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10-301/601: Introduction 
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Lecture 22 – Attention & 
Transformers



RNN
Language 
Models:
Pros & Cons

 Pros:

 Can handle arbitrary sequence lengths without having 

to increase model size (i.e., # of learnable parameters)

 Trainable via backpropagation

 Cons

 Vanishing/exploding gradients

 Does not consider information from later timesteps

 Can be addressed by bidirectional RNNs

 Computation is inherently sequential

 "You can't cram the meaning of a whole %&!$# 

sentence into a single $&!#* vector!” – Ray Mooney, 

UT Austin
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RNN
Language 
Models:
Pros & Cons

 Pros:

 Can handle arbitrary sequence lengths without having 

to increase model size (i.e., # of learnable parameters)

 Trainable via backpropagation

 Cons

 Vanishing/exploding gradients

 Does not consider information from later timesteps

 Can be addressed by bidirectional RNNs

 Computation is inherently sequential

 The entire sequence up to some timestep is 

represented using just one vector
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Encoder-Decoder Architectures 
(Sutskever et al., 2014)
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Encoder network Decoder network

RNN1 RNN1 RNN1 RNN2 RNN2 RNN2 RNN2 RNN2

https://arxiv.org/pdf/1506.00019.pdf


Attention
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 Approach: compute a representation of the input 

sequence for each token 𝑥′ in the decoder

 Idea: allow the decoder to learn which tokens in the 

input to “pay attention to” i.e., put more weight on



 Approach: compute a representation of the input 

sequence for each token 𝑥′ in the decoder

Attention

6

𝑣2 𝑣3 𝑣4

𝑎1 𝑎2 𝑎3

values

attention weights𝑎4

𝑣1
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𝐶 𝑥′ = ෍

𝑡=1

4

𝑎𝑡 𝑥′ 𝑣𝑡



 Approach: compute a representation of the input 

sequence for each token 𝑥′ in the decoder

Attention

𝑣2 𝑣3 𝑣4

𝑎1 𝑎2 𝑎3

values

attention weights𝑎4

softmax

𝑠1 𝑠2 𝑠3 𝑠4 scores

𝑣1
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𝐶 𝑥′ = ෍

𝑡=1

4

softmax 𝑠𝑡 𝑥′ 𝑣𝑡



Attention

 Approach: compute a representation of the input 

sequence for each token 𝑥′ in the decoder

𝑎1 𝑎2 𝑎3 attention weights𝑎4

softmax

𝑠1 𝑠2 𝑠3 𝑠4 scores

𝑥1 𝑥2 𝑥3 𝑥4 input tokens
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𝐶 𝑥′ = ෍

𝑡=1

4

softmax 𝑠 𝑥′, 𝑥𝑡 𝑣 𝑥𝑡

values𝑣1 𝑥1 𝑣2 𝑥2 𝑣3 𝑥3 𝑣4 𝑥4



Scaled 
Dot-product
Attention

 Approach: compute a representation of the input 

sequence for each token 𝑥′ in the decoder

𝑎1 𝑎2 𝑎3 attention weights𝑎4

softmax

𝑠1 𝑠2 𝑠3 𝑠4 scores:        𝑠𝑡 =
𝑘𝑡

𝑇𝑞

length 𝑞

input tokens𝑥1 𝑥2 𝑥3 𝑥4

𝑞 𝑥′
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𝑘2 𝑥2 𝑘3 𝑥3 𝑘4 𝑥4𝑘1 𝑥1

𝑣1 𝑥1 𝑣2 𝑥2 𝑣3 𝑥3 𝑣4 𝑥4

𝐶 𝑥′ = ෍

𝑡=1

4

softmax 𝑠 𝑥′, 𝑥𝑡 𝑣 𝑥𝑡

values:         𝑣𝑡 = 𝑊𝑉𝑥𝑡

keys:         𝑘𝑡 = 𝑊𝐾𝑥𝑡

query:         𝑞 = 𝑤𝑄
𝑇𝑥′Attention
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Encoder network Decoder network

