
Henry Chai

6/3/25

10-301/601: Introduction
to Machine Learning
Lecture 22 – Attention &
Transformers

RNN
Language
Models:
Pros & Cons

 Pros:

 Can handle arbitrary sequence lengths without having

to increase model size (i.e., # of learnable parameters)

 Trainable via backpropagation

 Cons

 Vanishing/exploding gradients

 Does not consider information from later timesteps

 Can be addressed by bidirectional RNNs

 Computation is inherently sequential

 "You can't cram the meaning of a whole %&!$#

sentence into a single $&!#* vector!” – Ray Mooney,

UT Austin
Henry Chai - 6/3/25 2

RNN
Language
Models:
Pros & Cons

 Pros:

 Can handle arbitrary sequence lengths without having

to increase model size (i.e., # of learnable parameters)

 Trainable via backpropagation

 Cons

 Vanishing/exploding gradients

 Does not consider information from later timesteps

 Can be addressed by bidirectional RNNs

 Computation is inherently sequential

 The entire sequence up to some timestep is

represented using just one vector

Henry Chai - 6/3/25 3

Encoder-Decoder Architectures
(Sutskever et al., 2014)

Henry Chai - 6/3/25 4Source: https://arxiv.org/pdf/1506.00019.pdf

Encoder network Decoder network

RNN1 RNN1 RNN1 RNN2 RNN2 RNN2 RNN2 RNN2

https://arxiv.org/pdf/1506.00019.pdf

Attention

Henry Chai - 6/3/25 5

 Approach: compute a representation of the input

sequence for each token 𝑥′ in the decoder

 Idea: allow the decoder to learn which tokens in the

input to “pay attention to” i.e., put more weight on

 Approach: compute a representation of the input

sequence for each token 𝑥′ in the decoder

Attention

6

𝑣2 𝑣3 𝑣4

𝑎1 𝑎2 𝑎3

values

attention weights𝑎4

𝑣1

Henry Chai - 6/3/25

𝐶 𝑥′ = ෍

𝑡=1

4

𝑎𝑡 𝑥′ 𝑣𝑡

 Approach: compute a representation of the input

sequence for each token 𝑥′ in the decoder

Attention

𝑣2 𝑣3 𝑣4

𝑎1 𝑎2 𝑎3

values

attention weights𝑎4

softmax

𝑠1 𝑠2 𝑠3 𝑠4 scores

𝑣1

Henry Chai - 6/3/25 7

𝐶 𝑥′ = ෍

𝑡=1

4

softmax 𝑠𝑡 𝑥′ 𝑣𝑡

Attention

 Approach: compute a representation of the input

sequence for each token 𝑥′ in the decoder

𝑎1 𝑎2 𝑎3 attention weights𝑎4

softmax

𝑠1 𝑠2 𝑠3 𝑠4 scores

𝑥1 𝑥2 𝑥3 𝑥4 input tokens
Henry Chai - 6/3/25 8

𝐶 𝑥′ = ෍

𝑡=1

4

softmax 𝑠 𝑥′, 𝑥𝑡 𝑣 𝑥𝑡

values𝑣1 𝑥1 𝑣2 𝑥2 𝑣3 𝑥3 𝑣4 𝑥4

Scaled
Dot-product
Attention

 Approach: compute a representation of the input

sequence for each token 𝑥′ in the decoder

𝑎1 𝑎2 𝑎3 attention weights𝑎4

softmax

𝑠1 𝑠2 𝑠3 𝑠4 scores: 𝑠𝑡 =
𝑘𝑡

𝑇𝑞

length 𝑞

input tokens𝑥1 𝑥2 𝑥3 𝑥4

𝑞 𝑥′

Henry Chai - 6/3/25 9

𝑘2 𝑥2 𝑘3 𝑥3 𝑘4 𝑥4𝑘1 𝑥1

