)}) x^{(i)}$
 - If f is the identity function, then the hidden layer just needs to learn r = 0, which is easy for a neural network!

Residual Connections

- Observation: early deep neural networks suffered from the "degradation" problem where adding more layers actually made performance worse!
- Idea: add the input embedding back to the output of a layer

$$H' = H(x^{(i)}) + x^{(i)}$$





Learning Paradigms

- Supervised learning $\mathcal{D} = \left\{ \left(\boldsymbol{x}^{(n)}, \boldsymbol{y}^{(n)} \right) \right\}_{n=1}^{N}$
 - Regression $y^{(n)} \in \mathbb{R}$
 - Classification $y^{(n)} \in \{1, ..., C\}$
- Unsupervised learning $\mathcal{D} = \{x^{(n)}\}_{n=1}^{N}$
 - Clustering
 - Dimensionality reduction

Learning Paradigms

- Supervised learning $\mathcal{D} = \{(\mathbf{x}^{(n)}, \mathbf{y}^{(n)})\}_{n=1}^{N}$
 - Regression $y^{(n)} \in \mathbb{R}$
 - Classification $y^{(n)} \in \{1, ..., C\}$
- Unsupervised learning $\mathcal{D} = \{x^{(n)}\}_{n=1}^{N}$
 - Clustering
 - Dimensionality reduction

Clustering

- Goal: split an unlabeled data set into groups or clusters of "similar" data points
- Use cases:
 - Organizing data
 - Discovering patterns or structure
 - Preprocessing for downstream machine learning tasks
- Applications:

- clustering of syllade pronounciations
- clustering novels/texts
- clustering buse pairs in genes

Recall: Similarity for kNN

- Intuition: predict the label of a data point to be the label of the "most similar" training point two points are "similar" if the distance between them is small
- Euclidean distance: $d(\mathbf{x}, \mathbf{x}') = ||\mathbf{x} \mathbf{x}'||_2$

Partition-Based Clustering

- Given a desired number of clusters, K, return a partition of the data set into K groups or clusters, $\{C_1, \ldots, C_K\}$, that optimize some objective function
- 1. What objective function should we optimize?

2. How can we perform optimization in this setting?

Option A Option B

Which do you prefer and why?

0 surveys completed

0 surveys underway

Which partition or clustering do you prefer?

Option A

Option B

Justify your response to the previous question

Join by Web

PollEv.com/301601polls

Join by QR code Scan with your camera app

General Recipe for Machine Learning

• Define a model and model parameters

- Assume K clusters I similarity is defined

by Euclidean distance

- Parameters! Assignments - Z(1) Z(2)

• Write down an objective function certers - D(1) JZ, ..., JK

minimize $J(Z^{(1)}, ..., Z^{(N)}, D), ..., D_K) = \sum_{n=1}^{N} ||X^{(n)} - JZ_{(n)}||_{Z}$

Optimize the objective w.r.t. the model parameters

Define a model and model parameters

Recipe for *K*-means

Write down an objective function

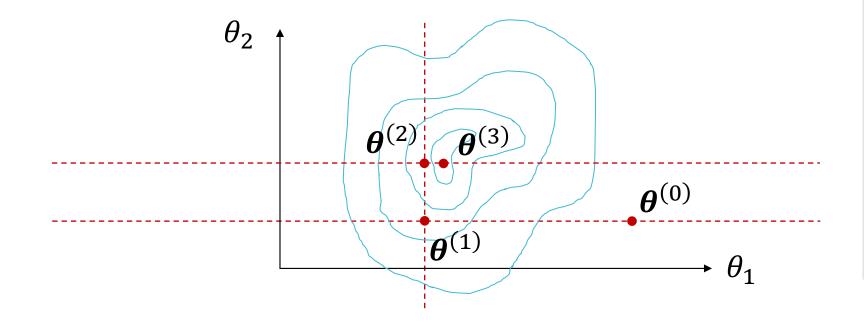
Optimize the objective w.r.t. the model parameters

Coordinate Descent

Goal: minimize some objective

$$\widehat{\boldsymbol{\theta}} = \operatorname{argmin} J(\boldsymbol{\theta})$$

• Idea: iteratively pick one variable and minimize the objective w.r.t. just that variable, *keeping all others fixed*.



