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What is 
Machine 
Learning
10-301/601?
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 Supervised Models

 Decision Trees

 KNN

 Perceptron

 Logistic Regression

 Linear Regression

 Neural Networks

 Unsupervised Learning

 Ensemble Methods

 Deep Learning & 
Generative AI

 Learning Theory

 Reinforcement Learning

 Important Concepts

 Feature Engineering 

 Regularization and 
Overfitting

 Experimental Design

 Societal Implications
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Defining a 
Machine 
Learning 
Task 
(Mitchell, 97)

 A computer program learns if its performance, P, at 

some task, T, improves with experience, E. 

 Three components

 Task, T

 Performance metric, P

 Experience, E
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Defining a 
Machine 
Learning 
Task: 
Example

 Learning to approve loans/lines of credit

 Three components

 Task, T

Decide whether to extend someone a loan

 Performance metric, P

Number of people who default on their loan

 Experience, E

Interviews with loan officers

Henry Chai - 5/12/25 11



Defining a 
Machine 
Learning 
Task: 
Example

 Learning to approve loans/lines of credit

 Three components

 Task, T

Predict the probability someone defaults on a loan

 Performance metric, P

Amount of money (interest) made

 Experience, E

Historical data on loan defaults
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What is 
Machine 
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 Neutral or Unbiased?
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Things 
Machine 
Learning 
Isn’t

Source: https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/ 

 Neutral or Unbiased
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 Learning to diagnose heart disease  

as a (supervised) binary classification task

Our first 
Machine 
Learning 
Task
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Family
History

Resting Blood 
Pressure

Cholesterol Heart 
Disease?

Yes Low Normal No

No Medium Normal No

No Low Abnormal Yes

Yes Medium Normal Yes

Yes High Abnormal Yes

features labels
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Family
History

Resting Blood 
Pressure
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Yes Low Normal No

No Medium Normal No
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Yes Medium Normal Yes
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 Learning to diagnose heart disease  

as a (supervised) binary classification task

Our first 
Machine 
Learning 
Task

Henry Chai - 5/12/25

Family
History

Resting Blood 
Pressure

Cholesterol Risk

Yes Low Normal Low Risk

No Medium Normal Low Risk

No Low Abnormal Medium Risk

Yes Medium Normal High Risk

Yes High Abnormal High Risk

features labels

d
at

a 
p

o
in

ts

20



 Learning to diagnose heart disease  

as a (supervised) bin. . ary regression task

Our first 
Machine 
Learning 
Task

Henry Chai - 5/12/25

Family
History

Resting Blood 
Pressure

Cholesterol Medical 
Costs

Yes Low Normal $0

No Medium Normal $20

No Low Abnormal $30

Yes Medium Normal $100

Yes High Abnormal $5000

features targets
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 A classifier is a function that takes feature values as 

input and outputs a label

 Majority vote classifier: always predict the most 

common label in the training dataset

Our first 
Machine 
Learning 
Classifier
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Family
History

Resting Blood 
Pressure

Cholesterol Heart 
Disease?

Yes Low Normal No

No Medium Normal No

No Low Abnormal Yes

Yes Medium Normal Yes

Yes High Abnormal Yes
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 A classifier is a function that takes feature values as 

input and outputs a label

 Majority vote classifier: always predict the most 

common label in the training dataset 

Is this a 
“good” 
Classifier?
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Family
History

Resting Blood 
Pressure

Cholesterol Heart 
Disease?

Yes Low Normal No

No Medium Normal No

No Low Abnormal Yes

Yes Medium Normal Yes

Yes High Abnormal Yes

features labels
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 A classifier is a function that takes feature values as 

input and outputs a label

 Majority vote classifier: always predict the most 

common label in the training dataset (Yes)

Training 
vs. 
Testing

Henry Chai - 5/12/25

Family
History

Resting Blood 
Pressure

Cholesterol Heart 
Disease?

Yes Low Normal No

No Medium Normal No

No Low Abnormal Yes

Yes Medium Normal Yes

Yes High Abnormal Yes
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 A classifier is a function that takes feature values as  

input and outputs a label

 Majority vote classifier: always predict the most   

common label in the training dataset (Yes)

 A test dataset is used to evaluate a classifier’s predictions

 The error rate is the proportion of data points where the 

prediction is wrong

Training 
vs. 
Testing

Henry Chai - 5/12/25

Family
History

Resting Blood 
Pressure

Cholesterol Heart 
Disease?

