10-301/601: Introduction
to Machine Learning
Lecture 22 — Attention &
Transformers

Henry Chai
6/3/25

RNN
Language

Models:
Pros & Cons

Henry Chai - 6/3/25

* Pros:

* Can handle arbitrary sequence lengths without having
to increase model size (i.e., # of learnable parameters)

* Trainable via backpropagation

* Cons

* Vanishing/exploding gradients

* Does not consider information from later timesteps
* Can be addressed by bidirectional RNNs

- Computation is inherently sequential

* "You can't cram the meaning of a whole %&!S#
sentence into a single S& #* vector!” — Ray Mooney,
UT Austin

32

RNN
Language

Models:
Pros & Cons

Henry Chai - 6/3/25

* Pros:

* Can handle arbitrary sequence lengths without having
to increase model size (i.e., # of learnable parameters)

* Trainable via backpropagation

* Cons

* Vanishing/exploding gradients

* Does not consider information from later timesteps
* Can be addressed by bidirectional RNNs

- Computation is inherently sequential

* The entire sequence up to some timestep is
represented using just one vector

33

b e e

RNN1 RNN1 RNN1 RNN2 RNN2 RNN2 RNN2 RNN2
Encoder network Decoder network

Encoder-Decoder Architectures

(Sutskever et al., 2014)

https://arxiv.org/pdf/1506.00019.pdf

Attention

Henry Chai - 6/3/25

* Approach: compute a representation of the input

sequence for each token x' in the decoder

* |dea: allow the decoder to learn which tokens in the

input to “pay attention to” i.e., put more weight on

35

Attention

Henry Chai - 6/3/25

* Approach: compute a representation of the input

sequence for each token x' in the decoder
4

C(x') = z a.(x")v,

t=1
attention weights

a0 a0 Aasrd/ |44

U4 (%) U3 Uy values
(T [[CLO»

36

Attention

Henry Chai - 6/3/25

* Approach: compute a representation of the input

sequence for each token x' in the decoder
4

Clx") = 2 Softmax(st(x’))vt

t=1
attention weights

as

softmax

S1 L SZL scores
Vs values

37

Attention

Henry Chai - 6/3/25

* Approach: compute a representation of the input

sequence for each token x' in the decoder
4

C(x") = Z softmax(s(x’, xt))v(xt)

t=1

a4 a, g as attention weights
softmax
scores
v, () v2(%2) v3(x3) v4(xs) values

input tokens
____ 38

* Approach: compute a representation of the input

sequence for each token x' in the decoder
4

C(x") = z softmax(s(x’, xt))v(xt)

Scaled A2
Dot-peruct / ﬂ(%/ﬁ//% F] \attentlon weights

Atiartior softmax o
SCOTES: St = e ngth(®)
query: q=wox'
keys: fee = Wiexy
values: ve = Wyx;

input tokens

Henry Chai - 6/3/25 (T 111 L) i fl bt 39

v F i

RNN1 NN\ RNN1 RNN2 RNN2 RNN2 RNN2 RNN2
J L
Encoder network Decoder network

Encoder-Decoder Architectures

Wlth Attention

https://arxiv.org/pdf/1506.00019.pdf

Encoder network Decoder network
0D = B(UTe 4y (57,0)

Encoder-Decoder Architectures

Wlth Attention

https://arxiv.org/pdf/1506.00019.pdf

}/\quF

RNN1 NN1 RNN1 RNN2 RNNZ C RNN2 RNN2 RNN2
W {
D'
Encoder network Decoder network

Encoder-Decoder Architectures

Wlth Attention

https://arxiv.org/pdf/1506.00019.pdf

[Attention } WI'IAT IF | 'I'Illll Yllll

WiEh ttentlon (Vaswani et aI ,2017)

https://arxiv.org/pdf/1706.03762.pdf

Scaled
Dot-product
Self-attention

Henry Chai - 6/3/25

- Approach: compute a representation for each token in

the input sequence by attending to all the input tokens

a1
[softmax
51,1l S1) 514
d1
(11 ||| |||| ||||
k]| 2 3
111 |||| 11 ||||
12 v v v

T OO0 [0 OO
X1 X2 X3 X4
(11 COCI11 CLIT] CIIT]

