10-301/601: Introduction
to Machine Learning
Lecture 22 — Attention &
Transformers

Henry Chai
6/3/25

RNN
Language

Models:
Pros & Cons

Henry Chai - 6/3/25

* Pros:

* Can handle arbitrary sequence lengths without having
to increase model size (i.e., # of learnable parameters)

* Trainable via backpropagation

* Cons

* Vanishing/exploding gradients

* Does not consider information from later timesteps
* Can be addressed by bidirectional RNNs

- Computation is inherently sequential

* "You can't cram the meaning of a whole %&!S#
sentence into a single S& #* vector!” — Ray Mooney,
UT Austin

RNN
Language

Models:
Pros & Cons

Henry Chai - 6/3/25

* Pros:

* Can handle arbitrary sequence lengths without having
to increase model size (i.e., # of learnable parameters)

* Trainable via backpropagation

* Cons

* Vanishing/exploding gradients

* Does not consider information from later timesteps
* Can be addressed by bidirectional RNNs

- Computation is inherently sequential

* The entire sequence up to some timestep is
represented using just one vector

5 e

RNN1 RNN1 RNN1 RNN2 RNN2 RNN2 RNN2 RNN2
Encoder network Decoder network

Encoder-Decoder Architectures

(Sutskever et al., 2014)

https://arxiv.org/pdf/1506.00019.pdf

* Approach: compute a representation of the input

sequence for each token x' in the decoder

* |dea: allow the decoder to learn which tokens in the

input to “pay attention to” i.e., put more weight on

Attention

Henry Chai - 6/3/25

* Approach: compute a representation of the input

sequence for each token x' in the decoder
4

C(x') = z a.(x")v,

t=1
attention weights

a0 a0 Aasrd/ |44

Attention

U4 (%) U3 Uy values
(T [[CLO»

Henry Chai - 6/3/25

Attention

Henry Chai - 6/3/25

* Approach: compute a representation of the input

sequence for each token x' in the decoder
4

Clx") = 2 Softmax(st(x’))vt

t=1
attention weights

softmax

Scores

values

Attention

Henry Chai - 6/3/25

* Approach: compute a representation of the input

sequence for each token x' in the decoder
4

C(x") = Z softmax(s(x’, xt))v(xt)

t=1

a4 a, g as attention weights
softmax
scores
v, () v2(%2) v3(x3) v4(xs) values

input tokens

* Approach: compute a representation of the input

sequence for each token x' in the decoder
4

C(x") = z softmax(s(x’, xt))v(xt)

Scaled B N~
Dot-peruct / ﬂ(%/ﬁ//% F] \attentlon weights

Attention softmax
scores: §; = ki g
' © " Jlength(q)
query: q=wox'
keyS: kt — Wth
values: vy = Wyx;

input tokens

Henry Chai - 6/3/25 (T 111 L) i fl bt

v F i

RNN1 NN\ RNN1 RNN2 RNN2 RNN2 RNN2 RNN2
J L
Encoder network Decoder network

Encoder-Decoder Architectures

Wlth Attention

https://arxiv.org/pdf/1506.00019.pdf

J/ﬁﬂ e ———

RNN1 NN\ RNN1 MNZ RNN2 RNN2 RNN2 RNN2
Encoder network Decoder network

Encoder-Decoder Architectures

Wlth Attention

https://arxiv.org/pdf/1506.00019.pdf

J/ipFF

RNN1 NN\ RNN1 RNNZ RNN2 RNN2 RNN2 RNN2

ﬁﬁ e S e

Encoder network Decoder network

Encoder-Decoder Architectures

Wlth Attention

https://arxiv.org/pdf/1506.00019.pdf

[Attention } WI'IAT IF | 'I'Illll Yllll

WiEh ttentlon (Vaswani et aI ,2017)

https://arxiv.org/pdf/1706.03762.pdf

Scaled
Dot-product
Self-attention

Henry Chai - 6/3/25

- Approach: compute a representation for each token in

the input sequence by attending to all the input tokens

a1
[softmax
51,1l S1) 514
d1
(11 ||| |||| ||||
k]| 2 3
111 |||| 11 ||||
12 v v v

T OO0 [0 OO
X1 X2 X3 X4
(11 COCI11 CLIT] CIIT]

4

h, = 2 softmax(sl, j)vj

j=1
attention weights

ka1
scores: Sy =
\/length(k])
queries: q; = Wyx;

keys: k; = Wyx;

values: v, = Wyx;

input tokens

14

- Approach: compute a representation for each token in

the input sequence by attending to all the input tokens

4
h, [T [T h, = 2 softmaX(SZ, j)vj
Scaled =
Dot-peruct A21 attention weights
Self-attention [softmax .
52,1L S ,21 Q&Y S, scores: Sy j = \/1 . —
ength(k;)
|q|1| ' C{2| A | _ queries: q; = Wyx,
|k|1|/| l|(2| | | 0 oo keys: e = Wiexe
v V2 Vs values: v; = Wyx,
|x|1| | ;Czl - 9|63| - x|4| - input tokens

