
Henry Chai

6/3/25

10-301/601: Introduction
to Machine Learning
Lecture 21 – Language
Modeling

Front Matter

 Announcements

 HW5 to be released on 6/3 (today!), due 6/6 at

11:59 PM

 Schedule change: two recitations this week

 Recitation on 6/4 will be a PyTorch tutorial

 Recitation on 6/5 will be Quiz 3 preparation

Henry Chai - 6/3/25 2

Language
Generation

 Goal: generate realistic sentences in some human

language and engage in conversation

 Idea: condition on the previous words in the sentence

to predict the next word

 Better idea: condition on the previous words in the

sentence to predict a distribution over the next word

 A language model defines a probability distribution

over sequences of words

 We can use a language model to compute

conditional probabilities i.e., the probability of the

next word conditioned on all the previous words.

Henry Chai - 6/3/25 3

Language
Models

1. Convert raw text into sequence data

𝒙 𝑖 = 𝒙1
𝑖

, … , 𝒙𝑇𝑖

𝑖

2. Learn or approximate a joint probability distribution

over sequences

𝑃 𝒙 𝑖 = 𝑃 𝒙1
𝑖

, … , 𝒙𝑇𝑖

𝑖

3. Sample from the implied conditional distribution to

generate new sequences

𝑃 𝒙𝑇𝑖+1 ∣ 𝒙1
𝑖

, … , 𝒙𝑇𝑖

𝑖
=

𝑃 𝒙1
𝑖

, … , 𝒙𝑇𝑖

𝑖
, 𝒙𝑇𝑖+1

𝑃 𝒙1
𝑖

, … , 𝒙𝑇𝑖

𝑖

Henry Chai - 6/3/25 4

Tokenization
and
Embedding

Henry Chai - 6/3/25 5

1. Convert raw text into sequence data

𝒙 𝑖 = 𝒙1
𝑖

, … , 𝒙𝑇𝑖

𝑖

 High-level approach: split raw text into smaller units

(“tokens”), then learn a dense, numerical vector

representation (“embedding”) for each token

Tokenization

 Example: “Henry is giving a lecture on language models”

 Idea: word-based tokenization

[“henry”, “is”, “giving”, “a”, “lecture”, “on”, “language”,

“models”]

Henry Chai - 6/3/25 6

Tokenization

Henry Chai - 6/3/25 7

 Example: “Henry is givin’ a lectrue on LMs”

 Idea: word-based tokenization?

[“henry”, “is”, ???, “a”, ???, “on”, “???”]

 Can have difficulty trading off between vocabulary

size and computational tractability

 Similar words e.g., “model” and “models” can get

mapped to completely disparate representations

 Typos or acronyms will likely be out-of-vocabulary

(OOV)

Tokenization

Henry Chai - 6/3/25 8

 Example: “Henry is givin’ a lectrue on LMs”

 Idea: character-based tokenization:

[“h”, “e”, “n”, “r”, “y”, “i”, “s”, “g”, “i”, “v”, “i”, “n”, “ ’ ”, …]

 Much smaller vocabularies but a lot of semantic

meaning is lost…

 Sequences will be much longer than word-based

tokenization, potentially causing computational issues

 Can do well on logographic languages e.g., Kanji 漢字

Tokenization

Henry Chai - 6/3/25 9

 Example: “Henry is givin’ a lectrue on LMs”

 Common practice: subword tokenization

[“henry”, “is”, “giv”, “##in”, “ ‘ ”, “a”, “lect” “##re”, “on”,

“language”, “model”, “#s”]

 Split long or rare words into smaller, semantically

meaningful components or subwords

 Common algorithms for computing subwords

consider the most frequently occurring substrings

Embedding

Henry Chai - 6/3/25 10

word2vec GloVe

 Given a vocabulary 𝑉 with 𝑉 tokens, learn an embedding

by training a 1-layer, fully-connected feed-forward NN that

takes one-hot encoded vectors as input

 Example: “is” → 0, 0, 1, … , 0 ∈ ℝ 𝑉

 Idea: use an existing embedding e.g., word2vec or GloVe

 Limits what vocabulary/tokenization you can use…

⋯

⋯

Input layer

Embedding

0.24, −1.87, … , 0.99 ∈ ℝ𝐷

https://www.tensorflow.org/text/tutorials/word2vec
https://nlp.stanford.edu/projects/glove/

Okay but how
do I go about
training this
neural
network?