𝑣1 𝑥1 𝑣2 𝑥2 𝑣3 𝑥3 𝑣4 𝑥4

𝐶 𝑥′ = ෍

𝑡=1

4

softmax 𝑠 𝑥′, 𝑥𝑡 𝑣 𝑥𝑡

values: 𝑣𝑡 = 𝑊𝑉𝑥𝑡

keys: 𝑘𝑡 = 𝑊𝐾𝑥𝑡

query: 𝑞 = 𝑤𝑄
𝑇𝑥′Attention

Henry Chai - 6/3/25 10Source: https://arxiv.org/pdf/1506.00019.pdf

Encoder network Decoder network

Encoder-Decoder Architectures
with Attention

RNN2 RNN2 RNN2 RNN2

Attention

RNN1 RNN1 RNN1 RNN2

https://arxiv.org/pdf/1506.00019.pdf

Henry Chai - 6/3/25 11Source: https://arxiv.org/pdf/1506.00019.pdf

Encoder network Decoder network

Attention

Encoder-Decoder Architectures
with Attention

RNN1 RNN1 RNN1 RNN2 RNN2 RNN2 RNN2 RNN2

https://arxiv.org/pdf/1506.00019.pdf

Henry Chai - 6/3/25 12Source: https://arxiv.org/pdf/1506.00019.pdf

Encoder network Decoder network

Attention

Encoder-Decoder Architectures
with Attention

RNN1 RNN1 RNN1 RNN2 RNN2 RNN2 RNN2 RNN2

https://arxiv.org/pdf/1506.00019.pdf

Encoder-Decoder Architectures
with Attention (Vaswani et al., 2017)

Henry Chai - 6/3/25 13

Attention

Source: https://arxiv.org/pdf/1706.03762.pdf

https://arxiv.org/pdf/1706.03762.pdf

Scaled
Dot-product
Self-attention

 Approach: compute a representation for each token in

the input sequence by attending to all the input tokens

Henry Chai - 6/3/25 14

𝑎1,1 𝑎1,2 𝑎1,3 attention weights𝑎1,4

softmax

𝑠1,1 𝑠1,2 𝑠1,3 𝑠1,4
scores: 𝑠1,𝑗 =

𝑘𝑗
𝑇𝑞1

length 𝑘𝑗

input tokens𝑥1 𝑥2 𝑥3 𝑥4

ℎ1

𝑣1 𝑣2 𝑣3 𝑣4

𝑘1 𝑘2 𝑘3 𝑘4

𝑞1 𝑞2 𝑞3 𝑞4

values: 𝑣𝑡 = 𝑊𝑉𝑥𝑡

keys: 𝑘𝑡 = 𝑊𝐾𝑥𝑡

queries: 𝑞𝑡 = 𝑊𝑄𝑥𝑡

ℎ1 = ෍

𝑗=1

4

softmax 𝑠1,𝑗 𝑣𝑗

Scaled
Dot-product
Self-attention

 Approach: compute a representation for each token in

the input sequence by attending to all the input tokens

Henry Chai - 6/3/25 15

𝑎2,1 𝑎2,2 𝑎2,3 𝑎2,4

softmax

𝑠2,1 𝑠2,2 𝑠2,3 𝑠2,4

𝑥1 𝑥2 𝑥3 𝑥4

ℎ2

𝑣1 𝑣2 𝑣3 𝑣4

𝑘1 𝑘2 𝑘3 𝑘4

𝑞1 𝑞2 𝑞3 𝑞4

attention weights

scores: 𝑠2,𝑗 =
𝑘𝑗

𝑇𝑞2

length 𝑘𝑗

input tokens

values: 𝑣𝑡 = 𝑊𝑉𝑥𝑡

keys: 𝑘𝑡 = 𝑊𝐾𝑥𝑡

queries: 𝑞𝑡 = 𝑊𝑄𝑥𝑡

ℎ2 = ෍

𝑗=1

4

softmax 𝑠2,𝑗 𝑣𝑗

Scaled
Dot-product
Self-attention:
Matrix Form

 Approach: compute a representation for each token in

the input sequence by attending to all the input tokens

Henry Chai - 6/3/25 16

softmax

design matrix: 𝑋 ∈ ℝ𝑁×𝐷
𝑥1 𝑥2 𝑥3 𝑥4

𝑣1 𝑣2 𝑣3 𝑣4

𝑘1 𝑘2 𝑘3 𝑘4

𝑞1 𝑞2 𝑞3 𝑞4

values: 𝑉 = 𝑋𝑊𝑉 ∈ ℝ𝑁×𝑑𝑣

keys: 𝐾 = 𝑋𝑊𝐾 ∈ ℝ𝑁×𝑑𝑘

queries: 𝑄 = 𝑋𝑊𝑄 ∈ ℝ𝑁×𝑑𝑘

scores: 𝑆 =
𝑄𝐾𝑇

𝑑𝑘
 ∈ ℝ𝑁×𝑁

𝐻 = softmax 𝑆 𝑉 ∈ ℝ𝑁×𝑑𝑣

attention weights

softmax

Multi-head
Scaled
Dot-product
Self-attention

 Idea: just like we might want multiple convolutional filters

in a convolutional layer, we might want multiple attention

weights to learn different relationships between tokens!