Predictions

No Low Normal No Yes

No High Abnormal Yes Yes

Yes Medium Abnormal Yes Yeste
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 A classifier is a function that takes feature values as  

input and outputs a label

 Majority vote classifier: always predict the most   

common label in the training dataset (Yes)

 A test dataset is used to evaluate a classifier’s predictions

 The test error rate is the proportion of data points in the 

test dataset where the prediction is wrong ( Τ1 3)

Training 
vs. 
Testing

Henry Chai - 5/12/25

te
st

 d
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et

Family
History

Resting Blood 
Pressure

Cholesterol Heart 
Disease?

Predictions

No Low Normal No Yes

No High Abnormal Yes Yes

Yes Medium Abnormal Yes Yes

26



A Typical 
(Supervised) 
Machine 
Learning 
Routine

 Step 1 – training

 Input: a labelled training dataset

 Output: a classifier

 Step 2 – testing

 Inputs: a classifier, a test dataset

 Output: predictions for each test data point

 Step 3 – evaluation

 Inputs: predictions from step 2, test dataset labels

 Output: some measure of how good the predictions are; 

            usually (but not always) error rate

Henry Chai - 5/12/25 27



Key Takeaways

 Components of a machine learning problem

 Algorithmic bias

 Components of a labelled dataset for supervised learning

 Training vs. test datasets

 Majority vote classifier

Henry Chai - 5/12/25 28



Logistics: 
Course 
Website

Henry Chai - 5/12/25

https://www.cs.cmu.edu/~hchai2/courses/10601 
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Logistics: 
Course 
Syllabus

Henry Chai - 5/12/25

https://www.cs.cmu.edu/~hchai2/courses/10601/#Syllabus

 This whole section is required reading
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Logistics: 
Grading

Henry Chai - 5/12/25

https://www.cs.cmu.edu/~hchai2/courses/10601/#Syllabus

 32% = 8 homework assignments

 24% = 4 quizzes

 20% = midterm

 20% = final

 4% participation

 4% (full credit) for 75% or greater poll participation

 2% for 50%-75% poll participation

 “Correctness” will not affect your participation grade

 50% credit for responses before the next lecture
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Logistics: 
Programming 
Assignments

Henry Chai - 5/12/25 35

https://www.cs.cmu.edu/~hchai2/courses/10601/#Syllabus

 8 programming assignments which focus on implementing 
machine learning methods presented in class

 Each will have a programming component and some 
written, empirical questions 

 Your answers to the written questions must be 
typeset in LaTeX

 We will always provide a LaTeX starter template 
that you can just fill in with your answers. 

 You will submit your code and your answers to the 
written questions separately, both using Gradescope

https://www.cs.cmu.edu/~hchai2/courses/10601/


Logistics: 
Late 
Policy
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https://www.cs.cmu.edu/~hchai2/courses/10601/#Syllabus

 8 grace days for use across all homework assignments

 Only 2 grace days may be used per homework

 Late submissions w/o grace days:

 1 day late = 75% multiplicative penalty

 2 days late = 50% multiplicative penalty

 No submissions accepted more than 2 days late

36

https://www.cs.cmu.edu/~hchai2/courses/10601/


Logistics: 
In-class 
Quizzes

Henry Chai - 5/12/25 37

https://www.cs.cmu.edu/~hchai2/courses/10601/#Syllabus

 4 weekly quizzes that cover the week’s content

 The goal of these regular quizzes is to keep you up to 
date on the material and serve as check-ins for your 
understanding

 To help you prepare, we will release a “Study Guide” at 
the beginning of each week with practice problems

1. You are encouraged to be working on these 
problems throughout the week

2. Our TAs will go over some subset of these 
problems in recitations 

 At least 50% of the points on the in-class quizzes will 
come from questions in the Study Guides

https://www.cs.cmu.edu/~hchai2/courses/10601/


Logistics: 
Collaboration 
Policy

Henry Chai - 5/12/25

https://www.cs.cmu.edu/~hchai2/courses/10601/#Syllabus

 On study materials, you may collaborate freely, to any extent 

 However, you still have a duty to protect your work: you 
may not post your solutions publicly/share your solutions 
with anyone outside of the course

