10-301/601: Introduction
to Machine Learning
Lecture 20 — Recurrent
Neural Networks

Henry Chai
6/2/25



Recurrent

Neural
Networks

Henry Chai - 6/2/25

* Neural networks are frequently applied to inputs with

some inherent temporal or sequential structure

(e.g., text or video) of variable length

* Idea: use the information from previous parts of the

input to inform subsequent predictions

* Insight: the hidden layers learn a useful representation

(relative to the task)

* Approach: incorporate the output from earlier hidden

layers into later ones.
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* This model requires an initial value

for the hidden representation, h,

typically a vector of all zeros
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- A (deep/bidirectional) RNN simply represents a

(somewhat complicated) computation graph

- Weights are shared between different timesteps,
significantly reducing the number of parameters to

be learned!

* Can be trained using (stochastic) gradient descent/

backpropagation — “backpropagation through time”
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Forward pass to compute outputs and hidden representations
<

Backward pass to compute gradients
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Challenges ettt

Forward pass to compute outputs and hidden representations
<

Backward pass to compute gradients

* Issue: as the sequence length grows, the gradient is

more likely to explode or vanish
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- Common strategy to deal with exploding gradients:
if the magnitude of the gradient ever exceeds some

threshold, simply scale it down to the threshold
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Gradient B ’
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Source: https://arxiv.org/pdf/1211.5063.pdf 17
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Insight: S( )
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Forward pass to compute outputs and hidden representations

<
Backward pass through

a subsequence

* Idea: limit the number of time steps to backprop through
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* Recurrent neural networks use contextual information
to reason about sequential data
* Can still be learned using backpropagation —

backpropagation through time

- Susceptible to exploding/vanishing gradients for

long training sequences

* Language models fit joint probability distributions to

sequences of tokens

- Tokenization and embedding to generate dense

vector representations of texts

* Can be sampled from to generate text
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