10-301/601: Introduction
to Machine Learning
Lecture 21 — Language
Modeling

Henry Chai
6/3/25



* Announcements

- HWS5 to be released on 6/3 (today!), due 6/6 at
11:59 PM

Front Matter

* Schedule change: two recitations this week
- Recitation on 6/4 will be a PyTorch tutorial

* Recitation on 6/5 will be Quiz 3 preparation

Henry Chai - 6/3/25



* Goal: generate realistic sentences in some human

language and engage in conversation

* Idea: condition on the previous words in the sentence

to predict the next word

| 3 nguage * Better idea: condition on the previous words in the

sentence to predict a distribution over the next word

Generation

* A language model defines a probability distribution
over sequences of words

- We can use a language model to compute

conditional probabilities i.e., the probability of the

next word conditioned on all the previous words.

Henry Chai - 6/3/25



Language

Models

Henry Chai - 6/3/25

Convert raw text into sequence data
x(D) = [x(l) N x(Tl)
l

Learn or approximate a joint probability distribution

over sequences
P(xV)=p (xgl), . x(T"l))

Sample from the implied conditional distribution to
generate new sequences

P(x(‘),.. x(ll) X )
P(xT 1 Ix(l) . x(Tll)) Pl( gl),...T (TLL)T)H




1. Convert raw text into sequence data

x(D = [x(l) . x(T‘l)

* High-level approach: split raw text into smaller units
Tokenization (“tokens”), then learn a dense, numerical vector

and representation (“embedding”) for each token

Embedding

Henry Chai - 6/3/25



* Example: “Henry is giving a lecture on language models”

* |dea: word-based tokenization

” ll H o

, “giving”, “a@”, “lecture”,

” ll

[“henry”, n”, “language’,

Tokenization

“models”]

Henry Chai - 6/3/25



* Example: “Henry is givin’ a lectrue on LMs”

* |dea: word-based tokenization?
[(lhenry”’ ”iS”’ ???’ llaII' ???’ llon”’ ll???”]

Tokenization » Can have difficulty trading off between vocabulary
size and computational tractability

|”

* Similar words e.g., “model” and “models” can get

mapped to completely disparate representations

* Typos or acronyms will likely be out-of-vocabulary
(O0V)

Henry Chai - 6/3/25



* Example: “Henry is givin’ a lectrue on LMs”

* |dea: character-based tokenization:

, N, Y, , ) eee

Tokenlzatlon - Much smaller vocabularies but a lot of semantic

[llh” l(e” o _ 7 I) o, ” ll ” ll 1 llgll l( 1] II HIII lln” o’ n ]
) ] ’

meaning is lost...

- Sequences will be much longer than word-based

tokenization, potentially causing computational issues

- Can do well on logographic languages e.g., Kanji i£=F

Henry Chai - 6/3/25



* Example: “Henry is givin’ a lectrue on LMs”
- Common practice: subword tokenization

[llhenry”, lliSH’ llgiV”’ ll##inH’ o ¢ II’ lla”’ lllect” ll##re”’ llon”’

Tokenization

“language”, “model”, “#s”]
* Split long or rare words into smaller, semantically

meaningful components or subwords

* Common algorithms for computing subwords

consider the most frequently occurring substrings

Henry Chai - 6/3/25



Embedding

Henry Chai - 6/3/25

* Given a vocabulary V with |V| tokens, learn an embedding

by training a 1-layer, fully-connected feed-forward NN that

takes one-hot encoded vectors as input

[0.24,—-1.87,...,0.99] € R”

Embedding

Input layer

- Example: “is” - |0, 0, 1, .., 0]eRV

10


https://www.tensorflow.org/text/tutorials/word2vec
https://nlp.stanford.edu/projects/glove/

Okay but how
do | go about

training this
neural
network?

