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Front Matter
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* Announcements

* HW5 released on 6/3, due 6/6 at 11:59 PM
- Schedule change: two recitations this week

- Recitation on 6/4 (today!) will be a PyTorch

tutorial

- Recitation on 6/5 will be Quiz 3 preparation
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* Issue: for certain activation functions, the weights in later
layers are highly sensitive to changes in the earlier layers

- Small changes to weights in early layers are amplified

so weights in deeper layers have to deal with massive

dynamic ranges — slow optimization convergence

Layer

* Idea: normalize the output of a layer to always have the

Normalization same (learnable) mean, /3, and variance, ¥ 2

H—pu
o

ff=y( )+B

where p is the mean and o is the standard deviation of the

values in the vector H
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* Observation: early deep neural networks suffered from the

“degradation” problem where adding more layers actually

56-layer

20-layer

made performance worse!

[
(=]
1

201

—
(=]
T
—
(=
T

Residual

56-layer

training error (%)
test error (%)

Connections

20-layer

(=]
(=]
—

I I 1 L
2 5 6 0 1 2

3 r 3 7
iter. (le4) iter. (1e4)

- Wait but this is ridiculous: if the later layers aren’t helping,

couldn’t they just learn the identity transformation???

* Insight: neural network layers actually have a hard time

learning the identity function
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* Observation: early deep neural networks suffered from the

“degradation” problem where adding more layers actually

made performance worse!

* |dea: add the input embedding back to the output of a layer
H =H(x®W) + x®

Residual

. * Suppose the target function is f
Connections

* Now instead of having to learn f(x(i)), the hidden layer

just needs to learn the residual r = f(x(i)) — @

* If f is the identity function, then the hidden layer just

needs to learn r = 0, which is easy for a neural network!
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* Observation: early deep neural networks suffered from the

“degradation” problem where adding more layers actually

made performance worse!

* |dea: add the input embedding back to the output of a layer
H =H(x®W) +xW
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- Supervised learning - D = {(x("),y("))}zzl
- Regression - y™ € R
Lea rning - Classification - y(™ € {1, ..., C}

Paradigms

. i I - — (n) N
Unsupervised learning - D {x }n=1
* Clustering

- Dimensionality reduction
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Learning

Paradigms
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* Supervised learning - D = {(x(n)'y(n))}jjzl

- Regression - y™ € R
* Classification - y(") e{1,..,C}

N
* Unsupervised learning - D = {x(n)}n=1

* Clustering

- Dimensionality reduction
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Clustering
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* Goal: split an unlabeled data set into groups or clusters of

“similar” data points

- Use cases:

* Organizing data
* Discovering patterns or structure
* Preprocessing for downstream machine learning tasks

* Applications:
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Recall:

Similarity for
kNN

Henry Chai - 6/4/25

Cntuition: seedie—halobael ot o datocolni i o tho ool of
the—most-simiar—trairingpoit two points are “similar” if

the distance between them is small

* Euclidean distance: d(x, x") = ||x — x|,
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Partition-Based

Clustering

Henry Chai - 6/4/25

* Given a desired number of clusters, K, return a partition

of the data set into K groups or clusters, {Cy, ..., Cx},

that optimize some objective function

1. What objective function should we optimize?

2. How can we perform optimization in this setting?

13



Option A Option B

Which do you prefer and why?
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Lecture 23 Polls

0 surveys completed

0 surveys underway

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



Which partition or clustering do you prefer?

Option A

Option B

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



Justify your response to the previous question

Join by QR code
Scan with your camera app

Join by Web

PollEv.com/301601polls

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app




* Define a model and model parameters
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Recipe

for
K-means
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* Define a model and model parameters

* Write down an objective function

* Optimize the objective w.r.t. the model parameters
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Coordinate
Descent
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* Goal: minimize some objective
0 = argmin J(0)

* Idea: iteratively pick one variable and minimize the

objective w.r.t. just that variable, keeping all others fixed.
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* Goal: minimize some objective
@, f = argmin J(a, B)

* Idea: iteratively pick one block of variables (a or ) and
minimize the objective w.r.t. that block, keeping the

Block .

other(s) fixed.