Henry Chai - 6/3/25 11

word2vec GloVe

 Given a vocabulary 𝑉 with 𝑉 tokens, learn an embedding

by training a 1-layer, fully-connected feed-forward NN that

takes one-hot encoded vectors as input

 Example: “is” → 0, 0, 1, … , 0 ∈ ℝ 𝑉

 Idea: use a pretrained embedding e.g., word2vec or GloVe

 Requires the same vocabulary/tokenization

⋯

⋯

Input layer

Embedding

0.24, −1.87, … , 0.99 ∈ ℝ𝐷

https://www.tensorflow.org/text/tutorials/word2vec
https://nlp.stanford.edu/projects/glove/

Embedding

Henry Chai - 6/3/25 12

word2vec GloVe

 Given a vocabulary 𝑉 with 𝑉 tokens, learn an embedding

by training a 1-layer, fully-connected feed-forward NN that

takes one-hot encoded vectors as input

 Example: “is” → 0, 0, 1, … , 0 ∈ ℝ 𝑉

 Idea: use a pretrained embedding e.g., word2vec or GloVe

 Requires you to use the same vocabulary/tokenization

⋯

⋯

Input layer

Embedding

0.24, −1.87, … , 0.99 ∈ ℝ𝐷

https://www.tensorflow.org/text/tutorials/word2vec
https://nlp.stanford.edu/projects/glove/

Embedding
Layer

Henry Chai - 6/3/25 13

 Given a vocabulary 𝑉 with 𝑉 tokens, learn an embedding

by training a 1-layer, fully-connected feed-forward NN that

takes one-hot encoded vectors as input

 Example: “is” → 0, 0, 1, … , 0 ∈ ℝ 𝑉

 Common practice: add this 1-layer NN to whatever

architecture you’re using and fit it to the task

⋯

⋯

Input layer

Embedding

0.24, −1.87, … , 0.99 ∈ ℝ𝐷

Embedding
Layer

Henry Chai - 6/3/25 14

 Given a vocabulary 𝑉 with 𝑉 tokens, learn an embedding

by training a 1-layer, fully-connected feed-forward NN that

takes one-hot encoded vectors as input

 Example: “is” → 0, 0, 1, … , 0 ∈ ℝ 𝑉

 Common practice: add this 1-layer NN to whatever

architecture you’re using and fit it to the task

⋯Input layer

𝒙𝑡
𝑖

𝒉𝑡

𝒐𝑡

𝑊 1

𝑊 2

𝑊ℎ

Language
Models

1. Convert raw text into sequence data

𝒙 𝑖 = 𝒙1
𝑖

, … , 𝒙𝑇𝑖

𝑖

2. Learn or approximate a joint probability distribution

over sequences

𝑃 𝒙 𝑖 = 𝑃 𝒙1
𝑖

, … , 𝒙𝑇𝑖

𝑖

 Use the chain rule of probability: predict the next word

based on the previous words in the sequence

𝑃 𝒙 𝑖 = 𝑃 𝒙1
𝑖

𝑃 𝒙 𝑖 ∗ 𝑃 𝒙2
𝑖

∣ 𝒙1
𝑖

⋮

𝑃 𝒙 𝑖 ∗ 𝑃 𝒙𝑇𝑖

𝑖
∣ 𝒙𝑇𝑖−1

𝑖
, … , 𝒙1

𝑖

Henry Chai - 6/3/25 15

Language
Models

1. Convert raw text into sequence data

𝒙 𝑖 = 𝒙1
𝑖

, … , 𝒙𝑇𝑖

𝑖

2. Learn or approximate a joint probability distribution

over sequences

𝑃 𝒙 𝑖 = 𝑃 𝒙1
𝑖

, … , 𝒙𝑇𝑖

𝑖

 Use the chain rule of probability Just throw an RNN at it!