Henry Chai - 6/3/25

* Given a vocabulary V with |V| tokens, learn an embedding

by training a 1-layer, fully-connected feed-forward NN that

takes one-hot encoded vectors as input

[0.24,—-1.87,...,0.99] € R”

Embedding

Input layer

- Example: “is” - |0, 0, 1, .., 0]eRV

11


https://www.tensorflow.org/text/tutorials/word2vec
https://nlp.stanford.edu/projects/glove/

Embedding

Henry Chai - 6/3/25

* Given a vocabulary V with |V| tokens, learn an embedding

by training a 1-layer, fully-connected feed-forward NN that

takes one-hot encoded vectors as input

[0.24,—-1.87,...,0.99] € R”

Embedding

Input layer

- Example: “is” - |0, 0, 1, .., 0]eRV

* Idea: use a pretrained embedding e.g., word2vec or GloVe

* Requires you to use the same vocabulary/tokenization

12


https://www.tensorflow.org/text/tutorials/word2vec
https://nlp.stanford.edu/projects/glove/

Embedding
Layer

Henry Chai - 6/3/25

* Given a vocabulary V with |V | tokens, learn an embedding

by training a 1-layer, fully-connected feed-forward NN that

takes one-hot encoded vectors as input

[0.24,—-1.87,...,0.99] € R”

Embedding

Input layer

* Example: “is” - [0, 0, 1, .., 0]eRV

- Common practice: add this 1-layer NN to whatever

architecture you’re using and fit it to the task

13



Embedding
Layer

Henry Chai - 6/3/25

Input layer

* Example: “is” - [0, 0, 1, .., 0]eRV

- Common practice: add this 1-layer NN to whatever

architecture you’re using and fit it to the task

14



Language

Models

Henry Chai - 6/3/25

1. Convert raw text into sequence data
x(D) = [x(‘) N x(T‘)
l

2. Learn or approximate a joint probability distribution

over sequences
P(x®D) =p (xgl), . (Tl))

* Use the chain rule of probability: predict the next word

based on the previous words in the sequence

P(x®) = p(x")

<P (x )|x(‘))

15



Language

Models

Henry Chai - 6/3/25

1. Convert raw text into sequence data
x(D) = [x(‘) N x(T‘)
l

2. Learn or approximate a joint probability distribution

over sequences

P(x®D) =p (xgl), . (Tl))

~Use-the-chainrule-of probability Just throw an RNN at it!

P(x®) = p(x")

P (2 1x9)

x P (x(T‘l) | x(Tii)_l, . xgl))

16



RNN
Language

Models

Henry Chai - 6/3/25

1. Convert raw text into sequence data
x(D) = [x(l) N ,x(Ti,)]
l

2. Learn or approximate a joint probability distribution

over seqguences

P(xW)=p (xgl), . x(Tll))

~Use-the-chainrute-ofprebabiity Just throw an RNN at it!

P(xV) = o, ( ("))
* 0, (xg'), h4 ( (l)))

* OT (xgwll) th._l (x’(Tl) 12 = xgl)))

17



predict the next word)

Target sequence (try to

softmax ]

.

RNN
Language

Models:
Training

Input sequence

Henry Chai- 6/3/25 18



Generated sequence (use each token
as the input to the next timestep)

RNN
Language

Model:
Sampling

Input sequence

Henry Chai - 6/3/25 20



Generated sequence (use each token
as the input to the next timestep)

Aside:
Sampling from
these
distributions to

get the next

word is not

always the best
thing to do

Input sequence START
Henry Chai - 6/3/25

21



RNN
Language

Models:
Pros & Cons

Henry Chai - 6/3/25

* Pros:

* Can handle arbitrary sequence lengths without having
to increase model size (i.e., # of learnable parameters)

* Trainable via backpropagation

* Cons

22



Algorithm 1 Forward Computation
1: procedure NNFORWARD(Training example (x, y), Params «, 3)

2 a=ax Issues:
3: z=o(a)
4: b = Bz
5§ = softmax(b) 1. Hard to reuse /
6: J=—-yllogy
72 0=object(x,azb,y,J) adapt for other
8: return intermediate quantities o

Backpropagation: models

P ro CEd ura I Algorithm 2 Backpropagation 7. Hard to thimize
1: procedure NNBACKWARD(Training example (x, y), Params «, 3,