4

h, = 2 softmax(sl, j)vj

j=1
attention weights

ka1
scores: Sy =
\/length(k])
queries: q; = Wyx;

keys: k; = Wyx;

values: v, = Wyx;

input tokens

44

L Sempue foon softmer Ch) D 34

- Approach: compute a representation for each token in

the input sequence by attending to all the input tokens

hu \g *
W ph, = 2 softmax(s, ;)v;
j=1
attention weights

Scaled

Dot-product
Self-attention

v v v (2 VS values: v, = Wyx,
T Xm LT.':I

X{ X, X3 Xy nput tOkel

Henry Chai - 6/3/25 |||||||||||||||||||| %g
y ",j"&'t A[ﬁﬁ’_‘) e <

Scaled

Dot-product
Self-attention:

Matrix Form

Henry Chai - 6/3/25

- Approach: compute a representation for each token in

the input sequence by attending to all the input tokens

'fh L,_ L) th_g‘
[TT]

ENEEQEREEERET R

I

) d4
|||| [T IZIZIZ EEE

ky k; k k,
I OO OO\ OO
v, Uy V3 1746?l
IO OO OO OO0
X1 X2 X3 X4

H = softmax(S)V

attention weights

KT
scores: S = K
Vagk

queries: Q = XW,
keys: K = XWg

values: V = XW,,

design matrix: X

46

* Idea: just like we might want multiple convolutional filters
in a convolutional layer, we might want multiple attention

] () weights to learn different relationships between tokens!
\

ht'gg- Ty O T HW = softmax(s™)y ™
\

%WWW attention weights

Self-attention E' softmax coraes () _ QPE®DT

queries: QM = XWQ(h)

Multi-head
Scaled
Dot-product

™ I T o
I I T O

values: V) = XWV(h)
T T T T

Xy Xo X3 Xy design matrix: X
Henry Chai-6/3/25 ([T OO OO0

keys: K™ = xw"

Key Takeaway:
All of this
computation is

1. differentiable
2. highly
parallelizable!

Henry Chai - 6/3/25

* Idea: just like we might want multiple convolutional filters

in a convolutional layer, we might want multiple attention

weights to learn different relationships between tokens!

—D
T e s s H® = softmax(S®W)y®

%WWW attention weights

softmax QOICH
scores: S(W =2
&ﬁﬁ [«
k

queries: QW) = XWQ(h)

™ I T o
I I T O

values: V) = XWV(h)
T T T T

Xy Xo X3 Xy design matrix: X
TT117 111 O] COTT]

keys: KM = xwh

48

* Idea: just like we might want multiple convolutional filters
in a convolutional layer, we might want multiple attention

weights to learn different relationships between tokens!

M u It i- h e a d Scaled Dot-Product Attention Multi-Head Attention
Lsnear (g \ (S"]
& LK

Scaled
; T 17

Dot-product

Self-attention

Vv K Q

* The outputs from all the attention heads are

concatenated together to get the final representation
H=[HY H?, . HW)]

» Common architectural choice: d,, =2/, » |H| =
Henry Chai - 6/3/25 Source: https://arxiv.org/pdf/2706.03762.pdf

49

https://arxiv.org/pdf/1706.03762.pdf

Henry Chai - 6/3/25

]
Add & Norm

Feed
Forward

4

Add & Norm

Multi-Head

Attention

Input

—2 Embedding

I

Source: https://arxiv.org/pdf/1706.03762.pdf

50

https://arxiv.org/pdf/1706.03762.pdf

Generated sequence (use each token
as the input to the next timestep)

[lLl L.l

softm ax softm ax
T f 1 1
s \ s ~
Add & Norm Add & Norm
Feed Feed
Forward Forward
. ‘ . “
T £ Nx Add & Norm Nx Add & Norm
ra n S O rm e r Multi-Head Multi-Head
Attention Attention
Language - -
\ - y

Models N 7|
Positional @_@ Positional @_@
Encoding A Encdding £
Input
Embedding

Input
Embedding

I

Input sequence START

Henry Chai - 6/3/25 Source: https://arxiv.org/pdf/1706.03762.pdf

https://arxiv.org/pdf/1706.03762.pdf

* In addition to multi-head

| Y
Add & Norm .
- attention, transformer
Feed
FETLIER. architectures use

1. Positional encodings

Add & Norm

Multi-Head
Attention

Transformers

Layer normalization

3. Residual connections

Positional

Encoding 4. A fully-connected

Input _
Fmbedding feed-forward network

I

Henry Chai- 6/3/25 Source: https://arxiv.org/pdf/1706.03762.pdf 52

https://arxiv.org/pdf/1706.03762.pdf

* Issue: if all tokens attend to every token in the sequence,

then how does the model infer the order of tokens?