Block Coordinate Descent

Goal: minimize some objective

$$\widehat{\boldsymbol{\alpha}}, \widehat{\boldsymbol{\beta}} = \operatorname{argmin} J(\boldsymbol{\alpha}, \boldsymbol{\beta})$$

- Idea: iteratively pick one *block* of variables (α or β) and minimize the objective w.r.t. that block, keeping the other(s) fixed.
 - Ideally, blocks should be the largest possible set of variables that can be efficiently optimized simultaneously

Optimizing the K-means objective

$$\hat{\mu}_1, \dots, \hat{\mu}_K, z^{(1)}, \dots, z^{(N)} = \operatorname{argmin} \sum_{n=1}^N ||x^{(n)} - \mu_{z^{(n)}}||_2$$

• If $\mu_1, ..., \mu_K$ are fixed

$$\hat{Z}^{(n)} = \underset{Ce\{1,\dots,K\}}{\operatorname{argmin}} ||\bar{X}^{(n)} - \bar{\mu}_{c}||_{Z}$$

• If $z^{(1)}, \dots, z^{(N)}$ are fixed $\widehat{\mathcal{V}}_{C} = \frac{1}{N_{C}} \sum_{h \in \mathbb{Z}_{C}} \widehat{\chi}(h)$

where Nc is the # of data points
assigned to cluster (

K-means Algorithm

• Input:
$$\mathcal{D} = \left\{ \left(\boldsymbol{x}^{(n)} \right) \right\}_{n=1}^{N}, K$$

- 1. Initialize cluster centers $\mu_1, ..., \mu_K$
- 2. While NOT CONVERGED
 - a. Assign each data point to the cluster with the nearest cluster center:

$$z^{(n)} = \underset{k}{\operatorname{argmin}} \| \boldsymbol{x}^{(n)} - \boldsymbol{\mu}_k \|_2$$

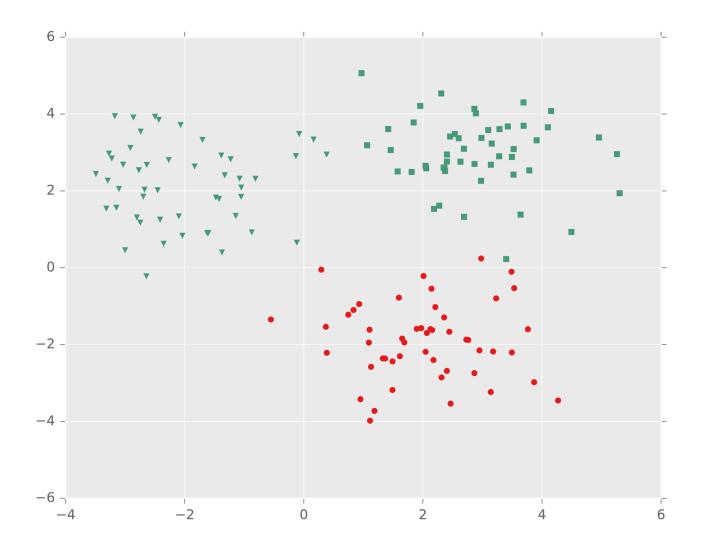
b. Recompute the cluster centers:

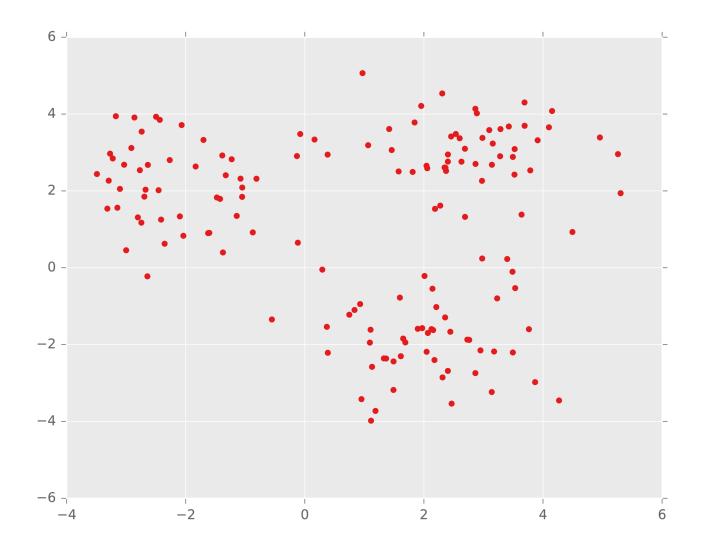
$$\boldsymbol{\mu}_k = \frac{1}{N_k} \sum_{n: z^{(n)} = k} \boldsymbol{x}^{(n)}$$