Henry Chai - 6/3/25 _ _ _ _

Scaled

Dot-product
Self-attention:

Matrix Form

Henry Chai - 6/3/25

|||||||r||||||||||‘_|||

softmax

.I_.I_.I_

d4
|||| |||| |||| T

ky ky k3 ks

(%1 (%) (%! Uy
(T [OO OO
x1 xz x3 X4

- Approach: compute a representation for each token in

the input sequence by attending to all the input tokens

H = softmax(S)V

attention weights

KT
scores: S = K
Vagk

queries: Q = XW,
keys: K = XWg

values: V = XW,,

design matrix: X

16

* Idea: just like we might want multiple convolutional filters

in a convolutional layer, we might want multiple attention

weights to learn different relationships between tokens!
Multi-head Iy 'y ' O HMW = softmax(sW)y (M)
Scaled
Dot-product

%WWW attention weights

Self-attention E' softmax coraes () _ QPE®DT

queries: QM = XWQ(h)

™ I T o
I I T O

values: V) = XWV(h)
T T T T

Xy Xo X3 Xy design matrix: X
Henry Chai-6/3/25 ([T OO OO0

keys: K® = xw M

Key Takeaway:
All of this
computation is

1. differentiable
2. highly
parallelizable!

Henry Chai - 6/3/25

* Idea: just like we might want multiple convolutional filters

in a convolutional layer, we might want multiple attention

weights to learn different relationships between tokens!

' T T T HMW = softmax(sW)y (M)

%WWW attention weights

softmax QOICH
scores: S(W =2
&ﬁﬁ [«
k

queries: QW) = XWQ(h)

™ I T o
I I T O

values: V) = XWV(h)
T T T T

Xy Xo X3 Xy design matrix: X
TT117 111 O] COTT]

keys: KM = xwh

18

* Idea: just like we might want multiple convolutional filters
in a convolutional layer, we might want multiple attention

weights to learn different relationships between tokens!
M u Iti- h e a d Scaled Dot-Product Attention Multi-Head Attention

Scaled r
‘

Dot-product

Self-attention

* The outputs from all the attention heads are

concatenated together to get the final representation

H=[HY H?, . HW)]

- Common architectural choice: d, =?/,, » |H| =D
Henry Chai- 6/3/25 Source: https://arxiv.org/pdf/1706.03762.pdf

19

https://arxiv.org/pdf/1706.03762.pdf

Transformers

Henry Chai - 6/3/25

r |
Add & Norm
Feed
Forward
L Iy
Nx Add & Norm
Multi-Head
Attention
At
k_ e
Positional @—G 5
Encoding 5
Input
Embedding
Source: https://arxiv.org/pdf/1706.03762.pdf

20

https://arxiv.org/pdf/1706.03762.pdf

Generated sequence (use each token
as the input to the next timestep)

[lLl L.l

softm ax softm ax
T f 1 1
s \ s ~
Add & Norm Add & Norm
Feed Feed
Forward Forward
. ‘ . “
T £ Nx Add & Norm Nx Add & Norm
ra n S O rm e r Multi-Head Multi-Head
Attention Attention
Language - -
\ - y

Models N 7|
Positional @_@ Positional @_@
Encoding A Encdding £
Input
Embedding

Input
Embedding

I

Input sequence START

Henry Chai - 6/3/25 Source: https://arxiv.org/pdf/1706.03762.pdf

https://arxiv.org/pdf/1706.03762.pdf

* In addition to multi-head

| Y
Add & Norm .
- attention, transformer
Feed
FETLIER. architectures use

1. Positional encodings

Add & Norm

Multi-Head
Attention

Transformers

Layer normalization

3. Residual connections

Positional

Encoding 4. A fully-connected

Input _
Fmbedding feed-forward network

I

Henry Chai- 6/3/25 Source: https://arxiv.org/pdf/1706.03762.pdf 22

https://arxiv.org/pdf/1706.03762.pdf

Scaled
Dot-product

Self-attention:

Matrix Form

Henry Chai - 6/3/25

* Issue: if all tokens attend to every token in the sequence,

then how does the model infer the order of tokens?

|||||||r||||||||||‘_|||

softmax

.I_.I_.I_

d4
|||| |||| |||| T

ky ky k3 ks

(%1 (%) (%! Uy
(T [OO OO
x1 xz x3 X4

H = softmax(S)V € RNV*%v

attention weights

scores: S =2 ¢ RN

' N
queries: Q = XW, € RV*4
keys: K = XW, € RN*%
values: V = XW,, € RN*%v

design matrix: X € RV*P

23

Positional

Encodings

Henry Chai - 6/3/25

* Issue: if all tokens attend to every token in the sequence,

then how does the model infer the order of tokens?