hoohy kg

O OO OO0 [O0 H = softmax(S)V € RV*%v
Scaled > hy he hy ks
Dot-product

[T1 17 ||r||| [T O attention weights

+ ,“ELJT«'E ﬁiﬁq

Self-attention: softmax @
Matrix Form L L L scores: S = e RVXN

a4 queries: Q = XW, € RV*4
i |||| B "t
ki ky ks ks keys: K = XW, € RN*%
IO [0 OO OO
vy, VUV V3 Uy values: V = XW,, € RN*%v
IO OO OO OO
%y =X NE Xy X3 Xy design matrix: X € RV*P

Henry Chai - 6/3/25

TT11] I OOl OO 53

Positional

Encodings

Henry Chai - 6/3/25

* Issue: if all tokens attend to every token in the sequence,

then how does the model infer the order of tokens?

* Idea: add a position-specific embedding p; to the token

embedding x;

I __
Xt = Xt T D¢

* Positional encodings can be

- fixed i.e., some predetermined function of t or learned

alongside the token embeddings

* absolute i.e., only dependent on the token’s location in

the sequence or relative to the query token’s location

54

- Attention allows information to directly pass between

every pair of tokens

* Attention can be used in conjunction with RNNs/LSTMs

Key IE keawayS * However, (self-)attention can also be used in isolation

* Transformers consist of multi-head attention layers with
residual connections, layer normalization and fully-

connected layers

Henry Chai - 6/3/25 60

	Slide 1: 10-301/601: Introduction to Machine Learning Lecture 21 – Language Modeling
	Slide 2: Front Matter
	Slide 3: Language Generation
	Slide 4: Language Models
	Slide 5: Tokenization and Embedding
	Slide 6: Tokenization
	Slide 7: Tokenization
	Slide 8: Tokenization
	Slide 9: Tokenization
	Slide 10: Embedding
	Slide 11: Okay but how do I go about training this neural network?
	Slide 12: Embedding
	Slide 13: Embedding Layer
	Slide 14: Embedding Layer
	Slide 15: Language Models
	Slide 16: Language Models
	Slide 17: RNN Language Models
	Slide 18: RNN Language Models: Training
	Slide 20: RNN Language Model: Sampling
	Slide 21: Aside: Sampling from these distributions to get the next word is not always the best thing to do
	Slide 22: RNN Language Models: Pros & Cons
	Slide 23: Backpropagation: Procedural Method
	Slide 24: Module-based AutoDiff
	Slide 25: Module-based AutoDiff
	Slide 26: Module-based AutoDiff
	Slide 27: Module-based AutoDiff (OOP Version)
	Slide 28: Module-based AutoDiff (OOP Version)
	Slide 29: Module-based AutoDiff (OOP Version)
	Slide 30: Key Takeaways
	Slide 31: 10-301/601: Introduction to Machine Learning Lecture 22 – Attention & Transformers
	Slide 32: RNN Language Models: Pros & Cons
	Slide 33: RNN Language Models: Pros & Cons
	Slide 34: Encoder-Decoder Architectures (Sutskever et al., 2014)
	Slide 35: Attention
	Slide 36: Attention
	Slide 37: Attention
	Slide 38: Attention
	Slide 39: Scaled Dot-product Attention
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Encoder-Decoder Architectures with Attention (Vaswani et al., 2017)
	Slide 44: Scaled Dot-product Self-attention
	Slide 45: Scaled Dot-product Self-attention
	Slide 46: Scaled Dot-product Self-attention: Matrix Form
	Slide 47: Multi-head Scaled Dot-product Self-attention
	Slide 48: Key Takeaway: All of this computation is 1. differentiable 2. highly parallelizable!
	Slide 49: Multi-head Scaled Dot-product Self-attention
	Slide 50: Transformers
	Slide 51: Transformer Language Models
	Slide 52: Transformers
	Slide 53: Scaled Dot-product Self-attention: Matrix Form
	Slide 54: Positional Encodings
	Slide 55: Layer Normalization
	Slide 56: Layer Normalization
	Slide 57: Residual Connections
	Slide 58: Residual Connections
	Slide 59: Residual Connections
	Slide 60: Key Takeaways