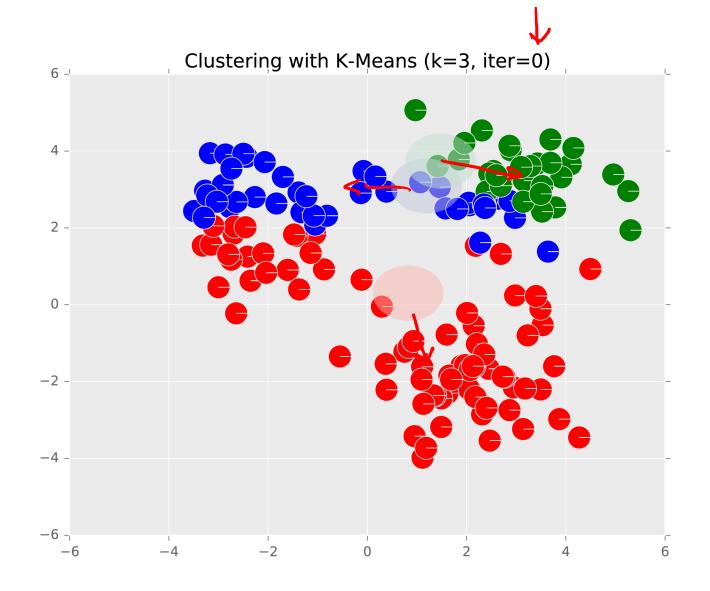
where N_k is the number of data points in cluster k

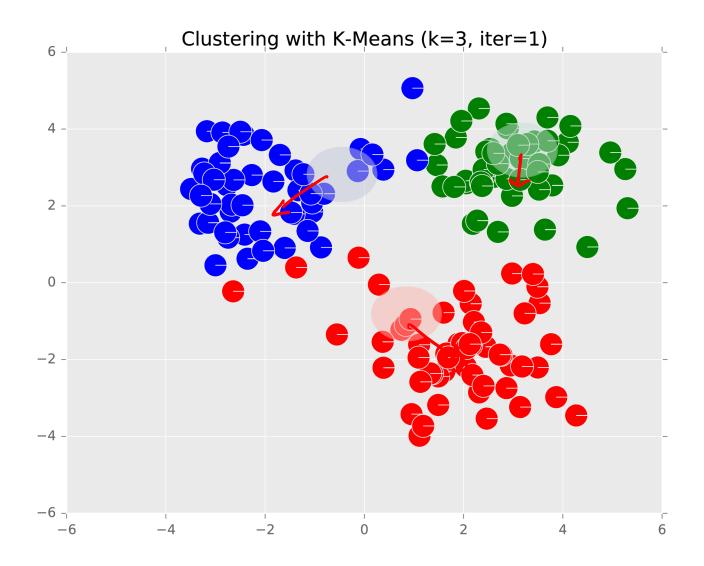
23

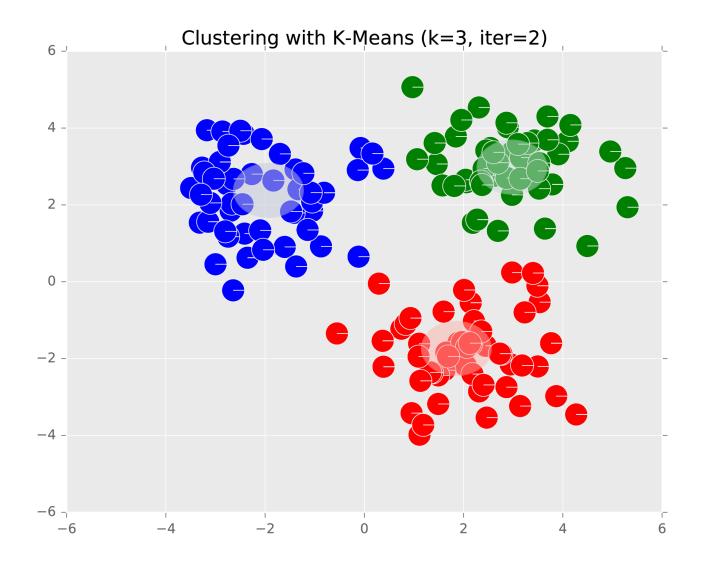
• Output: cluster centers $\mu_1, ..., \mu_K$ and cluster assignments $z^{(1)}, ..., z^{(N)}$