* Idea: add a position-specific embedding p; to the token

embedding x;

I __
Xt = Xt T D¢

* Positional encodings can be

- fixed i.e., some predetermined function of t or learned

alongside the token embeddings

* absolute i.e., only dependent on the token’s location in

the sequence or relative to the query token’s location

24

Layer

Normalization

Henry Chai - 6/3/25

* Issue: for certain activation functions, the weights in later
layers are highly sensitive to changes in the earlier layers

- Small changes to weights in early layers are amplified

so weights in deeper layers have to deal with massive

dynamic ranges — slow optimization convergence

- Idea: normalize the output of a layer to always have the
same (learnable) mean, 3, and variance, y2
H—pu
o

H’=y()+,B

where 1 is the mean and ¢ is the standard deviation of the

values in the vector H

25

=
(=)

LSTM
BN-LSTM

BN-everywhere
LN-LSTM

o
©

o
o]

validation error rate
o
~J

0.6f

0.5
] 0-% 100 200 %bo_ - 4bo(th %bt)n 600 700 800

r . raining steps ousanas
=i : : * ldea: normalize the output of a layer to always have the

Normalization |)

same (learnable) mean, 5, and variance, y

H —
()

where 1 is the mean and ¢ is the standard deviation of the

values in the vector H

Henry Chai - 6/3/25 Source: https://arxiv.org/pdf/1607.06450.pdf

https://arxiv.org/pdf/1607.06450.pdf

* Observation: early deep neural networks suffered from the

“degradation” problem where adding more layers actually

56-layer

20-layer

made performance worse!

[
=
1

201

—
=
T

Residual

training error (%)
test error (%)

Connections

=]
=

1 2 5 6 0 1 2 5 6

iter.3 (1(34)4 iter.3 (1«34)4
* Wait but this is ridiculous: if the later layers aren’t helping,

couldn’t they just learn the identity transformation???

* Insight: neural network layers actually have a hard time

learning the identity function
Henry Chai- 6/3/25 Source: https://arxiv.org/pdf/1512.03385.pdf

https://arxiv.org/pdf/1512.03385.pdf

* Observation: early deep neural networks suffered from the

“degradation” problem where adding more layers actually

made performance worse!

* |dea: add the input embedding back to the output of a layer
H = H(x®) + x®

Residual

. * Suppose the target function is f
Connections

* Now instead of having to learn f(x(i)), the hidden layer

just needs to learn the residual r = f(x(i)) — 5D

* If f is the identity function, then the hidden layer just

needs to learn r = 0, which is easy for a neural network!

Henry Chai - 6/3/25 28

* Observation: early deep neural networks suffered from the

“degradation” problem where adding more layers actually

made performance worse!

* |dea: add the input embedding back to the output of a layer
H = H(x®) + x®

Residual
Connections

ResNet-18

—ResNet-34 34-layer

0 10 20 30 40 50
iter. (led)

Henry Chai - 6/3/25 Source: https://arxiv.org/pdf/a512.03385.pdf 29

https://arxiv.org/pdf/1512.03385.pdf

- Attention allows information to directly pass between

every pair of tokens

* Attention can be used in conjunction with RNNs/LSTMs

Key IE keawayS * However, (self-)attention can also be used in isolation

* Transformers consist of multi-head attention layers with
residual connections, layer normalization and fully-

connected layers

Henry Chai - 6/3/25 30

	Slide 1: 10-301/601: Introduction to Machine Learning Lecture 22 – Attention & Transformers
	Slide 2: RNN Language Models: Pros & Cons
	Slide 3: RNN Language Models: Pros & Cons
	Slide 4: Encoder-Decoder Architectures (Sutskever et al., 2014)
	Slide 5: Attention
	Slide 6: Attention
	Slide 7: Attention
	Slide 8: Attention
	Slide 9: Scaled Dot-product Attention
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Encoder-Decoder Architectures with Attention (Vaswani et al., 2017)
	Slide 14: Scaled Dot-product Self-attention
	Slide 15: Scaled Dot-product Self-attention
	Slide 16: Scaled Dot-product Self-attention: Matrix Form
	Slide 17: Multi-head Scaled Dot-product Self-attention
	Slide 18: Key Takeaway: All of this computation is 1. differentiable 2. highly parallelizable!
	Slide 19: Multi-head Scaled Dot-product Self-attention
	Slide 20: Transformers
	Slide 21: Transformer Language Models
	Slide 22: Transformers
	Slide 23: Scaled Dot-product Self-attention: Matrix Form
	Slide 24: Positional Encodings
	Slide 25: Layer Normalization
	Slide 26: Layer Normalization
	Slide 27: Residual Connections
	Slide 28: Residual Connections
	Slide 29: Residual Connections
	Slide 30: Key Takeaways