Encoder-Decoder Architectures 
with Attention

RNN2 RNN2 RNN2 RNN2

Attention

RNN1 RNN1 RNN1 RNN2

https://arxiv.org/pdf/1506.00019.pdf
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Encoder network Decoder network

Attention

Encoder-Decoder Architectures 
with Attention

RNN1 RNN1 RNN1 RNN2 RNN2 RNN2 RNN2 RNN2

https://arxiv.org/pdf/1506.00019.pdf


Henry Chai - 6/3/25 12Source: https://arxiv.org/pdf/1506.00019.pdf 

Encoder network Decoder network

Attention

Encoder-Decoder Architectures 
with Attention

RNN1 RNN1 RNN1 RNN2 RNN2 RNN2 RNN2 RNN2

https://arxiv.org/pdf/1506.00019.pdf


Encoder-Decoder Architectures 
with Attention (Vaswani et al., 2017)
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Attention

Source: https://arxiv.org/pdf/1706.03762.pdf 

https://arxiv.org/pdf/1706.03762.pdf


Scaled 
Dot-product 
Self-attention

 Approach: compute a representation for each token in 

the input sequence by attending to all the input tokens
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𝑎1,1 𝑎1,2 𝑎1,3 attention weights𝑎1,4

softmax

𝑠1,1 𝑠1,2 𝑠1,3 𝑠1,4
scores:   𝑠1,𝑗 =

𝑘𝑗
𝑇𝑞1

length 𝑘𝑗

input tokens𝑥1 𝑥2 𝑥3 𝑥4

ℎ1

𝑣1 𝑣2 𝑣3 𝑣4

𝑘1 𝑘2 𝑘3 𝑘4

𝑞1 𝑞2 𝑞3 𝑞4

values:   𝑣𝑡 = 𝑊𝑉𝑥𝑡

keys:     𝑘𝑡 = 𝑊𝐾𝑥𝑡

queries: 𝑞𝑡 = 𝑊𝑄𝑥𝑡

ℎ1 = ෍

𝑗=1

4

softmax 𝑠1,𝑗 𝑣𝑗



Scaled 
Dot-product 
Self-attention

 Approach: compute a representation for each token in 

the input sequence by attending to all the input tokens
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𝑎2,1 𝑎2,2 𝑎2,3 𝑎2,4

softmax

𝑠2,1 𝑠2,2 𝑠2,3 𝑠2,4

𝑥1 𝑥2 𝑥3 𝑥4

ℎ2

𝑣1 𝑣2 𝑣3 𝑣4

𝑘1 𝑘2 𝑘3 𝑘4

𝑞1 𝑞2 𝑞3 𝑞4

attention weights

scores:   𝑠2,𝑗 =
𝑘𝑗

𝑇𝑞2

length 𝑘𝑗

input tokens

values:   𝑣𝑡 = 𝑊𝑉𝑥𝑡

keys:     𝑘𝑡 = 𝑊𝐾𝑥𝑡

queries: 𝑞𝑡 = 𝑊𝑄𝑥𝑡

ℎ2 = ෍

𝑗=1

4

softmax 𝑠2,𝑗 𝑣𝑗



Scaled 
Dot-product 
Self-attention: 
Matrix Form

 Approach: compute a representation for each token in 

the input sequence by attending to all the input tokens
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softmax