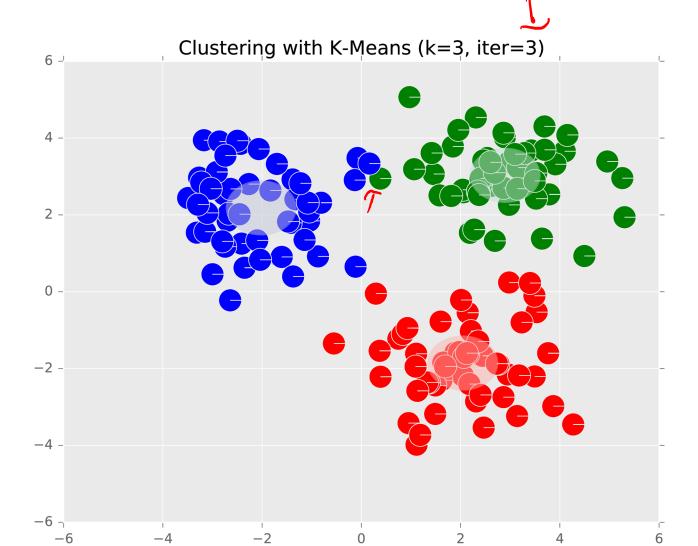


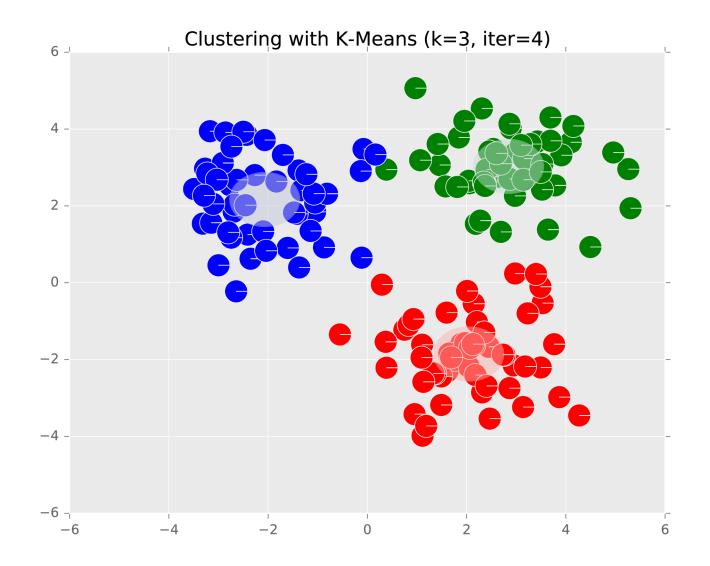


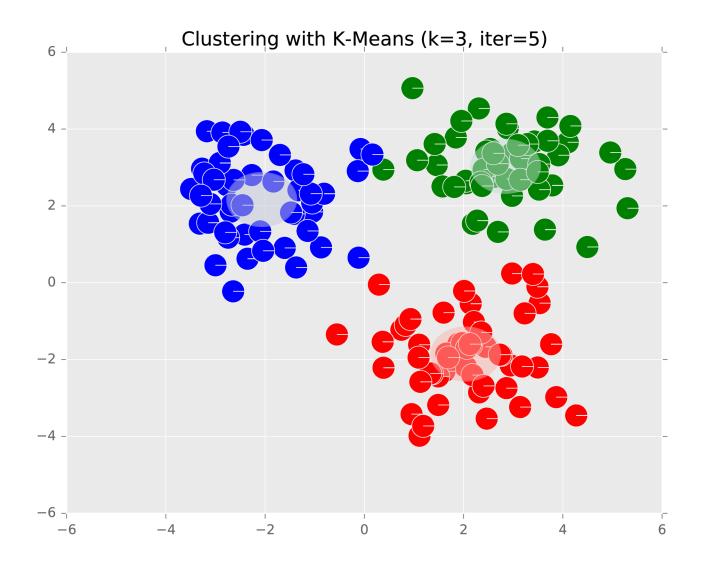


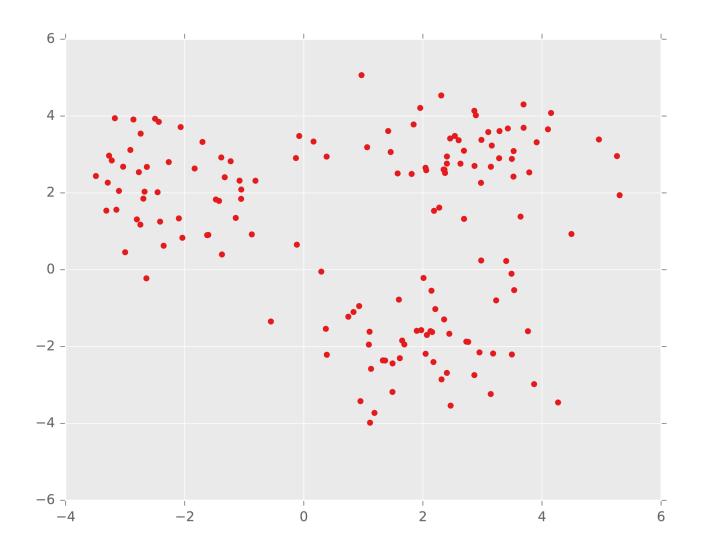


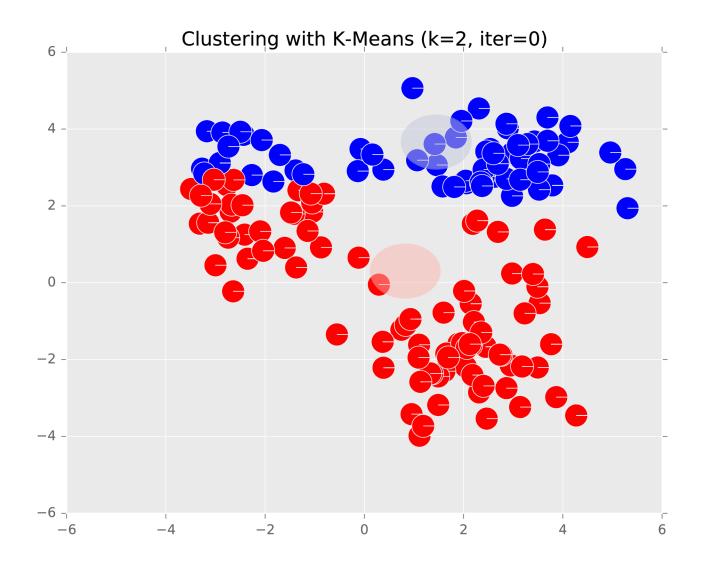


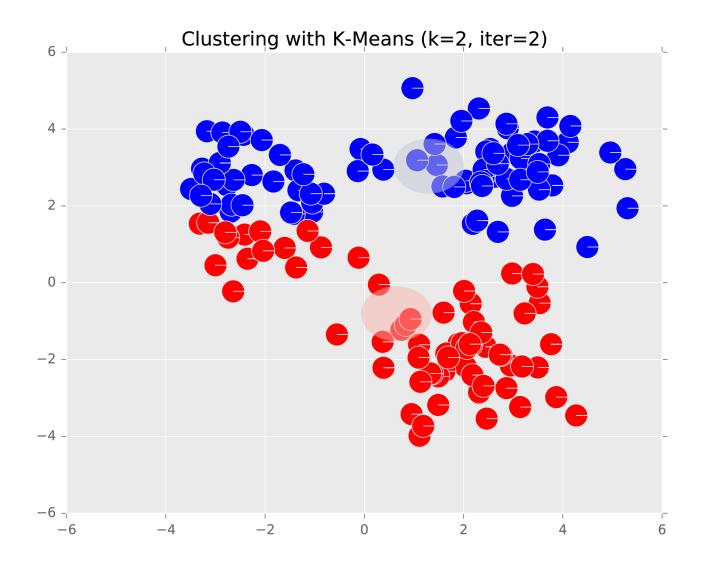


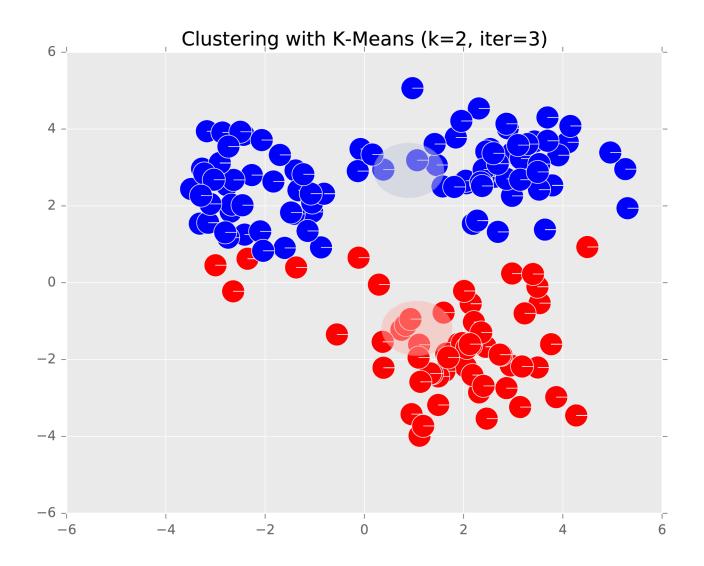


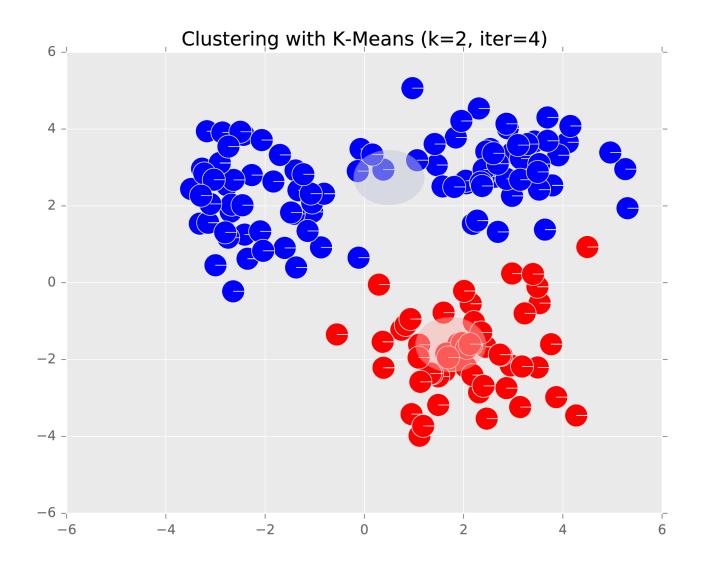




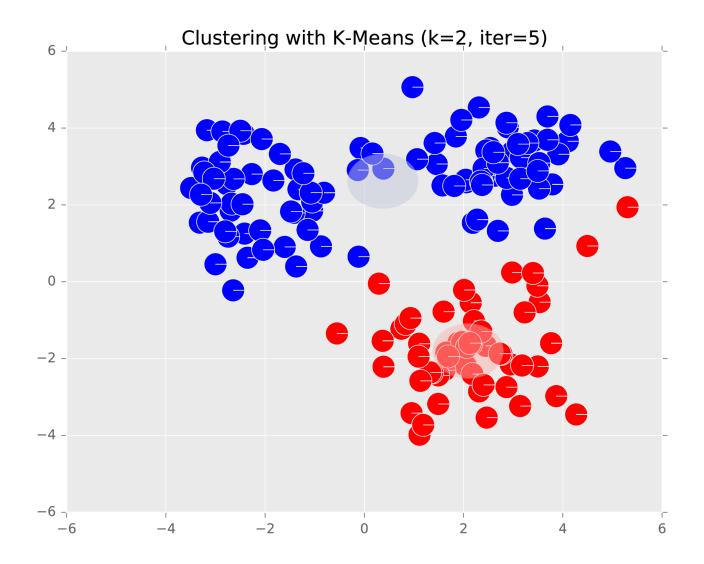




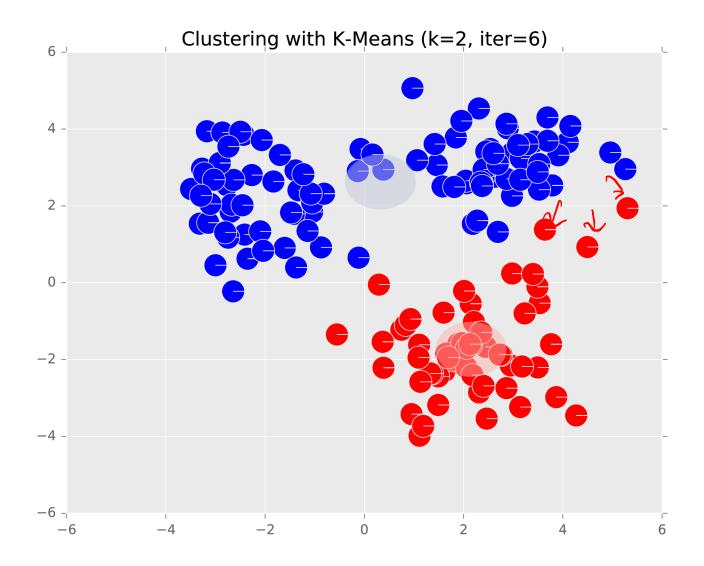




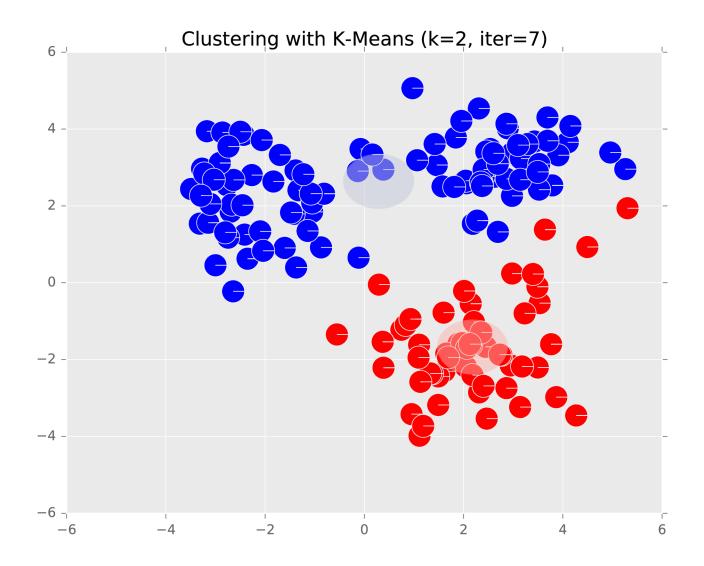
K-means: Example (K = 2)



K-means: Example (K = 2)



K-means: Example (K = 2)

