
Henry Chai

6/3/25

10-301/601: Introduction 
to Machine Learning
Lecture 21 – Language 
Modeling



Front Matter

 Announcements

 HW5 to be released on 6/3 (today!), due 6/6 at 

11:59 PM

 Schedule change: two recitations this week 

 Recitation on 6/4 will be a PyTorch tutorial

 Recitation on 6/5 will be Quiz 3 preparation
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Language 
Generation

 Goal: generate realistic sentences in some human 

language and engage in conversation

 Idea: condition on the previous words in the sentence 

to predict the next word 

 Better idea: condition on the previous words in the 

sentence to predict a distribution over the next word

 A language model defines a probability distribution 

over sequences of words

 We can use a language model to compute 

conditional probabilities i.e., the probability of the 

next word conditioned on all the previous words. 
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Language 
Models

1. Convert raw text into sequence data

𝒙 𝑖 = 𝒙1
𝑖

, … , 𝒙𝑇𝑖

𝑖

2. Learn or approximate a joint probability distribution 

over sequences

𝑃 𝒙 𝑖 = 𝑃 𝒙1
𝑖

, … , 𝒙𝑇𝑖

𝑖

3. Sample from the implied conditional distribution to 

generate new sequences

𝑃 𝒙𝑇𝑖+1 ∣ 𝒙1
𝑖

, … , 𝒙𝑇𝑖

𝑖
=

𝑃 𝒙1
𝑖

, … , 𝒙𝑇𝑖

𝑖
, 𝒙𝑇𝑖+1

𝑃 𝒙1
𝑖

, … , 𝒙𝑇𝑖

𝑖
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Tokenization 
and 
Embedding
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1. Convert raw text into sequence data

𝒙 𝑖 = 𝒙1
𝑖

, … , 𝒙𝑇𝑖

𝑖

 High-level approach: split raw text into smaller units 

(“tokens”), then learn a dense, numerical vector 

representation (“embedding”) for each token 



Tokenization 

 Example: “Henry is giving a lecture on language models”

 Idea: word-based tokenization

[“henry”, “is”, “giving”, “a”, “lecture”, “on”, “language”, 

“models”]
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Tokenization 
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 Example: “Henry is givin’ a lectrue on LMs”

 Idea: word-based tokenization?

[“henry”, “is”, ???, “a”, ???, “on”, “???”] 

 Can have difficulty trading off between vocabulary 

size and computational tractability

 Similar words e.g., “model” and “models” can get 

mapped to completely disparate representations

 Typos or acronyms will likely be out-of-vocabulary 

(OOV)



Tokenization 
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 Example: “Henry is givin’ a lectrue on LMs”

 Idea: character-based tokenization:

[“h”, “e”, “n”, “r”, “y”, “i”, “s”, “g”, “i”, “v”, “i”, “n”, “ ’ ”, … ]

 Much smaller vocabularies but a lot of semantic 

meaning is lost…

 Sequences will be much longer than word-based 

tokenization, potentially causing computational issues

 Can do well on logographic languages e.g., Kanji 漢字



Tokenization 
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 Example: “Henry is givin’ a lectrue on LMs”

 Common practice: subword tokenization

[“henry”, “is”, “giv”, “##in”, “ ‘ ”, “a”, “lect” “##re”, “on”, 

“language”, “model”, “#s”]

 Split long or rare words into smaller, semantically 

meaningful components or subwords

 Common algorithms for computing subwords 

consider the most frequently occurring substrings 



Embedding
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word2vec GloVe

 Given a vocabulary 𝑉 with 𝑉  tokens, learn an embedding 

by training a 1-layer, fully-connected feed-forward NN that 

takes one-hot encoded vectors as input

 Example: “is” →  0,  0,  1,  … ,  0 ∈ ℝ 𝑉

 Idea: use an existing embedding e.g., word2vec or GloVe

 Limits what vocabulary/tokenization you can use…

⋯

⋯

Input layer

Embedding

0.24, −1.87, … , 0.99 ∈ ℝ𝐷

https://www.tensorflow.org/text/tutorials/word2vec
https://nlp.stanford.edu/projects/glove/


Okay but how 
do I go about 
training this 
neural 
network?
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word2vec GloVe