𝑃 𝒙 𝑖 = 𝑃 𝒙1
𝑖

𝑃 𝒙 𝑖 ∗ 𝑃 𝒙2
𝑖

∣ 𝒙1
𝑖

⋮

𝑃 𝒙 𝑖 ∗ 𝑃 𝒙𝑇𝑖

𝑖
∣ 𝒙𝑇𝑖−1

𝑖
, … , 𝒙1

𝑖

Henry Chai - 6/3/25 16

RNN
Language
Models

Henry Chai - 6/3/25 17

1. Convert raw text into sequence data

𝒙 𝑖 = 𝒙1
𝑖

, … , 𝒙𝑇𝑖

𝑖

2. Learn or approximate a joint probability distribution

over sequences

𝑃 𝒙 𝑖 = 𝑃 𝒙1
𝑖

, … , 𝒙𝑇𝑖

𝑖

 Use the chain rule of probability Just throw an RNN at it!

𝑃 𝒙 𝑖 ≈ 𝒐1 𝒙1
𝑖

𝑃 𝒙 𝑖 ∗ 𝒐2 𝒙2
𝑖

, 𝒉1 𝒙1
𝑖

⋮

𝑃 𝒙 𝑖 ∗ 𝒐𝑇𝑖
𝒙𝑇𝑖

𝑖
, 𝒉𝑇𝑖−1 𝒙𝑇𝑖−1

𝑖
, … , 𝒙1

𝑖

RNN
Language
Models:
Training

Henry Chai - 6/3/25 18

𝒙1
𝑖

𝒙2
𝑖 𝒙3

𝑖 𝒙4
𝑖

𝒉1

𝒐1

𝒉2

𝒐2

𝒉3

𝒐3

𝒉4

𝒐4

𝑊 1

𝑊 2

𝑊 1

𝑊 2

𝑊 1

𝑊 2

𝑊 1

𝑊 2

𝑊ℎ 𝑊ℎ 𝑊ℎ ⋯

START henry is giv

softmax softmax softmax softmax

⋯ ⋯ ⋯ ⋯

henry is giv #ingTarget sequence (try to
predict the next word)

Input sequence

RNN
Language
Model:
Sampling

Henry Chai - 6/3/25 20

𝒙1
𝑖

𝒙2
𝑖 𝒙3

𝑖 𝒙4
𝑖

𝒉1

𝒐1

𝒉2

𝒐2

𝒉3

𝒐3

𝒉4

𝒐4

𝑊 1

𝑊 2

𝑊 1

𝑊 2

𝑊 1

𝑊 2

𝑊 1

𝑊 2

𝑊ℎ 𝑊ℎ 𝑊ℎ ⋯

START henry talks too

softmax softmax softmax softmax

⋯ ⋯ ⋯ ⋯

henry talks too muchGenerated sequence (use each token
as the input to the next timestep)

Input sequence

Aside:
Sampling from
these
distributions to
get the next
word is not
always the best
thing to do

Henry Chai - 6/3/25 21

𝒙1
𝑖

𝒙2
𝑖 𝒙3

𝑖 𝒙4
𝑖

𝒉1

𝒐1

𝒉2

𝒐2

𝒉3

𝒐3

𝒉4

𝒐4

𝑊 1

𝑊 2

𝑊 1

𝑊 2

𝑊 1

𝑊 2

𝑊 1

𝑊 2

𝑊ℎ 𝑊ℎ 𝑊ℎ ⋯

START henry talks too

softmax softmax softmax softmax

⋯ ⋯ ⋯ ⋯

henry talks too muchGenerated sequence (use each token
as the input to the next timestep)

Input sequence

RNN
Language
Models:
Pros & Cons

 Pros:

 Can handle arbitrary sequence lengths without having

to increase model size (i.e., # of learnable parameters)

 Trainable via backpropagation

 Cons

 Vanishing/exploding gradients

 Does not consider information from later timesteps

 Can be addressed by bidirectional RNNs

 Computation is inherently sequential

 "You can't cram the meaning of a whole %&!$#

sentence into a single $&!#* vector!” – Ray Mooney,

UT Austin
Henry Chai - 6/3/25 22

Backpropagation:
Procedural
Method

23

Issues:

