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Front Matter

Henry Chai - 6/4/25

* Announcements

* HWS5 released on 6/3, due 6/6 at 11:59 PM
 Schedule change: two recitations this week

- Recitation on 6/4 (today!) will be a PyTorch

tutorial

* Recitation on 6/5 will be Quiz 3 preparation
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* Issue: for certain activation functions, the weights in later

layers are highly sensitive to changes in the earlier layers

- Small changes to weights in early layers are amplified
so weights in deeper layers have to deal with massive

dynamic ranges — slow optimization convergence

Layer

* ldea: normalize the output of a layer to always have the

Normallzatlon same (learnable) mean, 3, and variance, y?
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where 1 is the mean and ¢ is the standard deviation of the

values in the vector H
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* Observation: early deep neural networks suffered from the

“degradation” problem where adding more layers actually
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made performance worse!
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* Wait but this is ridiculous: if the later layers aren’t helping,

couldn’t they just learn the identity transformation???

* Insight: neural network layers actually have a hard time

learning the identity function
Henry Chai- 6/4/25 Source: https://arxiv.org/pdf/1512.03385.pdf
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* Observation: early deep neural networks suffered from the

“degradation” problem where adding more layers actually

made performance worse!

* |dea: add the input embedding back to the output of a layer
H = H(x®) + x®

Residual

. * Suppose the target function is f
Connections

* Now instead of having to learn f(x(i)), the hidden layer

just needs to learn the residual r = f(x(i)) — 5D

* If f is the identity function, then the hidden layer just

needs to learn r = 0, which is easy for a neural network!
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* Observation: early deep neural networks suffered from the

“degradation” problem where adding more layers actually

made performance worse!

* |dea: add the input embedding back to the output of a layer
H = H(x®) + x®
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» Supervised learning - D = {(x("),y("))}zzl
- Regression - y(™ € R
Lea rning + Classification - y(™ € {1, ..., C}

Paradigms

. i i - = (n) N
Unsupervised learning - D {x }n=1
* Clustering

* Dimensionality reduction
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Learning

Paradigms
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* Supervised learning - D = {(x(n)»y(n))}:ﬂ

- Regression - y™ € R
+ Classification - y(™ € {1, ..., C}

N
* Unsupervised learning - D = {x(n)}nzl

* Clustering

* Dimensionality reduction

10



Clustering
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* Goal: split an unlabeled data set into groups or clusters of
“similar” data points

* Use cases:
* Organizing data
* Discovering patterns or structure
* Preprocessing for downstream machine learning tasks

* Applications:
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Recall:

Similarity for
kNN
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CIntuition: predietthebbeletadampeirtiobethe bbelet
the“mestsimilar™trainingpoint two points are “similar” if

the distance between them is small

* Euclidean distance: d(x, x") = ||lx — x'||,
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Partition-Based

Clustering
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* Given a desired number of clusters, K, return a partition
of the data set into K groups or clusters, {Cy, ..., Cx},

that optimize some objective function

1. What objective function should we optimize?

2. How can we perform optimization in this setting?
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Option A Option B

Which do you prefer?

enry Chai-6/4/25



General
Recipe

for
Machine
Learning
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* Define a model and model parameters

- Write down an objective function

* Optimize the objective w.r.t. the model parameters

15
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* Define a model and model parameters

* Assume K clusters and use the Euclidean distance

- Parameters: @y, ..., g and z, ..., z(V)

* Write down an objective function

N
D 1™ = ],
n=1

* Optimize the objective w.r.t. the model parameters

* Use (block) coordinate descent
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Coordinate
Descent
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- Goal: minimize some objective
0 = argmin J(0)

* Idea: iteratively pick one variable and minimize the

objective w.r.t. just that variable, keeping all others fixed.
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Block

Coordinate
Descent
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- Goal: minimize some objective

@, = argmin J(a, B)

- Idea: iteratively pick one block of variables (a or ) and

minimize the objective w.r.t. that block, keeping the
other(s) fixed.