Coordinate
Descent

- Ideally, blocks should be the largest possible set of

variables that can be efficiently optimized

simultaneously
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Optimizing the
K-means

objective
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K-means

Algorithm

Henry Chai - 6/4/25

N
* Input: D = {(x(") )}n=1'K
1. Initialize cluster centers w4, ..., Uy

2. While NOT CONVERGED

a. Assign each data point to the cluster with the
nearest cluster center:

z(™W = argmin ||x(") - ”kllz
K

b. Recompute the cluster centers:

1
- (n)
Hie =N z *

n :Z(n)zk

where N}, is the number of data points in cluster k

 Output: cluster centers u4, ..., g and cluster
assignments z(1, ..., z(V)
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K-means:

Example
(K = 3)
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Figure courtesy of Matt Gormley
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K-means:

Example
(K = 3)
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K-means:

Example
(K = 3)
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\

~ Clustering with K-Means (k=3, iter=0)

Figure courtesy of Matt Gormley 26



K-means:

Example
(K = 3)
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~ Clustering with K-Means (k=3, iter=1)

Figure courtesy of Matt Gormley 27



K-means:

Example
(K = 3)
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 Clustering with K-Means (k=3, iter=2)

Figure courtesy of Matt Gormley 28
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Figure courtesy of Matt Gormley
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K-means:

Example
(K = 3)
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 Clustering with K-Means (k=3, iter=4)

Figure courtesy of Matt Gormley 30



K-means:

Example
(K = 3)
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 Clustering with K-Means (k=3, iter=5)

Figure courtesy of Matt Gormley 31



K-means:

Example
(K = 2)

Henry Chai - 6/4/25

4 -
[ ] ..~ |
A [}
‘... ° . %
°. ° o
2 - s° ® :
(X J
.. o © [
° [ ]
[}
° °
0 -
[ ]
-2 -
—4 -
_6‘| 1
-4 -2

Figure courtesy of Matt Gormley

32



K-means:

Example
(K = 2)
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 Clustering with K-Means (k=2, iter=0)

Figure courtesy of Matt Gormley 33



K-means:

Example
(K = 2)
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 Clustering with K-Means (k=2, iter=2)

Figure courtesy of Matt Gormley 34



K-means:

Example
(K = 2)
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 Clustering with K-Means (k=2, iter=3)

Figure courtesy of Matt Gormley 35



K-means:

Example
(K = 2)
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- Clustering with K-Means (k=2, iter=4)

Figure courtesy of Matt Gormley 36



K-means:

Example
(K = 2)
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~ Clustering with K-Means (k=2, iter=5)

Figure courtesy of Matt Gormley 37
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Figure courtesy of Matt Gormley
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K-means:

Example
(K = 2)
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 Clustering with K-Means (k=2, iter=7)

Figure courtesy of Matt Gormley 39



Setting K
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* |[dea: choose the value of K that minimizes the
objective function
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Initializing

K-means
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- Common choice: choose K data points at random to be

the initial cluster centers (Lloyd’s method)
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Initializing

K-means
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- Common choice: choose K data points at random to be

the initial cluster centers (Lloyd’s method)
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Initializing

K-means
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- Common choice: choose K data points at random to be
the initial cluster centers (Lloyd’s method)

:...' oo:. ® ......

43



Initializing

K-means
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- Common choice: choose K data points at random to be
the initial cluster centers (Lloyd’s method)
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Initializing

K-means
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- Common choice: choose K data points at random to be
the initial cluster centers (Lloyd’s method)
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Initializing

K-means
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- Common choice: choose K data points at random to be
the initial cluster centers (Lloyd’s method)

= —

.)
- : >
* Lloyd’s me erges to a local minimum and that

local minimum can be arbitrarily bad (relative to the
optimal clusters)

* Intuition: want initial cluster centers to be far apart
from one another
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K-means++
(Arthur and
Vassilvitskii,
2007)
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Choose the first cluster center randomly from the
data points.

For each other data point x, compute D(x), the
distance between x and the closest cluster center.

Select the next cluster center proportional to D (x)?.

Repeat 2 and 3 K — 1 times.

* K-means++ achieves a O (log K) approximation to the

optimal clustering in expectation

* Both Lloyd’s method and K-means++ can benefit from

multiple random restarts.
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- K-means objective function & model parameters
* Block-coordinate descent
- Setting K

* Initializing K means
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