MEth Od Intermediates o) individual steps
7% Place intermediate quantities x,a,z,b,y, J in o in scope
3 gy =-Yy+Yy
% gb=gj (diag(y) —yy") 3. Hard to debug

_ oT,T

5 g8 — 8pZ . -
60 g, =gl using the finite-
7 g2 =8,0z20(1—-12) .
& 8o = gaX' difference check
9 return parameter gradients g, g3

Henry Chai - 6/3/25 23



Module-based

AutoDiff

Henry Chai - 6/3/25

* Key ldea:
* componentize the computation of the neural-

network into layers

- each layer consolidates multiple real-valued nodes
in the computation graph (a subset of them) into

one vector-valued node (aka. a module)

- Each module is capable of two actions:

° Forward computation of the output b 9

given some input I l

- Backward computation of the gradient [ module J

with respect to the input given the I l

gradient with respect to the output a  Ja

24



Module-based

AutoDiff

Henry Chai - 6/3/25

Linear Module The linear layer has two inputs: a vec-
tor a and parameters w € REZ*4. The output b
is not used by LINEARBACKWARD, but we pass it in
for consistency of form.

1 procedure LINEARFORWARD(a, w)
BE b =wa

3 return b

4: procedure LINEARBACKWARD(a, w, b, gp)
5 8w =gpadl

6 8a = ngb

7 return g.,, 8a

Softmax Module The softmaxlayer has only oneinput
vector a. For any vector v € R”, we have that
diag(v) returns a D x D diagonal matrix whose
diagonal entriesare vy, va, ..., vp and whose non-
diagonal entries are zero.

1: procedure SOFTMAXFORWARD(a)

2 b = softmax(a)

= return b

4: procedure SOFTMAXBACKWARD(a, b, gp,)
5. ga = gy, (diag(b) — bb")

6: return g,

Sigmoid Module The sigmoid layer has only one input
vectora. Below o is the sigmoid applied element-
wise, and © is element-wise multiplication s.t. u©
v = [uqvy, ..., Up O]

1: procedure SIGMOIDFORWARD(a)

2 b =o(a)

3 return b

4: procedure SIGMOIDBACKWARD(a, b, gp)
55 Ba=8bObO(1-b)

6: return g,

Cross-Entropy Module The cross-entropy layer has twoin-
puts: a gold one-hot vector a and a predicted proba-
bility distribution a. It’s output b € R is a scalar. Be-
low -+ is element-wise division. The output b is not
used by CROSSENTROPYBACKWARD, but we pass it in
for consistency of form.

1: procedure CROSSENTROPYFORWARD(a, &)

2 b= —alloga

=5 return b

4: procedure CROSSENTROPYBACKWARD(a, a, b, g5)
5 8a=—gr(a+a)

6: return g,

25



1. Easy to reuse /

Algorithm 1 Forward Computation

1: Igr)ocedure NNFORWARD(Training example (x, y), Parameters «, ada pt for other
B a = LINEARFORWARD(X, &) del
B z = SIGMOIDFORWARD(a) MOAEIS
4: b = LINEARFORWARD(z, (3)
5: y = SOFTMAXFORWARD(b) .
6: J = CROSSENTROPYFORWARD(y, ¥) 2. Individual Iaye I'S
7: o = object(x,a,z,b,y,J)
M Od I e ba Sed 8: return intermediate quantities o are easier to
: optimize
AUtO lef Algorithm 2 Backpropagation
1: procedure NNBACKWARD(Training example (x, y), Parameters
o, 3, Inte.rmediate.s 0) B o 3. Sim pIe to debug:
2 Place intermediate quantities x,a,z,b,y, J in o in scope
3 g =%=1 > Base case i fini
4: gy = CROSSENTROPYBACKWARD(y, ¥, J, 9.7) JUSt run a tinite-
5: gb = SOFTMAXBACKWARD(b, ¥, g5 )
6: g3, 8z = LINEARBACKWARD(z, b, gp) difference ChECk
7: g, = SIGMOIDBACKWARD(a, z, g )
8: g, Ex = LINEARBACKWARD(X, &, g5 ) > We discard g
o:  return parameter gradients gn, g3 on each Iayer
separately