 Given a vocabulary 𝑉 with 𝑉  tokens, learn an embedding 

by training a 1-layer, fully-connected feed-forward NN that 

takes one-hot encoded vectors as input

 Example: “is” →  0,  0,  1,  … ,  0 ∈ ℝ 𝑉

 Idea: use a pretrained embedding e.g., word2vec or GloVe

 Requires the same vocabulary/tokenization

⋯

⋯

Input layer

Embedding

0.24, −1.87, … , 0.99 ∈ ℝ𝐷

https://www.tensorflow.org/text/tutorials/word2vec
https://nlp.stanford.edu/projects/glove/


Embedding
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word2vec GloVe

 Given a vocabulary 𝑉 with 𝑉  tokens, learn an embedding 

by training a 1-layer, fully-connected feed-forward NN that 

takes one-hot encoded vectors as input

 Example: “is” →  0,  0,  1,  … ,  0 ∈ ℝ 𝑉

 Idea: use a pretrained embedding e.g., word2vec or GloVe

 Requires you to use the same vocabulary/tokenization

⋯

⋯

Input layer

Embedding

0.24, −1.87, … , 0.99 ∈ ℝ𝐷

https://www.tensorflow.org/text/tutorials/word2vec
https://nlp.stanford.edu/projects/glove/


Embedding
Layer
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 Given a vocabulary 𝑉 with 𝑉  tokens, learn an embedding 

by training a 1-layer, fully-connected feed-forward NN that 

takes one-hot encoded vectors as input

 Example: “is” →  0,  0,  1,  … ,  0 ∈ ℝ 𝑉

 Common practice: add this 1-layer NN to whatever 

architecture you’re using and fit it to the task

⋯

⋯

Input layer

Embedding

0.24, −1.87, … , 0.99 ∈ ℝ𝐷



Embedding
Layer
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 Given a vocabulary 𝑉 with 𝑉  tokens, learn an embedding 

by training a 1-layer, fully-connected feed-forward NN that 

takes one-hot encoded vectors as input

 Example: “is” →  0,  0,  1,  … ,  0 ∈ ℝ 𝑉

 Common practice: add this 1-layer NN to whatever 

architecture you’re using and fit it to the task

⋯Input layer

𝒙𝑡
𝑖

𝒉𝑡

𝒐𝑡

𝑊 1

𝑊 2

𝑊ℎ



Language 
Models

1. Convert raw text into sequence data

𝒙 𝑖 = 𝒙1
𝑖

, … , 𝒙𝑇𝑖

𝑖

2. Learn or approximate a joint probability distribution 

over sequences

𝑃 𝒙 𝑖 = 𝑃 𝒙1
𝑖

, … , 𝒙𝑇𝑖

𝑖

 Use the chain rule of probability: predict the next word 

based on the previous words in the sequence

𝑃 𝒙 𝑖 = 𝑃 𝒙1
𝑖

𝑃 𝒙 𝑖  ∗ 𝑃 𝒙2
𝑖

∣ 𝒙1
𝑖

⋮

𝑃 𝒙 𝑖  ∗ 𝑃 𝒙𝑇𝑖

𝑖
∣ 𝒙𝑇𝑖−1

𝑖
, … , 𝒙1

𝑖
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Language 
Models

1. Convert raw text into sequence data

𝒙 𝑖 = 𝒙1
𝑖

, … , 𝒙𝑇𝑖

𝑖

2. Learn or approximate a joint probability distribution 

over sequences

𝑃 𝒙 𝑖 = 𝑃 𝒙1
𝑖

, … , 𝒙𝑇𝑖

𝑖

 Use the chain rule of probability Just throw an RNN at it!

𝑃 𝒙 𝑖 = 𝑃 𝒙1
𝑖

𝑃 𝒙 𝑖  ∗ 𝑃 𝒙2
𝑖

∣ 𝒙1
𝑖

⋮

𝑃 𝒙 𝑖  ∗ 𝑃 𝒙𝑇𝑖

𝑖
∣ 𝒙𝑇𝑖−1

𝑖
, … , 𝒙1

𝑖
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RNN
Language 
Models

Henry Chai - 6/3/25 17

1. Convert raw text into sequence data

𝒙 𝑖 = 𝒙1
𝑖

, … , 𝒙𝑇𝑖

𝑖

2. Learn or approximate a joint probability distribution 

over sequences

𝑃 𝒙 𝑖 = 𝑃 𝒙1
𝑖

, … , 𝒙𝑇𝑖

𝑖

 Use the chain rule of probability Just throw an RNN at it!