design matrix: 𝑋 ∈ ℝ𝑁×𝐷
𝑥1 𝑥2 𝑥3 𝑥4

𝑣1 𝑣2 𝑣3 𝑣4

𝑘1 𝑘2 𝑘3 𝑘4

𝑞1 𝑞2 𝑞3 𝑞4

values:   𝑉 = 𝑋𝑊𝑉 ∈ ℝ𝑁×𝑑𝑣

keys:     𝐾 = 𝑋𝑊𝐾 ∈ ℝ𝑁×𝑑𝑘

queries: 𝑄 = 𝑋𝑊𝑄 ∈ ℝ𝑁×𝑑𝑘

scores:   𝑆 =
𝑄𝐾𝑇

𝑑𝑘
 ∈ ℝ𝑁×𝑁

𝐻 = softmax 𝑆 𝑉 ∈ ℝ𝑁×𝑑𝑣

attention weights



softmax

Multi-head
Scaled 
Dot-product 
Self-attention

 Idea: just like we might want multiple convolutional filters 

in a convolutional layer, we might want multiple attention 

weights to learn different relationships between tokens!
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design matrix: 𝑋𝑥1 𝑥2 𝑥3 𝑥4

values:   𝑉(ℎ) = 𝑋𝑊𝑉
ℎ

keys:     𝐾(ℎ) = 𝑋𝑊𝐾
ℎ

queries: 𝑄(ℎ) = 𝑋𝑊𝑄
ℎ

scores:   𝑆 ℎ =
𝑄 ℎ 𝐾 ℎ 𝑇

𝑑𝑘
ℎ

𝐻 ℎ = softmax 𝑆 ℎ 𝑉 ℎ

attention weights

softmaxsoftmax



softmax

Key Takeaway: 
All of this 
computation is
 
  1. differentiable   
  2. highly    
      parallelizable! 

 Idea: just like we might want multiple convolutional filters 

in a convolutional layer, we might want multiple attention 

weights to learn different relationships between tokens!
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design matrix: 𝑋𝑥1 𝑥2 𝑥3 𝑥4

values:   𝑉(ℎ) = 𝑋𝑊𝑉
ℎ

keys:     𝐾(ℎ) = 𝑋𝑊𝐾
ℎ

queries: 𝑄(ℎ) = 𝑋𝑊𝑄
ℎ

scores:   𝑆 ℎ =
𝑄 ℎ 𝐾 ℎ 𝑇

𝑑𝑘
ℎ

𝐻 ℎ = softmax 𝑆 ℎ 𝑉 ℎ

attention weights

softmaxsoftmax



 Idea: just like we might want multiple convolutional filters 

in a convolutional layer, we might want multiple attention 

weights to learn different relationships between tokens!

 The outputs from all the attention heads are 

concatenated together to get the final representation

𝐻 = 𝐻 1 , 𝐻 2 , … , 𝐻 ℎ

 Common architectural choice: 𝑑𝑣 = Τ𝐷
ℎ → 𝐻 = 𝐷

Multi-head
Scaled 
Dot-product 
Self-attention
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https://arxiv.org/pdf/1706.03762.pdf


Transformers
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https://arxiv.org/pdf/1706.03762.pdf


Transformer
Language 
Models
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talks

softmax

⋯ ⋯

henry talks

softmax

START

Generated sequence (use each token 
as the input to the next timestep)

Input sequence henry

https://arxiv.org/pdf/1706.03762.pdf


Transformers
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 In addition to multi-head 

attention, transformer 

architectures use

1. Positional encodings

2. Layer normalization

3. Residual connections

4. A fully-connected 

feed-forward network

https://arxiv.org/pdf/1706.03762.pdf


Scaled 
Dot-product 
Self-attention: 
Matrix Form

 Issue: if all tokens attend to every token in the sequence, 

then how does the model infer the order of tokens?
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softmax

design matrix: 𝑋 ∈ ℝ𝑁×𝐷
𝑥1 𝑥2 𝑥3 𝑥4

𝑣1 𝑣2 𝑣3 𝑣4

𝑘1 𝑘2 𝑘3 𝑘4

𝑞1 𝑞2 𝑞3 𝑞4

values:   𝑉 = 𝑋𝑊𝑉 ∈ ℝ𝑁×𝑑𝑣

keys:     𝐾 = 𝑋𝑊𝐾 ∈ ℝ𝑁×𝑑𝑘

queries: 𝑄 = 𝑋𝑊𝑄 ∈ ℝ𝑁×𝑑𝑘

scores:   𝑆 =
𝑄𝐾𝑇

𝑑𝑘
 ∈ ℝ𝑁×𝑁

𝐻 = softmax 𝑆 𝑉 ∈ ℝ𝑁×𝑑𝑣

attention weights



Positional 
Encodings
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 Issue: if all tokens attend to every token in the sequence, 

then how does the model infer the order of tokens?