Henry Chai - 6/3/25 17

design matrix: 𝑋𝑥1 𝑥2 𝑥3 𝑥4

values: 𝑉(ℎ) = 𝑋𝑊𝑉
ℎ

keys: 𝐾(ℎ) = 𝑋𝑊𝐾
ℎ

queries: 𝑄(ℎ) = 𝑋𝑊𝑄
ℎ

scores: 𝑆 ℎ =
𝑄 ℎ 𝐾 ℎ 𝑇

𝑑𝑘
ℎ

𝐻 ℎ = softmax 𝑆 ℎ 𝑉 ℎ

attention weights

softmaxsoftmax

softmax

Key Takeaway:
All of this
computation is

 1. differentiable
 2. highly
 parallelizable!

 Idea: just like we might want multiple convolutional filters

in a convolutional layer, we might want multiple attention

weights to learn different relationships between tokens!

Henry Chai - 6/3/25 18

design matrix: 𝑋𝑥1 𝑥2 𝑥3 𝑥4

values: 𝑉(ℎ) = 𝑋𝑊𝑉
ℎ

keys: 𝐾(ℎ) = 𝑋𝑊𝐾
ℎ

queries: 𝑄(ℎ) = 𝑋𝑊𝑄
ℎ

scores: 𝑆 ℎ =
𝑄 ℎ 𝐾 ℎ 𝑇

𝑑𝑘
ℎ

𝐻 ℎ = softmax 𝑆 ℎ 𝑉 ℎ

attention weights

softmaxsoftmax

 Idea: just like we might want multiple convolutional filters

in a convolutional layer, we might want multiple attention

weights to learn different relationships between tokens!

 The outputs from all the attention heads are

concatenated together to get the final representation

𝐻 = 𝐻 1 , 𝐻 2 , … , 𝐻 ℎ

 Common architectural choice: 𝑑𝑣 = Τ𝐷
ℎ → 𝐻 = 𝐷

Multi-head
Scaled
Dot-product
Self-attention

Henry Chai - 6/3/25 19Source: https://arxiv.org/pdf/1706.03762.pdf

https://arxiv.org/pdf/1706.03762.pdf

Transformers

Henry Chai - 6/3/25 20Source: https://arxiv.org/pdf/1706.03762.pdf

https://arxiv.org/pdf/1706.03762.pdf

Transformer
Language
Models

Henry Chai - 6/3/25 21Source: https://arxiv.org/pdf/1706.03762.pdf

talks

softmax

⋯ ⋯

henry talks

softmax

START

Generated sequence (use each token
as the input to the next timestep)

Input sequence henry

https://arxiv.org/pdf/1706.03762.pdf

Transformers

Henry Chai - 6/3/25 22Source: https://arxiv.org/pdf/1706.03762.pdf

 In addition to multi-head

attention, transformer

architectures use

1. Positional encodings

2. Layer normalization

3. Residual connections

4. A fully-connected

feed-forward network

https://arxiv.org/pdf/1706.03762.pdf

Scaled
Dot-product
Self-attention:
Matrix Form

 Issue: if all tokens attend to every token in the sequence,

then how does the model infer the order of tokens?

Henry Chai - 6/3/25 23

softmax

design matrix: 𝑋 ∈ ℝ𝑁×𝐷
𝑥1 𝑥2 𝑥3 𝑥4

𝑣1 𝑣2 𝑣3 𝑣4

𝑘1 𝑘2 𝑘3 𝑘4

𝑞1 𝑞2 𝑞3 𝑞4

values: 𝑉 = 𝑋𝑊𝑉 ∈ ℝ𝑁×𝑑𝑣

keys: 𝐾 = 𝑋𝑊𝐾 ∈ ℝ𝑁×𝑑𝑘

queries: 𝑄 = 𝑋𝑊𝑄 ∈ ℝ𝑁×𝑑𝑘

scores: 𝑆 =
𝑄𝐾𝑇

𝑑𝑘
 ∈ ℝ𝑁×𝑁

𝐻 = softmax 𝑆 𝑉 ∈ ℝ𝑁×𝑑𝑣

attention weights

Positional
Encodings

Henry Chai - 6/3/25 24

 Issue: if all tokens attend to every token in the sequence,

then how does the model infer the order of tokens?