* Ideally, blocks should be the largest possible set of
variables that can be efficiently optimized

simultaneously
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Optimizing the
K-means

objective
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N
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n=1
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K-means

Algorithm
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1. Initialize cluster centers w4, ..., Ug

2. While NOT CONVERGED

a. Assign each data point to the cluster with the
nearest cluster center:

2z = argmin ||x™ — p ||,
k

b. Recompute the cluster centers:

1
— (n)
Hie = Z x

n:zM=k

where Ny, is the number of data points in cluster k

° Output: cluster centers u4, ..., g and cluster
assignments z(V ..., z(V)

20



K-means:

Example
(K = 3)
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Figure courtesy of Matt Gormley
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K-means:

Example
(K = 3)
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Figure courtesy of Matt Gormley
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K-means:

Example
(K = 3)
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~ Clustering with K-Means (k=3, iter=0) |

Figure courtesy of Matt Gormley 23



~ Clustering with K-Means (k=3, iter=1) |
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K-means:

Example 0-
(K = 3)
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K-means:

Example
(K = 3)
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~ Clustering with K-Means (k=3, iter=2) |

Figure courtesy of Matt Gormley 25



K-means:

Example
(K = 3)
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~ Clustering with K-Means (k=3, iter=3) |

Figure courtesy of Matt Gormley 26



K-means:

Example
(K = 3)
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~ Clustering with K-Means (k=3, iter=4)

Figure courtesy of Matt Gormley 27



K-means:

Example
(K = 3)
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~ Clustering with K-Means (k=3, iter=5) |

Figure courtesy of Matt Gormley 28



K-means:

Example
(K = 2)
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K-means:

Example
(K = 2)
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~ Clustering with K-Means (k=2, iter=0) |

Figure courtesy of Matt Gormley 30



K-means:

Example
(K = 2)
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~ Clustering with K-Means (k=2, iter=2) |

Figure courtesy of Matt Gormley 31



K-means:

Example
(K = 2)
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~ Clustering with K-Means (k=2, iter=3) |

Figure courtesy of Matt Gormley 32



K-means:

Example
(K = 2)
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~ Clustering with K-Means (k=2, iter=4)

Figure courtesy of Matt Gormley 33
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K-means:

Example
(K = 2)
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~ Clustering with K-Means (k=2, iter=7) |

Figure courtesy of Matt Gormley 36



Setting K

Henry Chai - 6/4/25

* |dea: choose the value of K that minimizes the
objective function

Objective function value

K

* Better Idea: look for the characteristic “elbow” or
largest decrease when going from K —1to K
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Initializing

K-means
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- Common choice: choose K data points at random to be
the initial cluster centers (Lloyd’s method)
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Initializing

K-means
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- Common choice: choose K data points at random to be
the initial cluster centers (Lloyd’s method)
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Initializing

K-means

Henry Chai - 6/4/25

- Common choice: choose K data points at random to be
the initial cluster centers (Lloyd’s method)
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Initializing

K-means
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- Common choice: choose K data points at random to be
the initial cluster centers (Lloyd’s method)

41



Initializing

K-means
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- Common choice: choose K data points at random to be
the initial cluster centers (Lloyd’s method)
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- Common choice: choose K data points at random to be
the initial cluster centers (Lloyd’s method)

Initializing ’ o ’
K-means o . o

* Lloyd’s method converges to a local minimum and that
local minimum can be arbitrarily bad (relative to the

optimal clusters)

* Intuition: want initial cluster centers to be far apart
from one another

43
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K-means++
(Arthur and
Vassilvitskii,
2007)

Henry Chai - 6/4/25

Choose the first cluster center randomly from the
data points.

For each other data point x, compute D(x), the
distance between x and the closest cluster center.

Select the next cluster center proportional to D(x)?.

Repeat 2 and 3 K — 1 times.

- K-means++ achieves a O(log K) approximation to the

optimal clustering in expectation

* Both Lloyd’s method and K-means++ can benefit from

multiple random restarts.
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- K-means objective function & model parameters
* Block-coordinate descent
- Setting K

* Initializing K means
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