𝑃 𝒙 𝑖 ≈ 𝒐1 𝒙1
𝑖

𝑃 𝒙 𝑖  ∗ 𝒐2 𝒙2
𝑖

, 𝒉1 𝒙1
𝑖

⋮

𝑃 𝒙 𝑖  ∗ 𝒐𝑇𝑖
𝒙𝑇𝑖

𝑖
, 𝒉𝑇𝑖−1 𝒙𝑇𝑖−1

𝑖
, … , 𝒙1

𝑖



RNN
Language 
Models:
Training
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𝒙1
𝑖

𝒙2
𝑖 𝒙3

𝑖 𝒙4
𝑖

𝒉1

𝒐1

𝒉2

𝒐2

𝒉3

𝒐3

𝒉4

𝒐4

𝑊 1

𝑊 2

𝑊 1

𝑊 2

𝑊 1

𝑊 2

𝑊 1

𝑊 2

𝑊ℎ 𝑊ℎ 𝑊ℎ ⋯

START henry is giv

softmax softmax softmax softmax

⋯ ⋯ ⋯ ⋯

henry is giv #ingTarget sequence (try to 
predict the next word)

Input sequence



RNN
Language 
Model:
Sampling
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𝒙1
𝑖

𝒙2
𝑖 𝒙3

𝑖 𝒙4
𝑖

𝒉1

𝒐1

𝒉2

𝒐2

𝒉3

𝒐3

𝒉4

𝒐4

𝑊 1

𝑊 2

𝑊 1

𝑊 2

𝑊 1

𝑊 2

𝑊 1

𝑊 2

𝑊ℎ 𝑊ℎ 𝑊ℎ ⋯

START henry talks too

softmax softmax softmax softmax

⋯ ⋯ ⋯ ⋯

henry talks too muchGenerated sequence (use each token 
as the input to the next timestep)

Input sequence



Aside: 
Sampling from 
these 
distributions to 
get the next 
word is not 
always the best 
thing to do
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𝒙1
𝑖

𝒙2
𝑖 𝒙3

𝑖 𝒙4
𝑖

𝒉1

𝒐1

𝒉2

𝒐2

𝒉3

𝒐3

𝒉4

𝒐4

𝑊 1

𝑊 2

𝑊 1

𝑊 2

𝑊 1

𝑊 2

𝑊 1

𝑊 2

𝑊ℎ 𝑊ℎ 𝑊ℎ ⋯

START henry talks too

softmax softmax softmax softmax

⋯ ⋯ ⋯ ⋯

henry talks too muchGenerated sequence (use each token 
as the input to the next timestep)

Input sequence



RNN
Language 
Models:
Pros & Cons

 Pros:

 Can handle arbitrary sequence lengths without having 

to increase model size (i.e., # of learnable parameters)

 Trainable via backpropagation

 Cons

 Vanishing/exploding gradients

 Does not consider information from later timesteps

 Can be addressed by bidirectional RNNs

 Computation is inherently sequential

 "You can't cram the meaning of a whole %&!$# 

sentence into a single $&!#* vector!” – Ray Mooney, 

UT Austin
Henry Chai - 6/3/25 22



Backpropagation: 
Procedural 
Method

23

Issues: 

1. Hard to reuse / 

adapt for other 

models

2. Hard to optimize 

individual steps 

3. Hard to debug 

using the finite-

difference check
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Module-based 
AutoDiff

 Key Idea: 

 componentize the computation of the neural-

network into layers

 each layer consolidates multiple real-valued nodes 

in the computation graph (a subset of them) into 

one vector-valued node (aka. a module)

 Each module is capable of two actions:

 Forward computation of the output 

given some input

 Backward computation of the gradient 

with respect to the input given the 

gradient with respect to the output
24

module
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Module-based 
AutoDiff
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Module-based 
AutoDiff

1. Easy to reuse / 

adapt for other 

models

2. Individual layers 

are easier to 

optimize 

3. Simple to debug: 

just run a finite-

difference check 

on each layer 

separately
26Henry Chai - 6/3/25



Module-based 
AutoDiff (OOP 
Version) 

Object-Oriented Implementation:

 Let each module be an object and allow the control flow of 

the program to define the computation graph

 No longer need to implement NNBackward(·), just follow 

the computation graph in reverse topological order
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Module-based 
AutoDiff (OOP 
Version) 
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Module-based 
AutoDiff (OOP 
Version) 
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Key Takeaways

 Language models fit joint probability distributions to 

sequences of tokens

 Tokenization and embedding to generate dense vector 

representations of texts

 Can be sampled from to generate text 
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