 Idea: add a position-specific embedding 𝑝𝑡 to the token 

embedding 𝑥𝑡

𝑥𝑡
′ = 𝑥𝑡 + 𝑝𝑡

 Positional encodings can be

 fixed i.e., some predetermined function of 𝑡 or learned 

alongside the token embeddings

 absolute i.e., only dependent on the token’s location in 

the sequence or relative to the query token’s location



Layer 
Normalization
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 Issue: for certain activation functions, the weights in later 

layers are highly sensitive to changes in the earlier layers

 Small changes to weights in early layers are amplified 

so weights in deeper layers have to deal with massive 

dynamic ranges → slow optimization convergence

 Idea: normalize the output of a layer to always have the 

same (learnable) mean, 𝛽, and variance, 𝛾2

𝐻′ = 𝛾
𝐻 − 𝜇

𝜎
+ 𝛽

where 𝜇 is the mean and 𝜎 is the standard deviation of the 

values in the vector 𝐻



Layer 
Normalization
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 Issue: for certain activation functions, the weights in later 

layers are highly sensitive to changes in the earlier layers

 Small changes to weights in early layers are amplified 

so weights in deeper layers have to deal with massive 

dynamic ranges → slow optimization convergence

 Idea: normalize the output of a layer to always have the 

same (learnable) mean, 𝛽, and variance, 𝛾2

𝐻′ = 𝛾
𝐻 − 𝜇

𝜎
+ 𝛽

where 𝜇 is the mean and 𝜎 is the standard deviation of the 

values in the vector 𝐻

Source: https://arxiv.org/pdf/1607.06450.pdf 

https://arxiv.org/pdf/1607.06450.pdf


Residual 
Connections

 Observation: early deep neural networks suffered from the 

“degradation” problem where adding more layers actually 

made performance worse!

 Wait but this is ridiculous: if the later layers aren’t helping, 

couldn’t they just learn the identity transformation???

 Insight: neural network layers actually have a hard time 

learning the identity function
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https://arxiv.org/pdf/1512.03385.pdf


Residual 
Connections
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 Observation: early deep neural networks suffered from the 

“degradation” problem where adding more layers actually 

made performance worse!

 Idea: add the input embedding back to the output of a layer

𝐻′ = 𝐻 𝑥 𝑖 + 𝑥 𝑖

 Suppose the target function is 𝑓

 Now instead of having to learn 𝑓 𝑥 𝑖 , the hidden layer 

just needs to learn the residual 𝑟 = 𝑓 𝑥 𝑖 − 𝑥 𝑖

 If 𝑓 is the identity function, then the hidden layer just 

needs to learn 𝑟 = 0, which is easy for a neural network!



 Observation: early deep neural networks suffered from the 

“degradation” problem where adding more layers actually 

made performance worse!

 Idea: add the input embedding back to the output of a layer

𝐻′ = 𝐻 𝑥 𝑖 + 𝑥 𝑖

 Suppose the target function is 𝑓

 Now instead of having to learn 𝑓 𝑥 𝑖 , the hidden layer 

just needs to learn the residual 𝑟 = 𝑓 𝑥 𝑖 − 𝑥 𝑖

 If 𝑓 is the identity function, then the hidden layer just 

needs to learn 𝑟 = 0, which is easy for a neural network!

Residual 
Connections
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https://arxiv.org/pdf/1512.03385.pdf


Key Takeaways

 Attention allows information to directly pass between 

every pair of tokens

 Attention can be used in conjunction with RNNs/LSTMs

 However, (self-)attention can also be used in isolation

 Transformers consist of multi-head attention layers with 

residual connections, layer normalization and fully-

connected layers
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