 Idea: add a position-specific embedding 𝑝𝑡 to the token

embedding 𝑥𝑡

𝑥𝑡
′ = 𝑥𝑡 + 𝑝𝑡

 Positional encodings can be

 fixed i.e., some predetermined function of 𝑡 or learned

alongside the token embeddings

 absolute i.e., only dependent on the token’s location in

the sequence or relative to the query token’s location

Layer
Normalization

Henry Chai - 6/3/25 25

 Issue: for certain activation functions, the weights in later

layers are highly sensitive to changes in the earlier layers

 Small changes to weights in early layers are amplified

so weights in deeper layers have to deal with massive

dynamic ranges → slow optimization convergence

 Idea: normalize the output of a layer to always have the

same (learnable) mean, 𝛽, and variance, 𝛾2

𝐻′ = 𝛾
𝐻 − 𝜇

𝜎
+ 𝛽

where 𝜇 is the mean and 𝜎 is the standard deviation of the

values in the vector 𝐻

Layer
Normalization

Henry Chai - 6/3/25 26

 Issue: for certain activation functions, the weights in later

layers are highly sensitive to changes in the earlier layers

 Small changes to weights in early layers are amplified

so weights in deeper layers have to deal with massive

dynamic ranges → slow optimization convergence

 Idea: normalize the output of a layer to always have the

same (learnable) mean, 𝛽, and variance, 𝛾2

𝐻′ = 𝛾
𝐻 − 𝜇

𝜎
+ 𝛽

where 𝜇 is the mean and 𝜎 is the standard deviation of the

values in the vector 𝐻

Source: https://arxiv.org/pdf/1607.06450.pdf

https://arxiv.org/pdf/1607.06450.pdf

Residual
Connections

 Observation: early deep neural networks suffered from the

“degradation” problem where adding more layers actually

made performance worse!

 Wait but this is ridiculous: if the later layers aren’t helping,

couldn’t they just learn the identity transformation???

 Insight: neural network layers actually have a hard time

learning the identity function
Henry Chai - 6/3/25 27Source: https://arxiv.org/pdf/1512.03385.pdf

https://arxiv.org/pdf/1512.03385.pdf

Residual
Connections

Henry Chai - 6/3/25 28

 Observation: early deep neural networks suffered from the

“degradation” problem where adding more layers actually

made performance worse!

 Idea: add the input embedding back to the output of a layer

𝐻′ = 𝐻 𝑥 𝑖 + 𝑥 𝑖

 Suppose the target function is 𝑓

 Now instead of having to learn 𝑓 𝑥 𝑖 , the hidden layer

just needs to learn the residual 𝑟 = 𝑓 𝑥 𝑖 − 𝑥 𝑖

 If 𝑓 is the identity function, then the hidden layer just

needs to learn 𝑟 = 0, which is easy for a neural network!

 Observation: early deep neural networks suffered from the

“degradation” problem where adding more layers actually

made performance worse!

 Idea: add the input embedding back to the output of a layer

𝐻′ = 𝐻 𝑥 𝑖 + 𝑥 𝑖

 Suppose the target function is 𝑓

 Now instead of having to learn 𝑓 𝑥 𝑖 , the hidden layer

just needs to learn the residual 𝑟 = 𝑓 𝑥 𝑖 − 𝑥 𝑖

 If 𝑓 is the identity function, then the hidden layer just

needs to learn 𝑟 = 0, which is easy for a neural network!

Residual
Connections

Henry Chai - 6/3/25 29Source: https://arxiv.org/pdf/1512.03385.pdf

https://arxiv.org/pdf/1512.03385.pdf

Key Takeaways

 Attention allows information to directly pass between

every pair of tokens

 Attention can be used in conjunction with RNNs/LSTMs

 However, (self-)attention can also be used in isolation

 Transformers consist of multi-head attention layers with

residual connections, layer normalization and fully-

connected layers

Henry Chai - 6/3/25 30

	Slide 1: 10-301/601: Introduction to Machine Learning Lecture 22 – Attention & Transformers
	Slide 2: RNN Language Models: Pros & Cons
	Slide 3: RNN Language Models: Pros & Cons
	Slide 4: Encoder-Decoder Architectures (Sutskever et al., 2014)
	Slide 5: Attention
	Slide 6: Attention
	Slide 7: Attention
	Slide 8: Attention
	Slide 9: Scaled Dot-product Attention
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Encoder-Decoder Architectures with Attention (Vaswani et al., 2017)
	Slide 14: Scaled Dot-product Self-attention
	Slide 15: Scaled Dot-product Self-attention
	Slide 16: Scaled Dot-product Self-attention: Matrix Form
	Slide 17: Multi-head Scaled Dot-product Self-attention
	Slide 18: Key Takeaway: All of this computation is 1. differentiable 2. highly parallelizable!
	Slide 19: Multi-head Scaled Dot-product Self-attention
	Slide 20: Transformers
	Slide 21: Transformer Language Models
	Slide 22: Transformers
	Slide 23: Scaled Dot-product Self-attention: Matrix Form
	Slide 24: Positional Encodings
	Slide 25: Layer Normalization
	Slide 26: Layer Normalization
	Slide 27: Residual Connections
	Slide 28: Residual Connections
	Slide 29: Residual Connections
	Slide 30: Key Takeaways