 Collaboration on programming assignments is encouraged but 
must be documented

 You must always write your own code/answers

 You may not use generative AI tools to complete the 
programming assignments

 Good approach to collaborating on programming assignments:

1. Collectively sketch pseudocode on an impermanent 
surface, then

2. Disperse, erase all notes and start from scratch
38
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Logistics: 
Technologies

Henry Chai - 5/12/25

https://www.cs.cmu.edu/~hchai2/courses/10601/#Syllabus

 Piazza, for course discussion: 
https://piazza.com/cmu/summer2025/10301601/home 

 Gradescope, for submitting homework assignments: 
https://www.gradescope.com/courses/1030511 

 Polleverywhere, for in-class participation: 
https://pollev.com/301601polls

 Panopto, for lecture recordings: 
https://scs.hosted.panopto.com/Panopto/Pages/Sessions/List.
aspx?folderID=caea12f7-c2b4-48c2-b947-b2cf00e7bfee 

39

https://www.cs.cmu.edu/~hchai2/courses/10601/
https://piazza.com/cmu/summer2025/10301601/home
https://www.gradescope.com/courses/1030511
https://pollev.com/301601polls
https://scs.hosted.panopto.com/Panopto/Pages/Sessions/List.aspx?folderID=caea12f7-c2b4-48c2-b947-b2cf00e7bfee
https://scs.hosted.panopto.com/Panopto/Pages/Sessions/List.aspx?folderID=caea12f7-c2b4-48c2-b947-b2cf00e7bfee
https://scs.hosted.panopto.com/Panopto/Pages/Sessions/List.aspx?folderID=caea12f7-c2b4-48c2-b947-b2cf00e7bfee
https://scs.hosted.panopto.com/Panopto/Pages/Sessions/List.aspx?folderID=caea12f7-c2b4-48c2-b947-b2cf00e7bfee
https://scs.hosted.panopto.com/Panopto/Pages/Sessions/List.aspx?folderID=caea12f7-c2b4-48c2-b947-b2cf00e7bfee
https://scs.hosted.panopto.com/Panopto/Pages/Sessions/List.aspx?folderID=caea12f7-c2b4-48c2-b947-b2cf00e7bfee
https://scs.hosted.panopto.com/Panopto/Pages/Sessions/List.aspx?folderID=caea12f7-c2b4-48c2-b947-b2cf00e7bfee
https://scs.hosted.panopto.com/Panopto/Pages/Sessions/List.aspx?folderID=caea12f7-c2b4-48c2-b947-b2cf00e7bfee
https://scs.hosted.panopto.com/Panopto/Pages/Sessions/List.aspx?folderID=caea12f7-c2b4-48c2-b947-b2cf00e7bfee
https://scs.hosted.panopto.com/Panopto/Pages/Sessions/List.aspx?folderID=caea12f7-c2b4-48c2-b947-b2cf00e7bfee


https://www.cs.cmu.edu/~hchai2/courses/10601/#Schedule

Logistics: 
Weekly 
Schedule

Henry Chai - 5/12/25

Lecture

Monday 9:30 – 10:30

Monday 11 – 12

Tuesday 9:30 – 10:30

Tuesday 11 – 12

Wednesday 9:30 – 10:30

Wednesday 11 – 12

Thursday 9:30 – 10:30

Recitation Thursday 11 – 12

Quiz Friday 11 – 12 

HW1 Released Tuesday Due Friday

HW2 Released Friday Due Tuesday

40
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https://www.cs.cmu.edu/~hchai2/courses/10601/#Schedule

Logistics: 
Lecture 
Schedule
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https://www.cs.cmu.edu/~hchai2/courses/10601/#Quizzes

Logistics: 
Quiz 
Schedule
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https://www.cs.cmu.edu/~hchai2/courses/10601/#Schedule

Logistics: 
Exam 
Schedule

Henry Chai - 5/12/25

⋮

⋮
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https://www.cs.cmu.edu/~hchai2/courses/10601/#Homeworks

Logistics:
Homework 
Assignments
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Logistics: 
Course 
Calendar

Henry Chai - 5/12/25

https://www.cs.cmu.edu/~hchai2/courses/10601/#Calendar
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