1. Hard to reuse /

adapt for other

models

2. Hard to optimize

individual steps

3. Hard to debug

using the finite-

difference check

Henry Chai - 6/3/25

Module-based
AutoDiff

 Key Idea:

 componentize the computation of the neural-

network into layers

 each layer consolidates multiple real-valued nodes

in the computation graph (a subset of them) into

one vector-valued node (aka. a module)

 Each module is capable of two actions:

 Forward computation of the output

given some input

 Backward computation of the gradient

with respect to the input given the

gradient with respect to the output
24

module

Henry Chai - 6/3/25

Module-based
AutoDiff

25Henry Chai - 6/3/25

Module-based
AutoDiff

1. Easy to reuse /

adapt for other

models

2. Individual layers

are easier to

optimize

3. Simple to debug:

just run a finite-

difference check

on each layer

separately
26Henry Chai - 6/3/25

Module-based
AutoDiff (OOP
Version)

Object-Oriented Implementation:

 Let each module be an object and allow the control flow of

the program to define the computation graph

 No longer need to implement NNBackward(·), just follow

the computation graph in reverse topological order

27Henry Chai - 6/3/25

Module-based
AutoDiff (OOP
Version)

28Henry Chai - 6/3/25

Module-based
AutoDiff (OOP
Version)

29Henry Chai - 6/3/25

Key Takeaways

 Language models fit joint probability distributions to

sequences of tokens

 Tokenization and embedding to generate dense vector

representations of texts

 Can be sampled from to generate text

Henry Chai - 6/3/25 30

	Slide 1: 10-301/601: Introduction to Machine Learning Lecture 21 – Language Modeling
	Slide 2: Front Matter
	Slide 3: Language Generation
	Slide 4: Language Models
	Slide 5: Tokenization and Embedding
	Slide 6: Tokenization
	Slide 7: Tokenization
	Slide 8: Tokenization
	Slide 9: Tokenization
	Slide 10: Embedding
	Slide 11: Okay but how do I go about training this neural network?
	Slide 12: Embedding
	Slide 13: Embedding Layer
	Slide 14: Embedding Layer
	Slide 15: Language Models
	Slide 16: Language Models
	Slide 17: RNN Language Models
	Slide 18: RNN Language Models: Training
	Slide 20: RNN Language Model: Sampling
	Slide 21: Aside: Sampling from these distributions to get the next word is not always the best thing to do
	Slide 22: RNN Language Models: Pros & Cons
	Slide 23: Backpropagation: Procedural Method
	Slide 24: Module-based AutoDiff
	Slide 25: Module-based AutoDiff
	Slide 26: Module-based AutoDiff
	Slide 27: Module-based AutoDiff (OOP Version)
	Slide 28: Module-based AutoDiff (OOP Version)
	Slide 29: Module-based AutoDiff (OOP Version)
	Slide 30: Key Takeaways
	Slide 31: 10-301/601: Introduction to Machine Learning Lecture 22 – Attention & Transformers
	Slide 32: RNN Language Models: Pros & Cons
	Slide 33: RNN Language Models: Pros & Cons
	Slide 34: Encoder-Decoder Architectures (Sutskever et al., 2014)
	Slide 35: Attention
	Slide 36: Attention
	Slide 37: Attention
	Slide 38: Attention
	Slide 39: Scaled Dot-product Attention
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Encoder-Decoder Architectures with Attention (Vaswani et al., 2017)
	Slide 44: Scaled Dot-product Self-attention
	Slide 45: Scaled Dot-product Self-attention
	Slide 46: Scaled Dot-product Self-attention: Matrix Form
	Slide 47: Multi-head Scaled Dot-product Self-attention
	Slide 48: Key Takeaway: All of this computation is 1. differentiable 2. highly parallelizable!
	Slide 49: Multi-head Scaled Dot-product Self-attention
	Slide 50: Transformers
	Slide 51: Transformer Language Models
	Slide 52: Transformers
	Slide 53: Scaled Dot-product Self-attention: Matrix Form
	Slide 54: Positional Encodings
	Slide 55: Layer Normalization
	Slide 56: Layer Normalization
	Slide 57: Residual Connections
	Slide 58: Residual Connections
	Slide 59: Residual Connections
	Slide 60: Key Takeaways