Henry Chai- 6/3/25 26



Module-based

AutoDiff (OOP
Version)

Henry Chai - 6/3/25

Object-Oriented Implementation:

* Let each module be an object and allow the control flow of

the program to define the computation graph

* No longer need to implement NNBackward(-), just follow

the computation graph in reverse topological order

class Sigmoid (Module)
method forward(a)
b =o(a)
return b
method backward(a, b, gp)
ga=8,bOb® (1 -Db)
return g,

N O v AW N N
[C<IERN| A v A W N A

class Softmax(Module)
method forward(a)
b = softmax(a)
return b
method backward(a, b, gp)
ga = gy, (diag(b) — bb")
return g,

N O v bW N N
N O v AW N -

class Linear (Module)
method forward(a, w)
b = wa
return b

method backward(a, w, b, gp)

8w = gbaT

8a = ngb
return g., ga

class CrossEntropy (Module)
method forward(a, a)
b= —alloga
return b
method backward(a, a, b, ¢p)
ga = —gv(a +a)
return g, 27



Module-based

AutoDiff (OOP
Version)

Henry Chai - 6/3/25

class NeuralNetwork (Module) :

method init ()
linl_layer = Linear()
sig_ layer = Sigmoid ()
lin2_layer = Linear()
soft_layer = Softmax()
ce layer = CrossEntropy ()

method forward(Tensor x, Tensor y, Tensor «, Tensor (3)
a =linl_layer.apply fwd(x, a)
z =sig_ layer.apply_fwd(a)
b =lin2_layer.apply fwd(z, 3)
y =soft__layer.apply_ fwd(b)
J =ce_layer.apply_fwd(y,¥)
return J.out tensor

method backward(Tensor x, Tensor y, Tensor oo, Tensor 3)
tape__bwd ()
return linl_layer.in gradients[1] , lin2 layer.in_gradients[1]

28



Module-based

AutoDiff (OOP
Version)

Henry Chai - 6/3/25

O 0 N O v b~ W N -

global tape = stack()
class Module:

method init ()
out tensor = null
out_ gradient = 1

method apply fwd(List in_modules)
in_tensors = [x.out_ tensor for x in in modules]
out_ tensor = forward(in tensors)
tape. push (self)
return self

method apply_bwd():
in_gradients = backward(in_ tensors , out_tensor , out_gradient)
for i in 1,..., len(in_modules) :
in_modules[i] .out gradient += in_gradients[i]
return self

function tape bwd():
while len(tape) > 0
m = tape.pop()
m.apply bwd()

29



\GVAELGCEWENR

Henry Chai - 6/3/25

* Language models fit joint probability distributions to

sequences of tokens

* Tokenization and embedding to generate dense vector

representations of texts

* Can be sampled from to generate text

30



	Slide 1: 10-301/601: Introduction to Machine Learning Lecture 21 – Language Modeling
	Slide 2: Front Matter
	Slide 3: Language Generation
	Slide 4: Language Models
	Slide 5: Tokenization and Embedding
	Slide 6: Tokenization   
	Slide 7: Tokenization   
	Slide 8: Tokenization   
	Slide 9: Tokenization   
	Slide 10:   Embedding
	Slide 11: Okay but how do I go about training this neural network?
	Slide 12:   Embedding
	Slide 13:    Embedding Layer
	Slide 14:    Embedding Layer
	Slide 15: Language Models
	Slide 16: Language Models
	Slide 17: RNN Language Models 
	Slide 18: RNN Language Models: Training
	Slide 20: RNN Language Model: Sampling
	Slide 21: Aside: Sampling from these distributions to get the next word is not always the best thing to do
	Slide 22: RNN Language Models: Pros & Cons
	Slide 23: Backpropagation:  Procedural Method
	Slide 24: Module-based AutoDiff
	Slide 25: Module-based AutoDiff
	Slide 26: Module-based AutoDiff
	Slide 27:  Module-based AutoDiff (OOP Version) 
	Slide 28:  Module-based AutoDiff (OOP Version) 
	Slide 29:  Module-based AutoDiff (OOP Version) 
	Slide 30: Key Takeaways