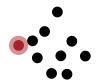


• Idea: choose the value of \boldsymbol{K} that minimizes the objective function

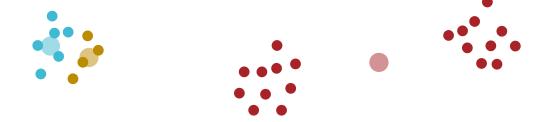
Setting *K*

• Common choice: choose K data points at random to be the initial cluster centers (Lloyd's method)

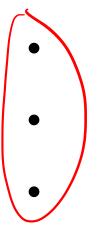
• Common choice: choose K data points at random to be the initial cluster centers (Lloyd's method)



• Common choice: choose *K* data points at random to be the initial cluster centers (Lloyd's method)

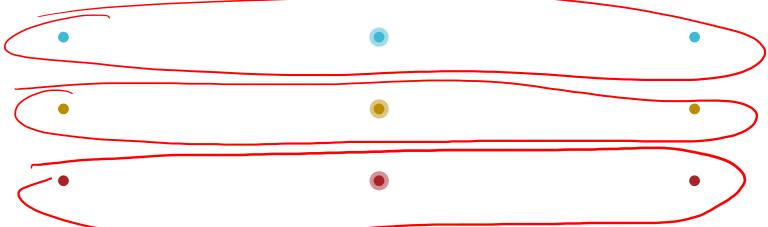


• Common choice: choose K data points at random to be the initial cluster centers (Lloyd's method)



• Common choice: choose *K* data points at random to be the initial cluster centers (Lloyd's method)

• Common choice: choose *K* data points at random to be the initial cluster centers (Lloyd's method)



- Lloyd's method converges to a local minimum and that local minimum can be arbitrarily bad (relative to the optimal clusters)
- Intuition: want initial cluster centers to be far apart from one another

K-means++ (Arthur and Vassilvitskii, 2007)

- 1. Choose the first cluster center randomly from the data points.
- 2. For each other data point x, compute D(x), the distance between x and the closest cluster center.
- 3. Select the next cluster center proportional to $D(x)^2$.
- 4. Repeat 2 and 3 K-1 times.
- K-means++ achieves a $O(\log K)$ approximation to the optimal clustering in expectation
- Both Lloyd's method and K-means++ can benefit from multiple random restarts.

Key Takeaways

- *K*-means objective function & model parameters
- Block-coordinate descent
- Setting *K*
- Initializing K means