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Defining a
Machine

Learning
Task
(Mitchell, 97)
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- A computer program learns if its performance, P, at

some task, T, improves with experience, E.

* Three components

* Task, T

* Performance metric, P

* Experience, E

10
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* Neutral or Unbiased?
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* Neutral or Unbiased

OCTOBER 30, 2023

Executive Order on the Safe, Secure, and
Trustworthy Development and Use of Artificial
Intelligence

Things BRIEF;IQZI;I; ROOM

A4

IVIaChi ne PRESIDENTIAL ACTIONS

Lea rn I n g Section 1. Purpose. Artificial intelligence (AI) holds extraordinary

) potential for both promise and peril. Responsible AI use has the potential to
I S n t help solve urgent challenges while making our world more prosperous,
productive, innovative, and secure. At the same time, irresponsible use could
exacerbate societal harms such as fraud, discrimination, bias, and
disinformation; displace and disempower workers; stifle competition; and
pose risks to national security. Harnessing Al for good and realizing its
myriad benefits requires mitigating its substantial risks. This endeavor
demands a society-wide effort that includes government, the private sector,

academia, and civil society.

Source: https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
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Defining a
Machine
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* Learning to
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* Learning to diagnose heart disease

as a (supervised) binary classification task

features la bels
Famlly Resting Blood | Cholesterol Heart
Hlstory Pressure Disease?
% Normal
S No Medium Normal No
o
=2 -< No Low Abnormal Yes
(©
1o Yes Medium Normal Yes
o
. Yes High Abnormal Yes

17



* Learning to diagnose heart disease

as a (supervised) binary classification task

Our first features labels
: A A
Machine [ \ \
Lea rni ng Fe-\mlly Resting Blood | Cholesterol Hgart
History | Pressure Disease?
TaSk 5 " Yes Low Normal No
=
= No Medium Normal No
)
=2 -< No Low Abnormal Yes
(©
1o Yes Medium Normal Yes
o
. Yes High Abnormal Yes
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* Learning to diagnose heart disease

as a (supervised) binary classification task

features la beIs
Famlly Resting Blood | Cholesterol Heart
Hlstory Pressure Disease?
% Normal
S No Medium Normal No
o
=2 -< No Low Abnormal Yes
(©
1o Yes Medium Normal Yes
o
. Yes High Abnormal Yes
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* Learning to diagnose heart disease

as a (supervised) classification task
featu res la bels
Famlly Resting Blood | Cholesterol Rlsk
Hlstory Pressure
" Normal Low Risk
=
= No Medium Normal Low Risk
)
O -< No Low Abnormal Medium Risk
©
o Yes Medium Normal High Risk
©
. Yes High Abnormal High Risk
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* Learning to diagnose heart disease

as a (supervised) regression task
featu res ta rgets
Famlly Resting Blood | Cholesterol Medlcal
Hlstory Pressure Costs
% Normal
= No Medium Normal $20
@)
2 < No Low Abnormal | $30
©
1o Yes Medium Normal $100
©
. Yes High Abnormal | $5000
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Our first
Machine

Learning
Classifier
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* A classifier is a function that takes feature values as

input and outputs a label

- Majority vote classifier: always predict the most

common label in the dataset
features Iabels
Famlly Resting Blood | Cholesterol Heart
Hlstory Pressure Disease?
% Normal
S No Medium Normal No
)
Q--< No Low Abnormal Yes
(©
1o Yes Medium Normal Yes
o
. Yes High Abnormal Yes
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Is this a
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* A classifier is a function that takes feature values as

input and outputs a label

- Majority vote classifier: always predict the most

common label in the dataset
features Iabels
Hlstory Pressure Disease?
% Normal
= No Medium Normal No
8— -< No Low Abnormal Yes
% Yes Medium Normal Yes
© . Yes High Abnormal Yes
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* A classifier is a function that takes feature values as

Training

VS.
Testing

training dataset

Henry Chai - 5/12/25

input and outputs a label

- Majority vote classifier: always predict the most

common label in the training dataset (Yes)

Famlly Resting Blood | Cholesterol | Heart
Hlstory Pressure Disease?

Normal
< No Medium Normal No
No Low Abnormal Yes
Yes Medium Normal Yes

\_ Yes High Abnormal Yes

24



Training

VS.
Testing
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* A classifier is a function that takes feature values as

input and outputs a label

- Majority vote classifier: always predict the most

common label in the training dataset (Yes)

* A test dataset is used to evaluate a classifier’s predictions

+ Famlly Resting Blood | Cholesterol | Heart Predictions
2 Hlstory Pressure Disease?

i)

© < Normal

2 No High Abnormal Yes Yes

2 (_ Yes Medium Abnormal Yes Yes

* The error rate is the proportion of data points where the

prediction is wrong

25



Training

VS.
Testing
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* A classifier is a function that takes feature values as

input and outputs a label

- Majority vote classifier: always predict the most

common label in the training dataset (Yes)

* A test dataset is used to evaluate a classifier’s predictions

+ Famlly Resting Blood | Cholesterol | Heart Predictions
2 Hlstory Pressure Disease?

i)

© < Normal

2 No H|gh Abnormal Yes Yes

2 (_ Yes Medium Abnormal Yes Yes

* The test error rate is the proportion of data points in the

test dataset where the prediction is wrong (1/3)

26



A Typical
(Supervised)

Machine
Learning
Routine

Henry Chai - 5/12/25

* Step 1 —training

* Input: a labelled training dataset

 Output: a classifier

* Step 2 —testing

* Inputs: a classifier, a test dataset

* Output: predictions for each test data point

* Step 3 — evaluation

* Inputs: predictions from step 2, test dataset labels

* Output: some measure of how good the predictions are;

usually (but not always) error rate

27
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- Components of a machine learning problem

* Algorithmic bias

- Components of a labelled dataset for supervised learning
* Training vs. test datasets

 Majority vote classifier

28



Logistics:

Course
Website
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https://www.cs.cmu.edu/~hchai2/courses/10601
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Logistics:

Course
Syllabus

Henry Chai - 5/12/25

https://www.cs.cmu.edu/~hchai2/courses/10601/#Syllabus

* This whole section is required reading

30
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Logistics:

Grading

Henry Chai - 5/12/25

https://www.cs.cmu.edu/~hchai2/courses/10601/#Syllabus

* 32% = 8 homework assignments
* 24% = 4 quizzes
* 20% = midterm
* 20% = final
* 4% participation
* 4% (full credit) for 75% or greater poll participation
* 2% for 50%-75% poll participation
* “Correctness” will not affect your participation grade
* 50% credit for responses before the next lecture

31
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m

M25 10-301/601 Demo Poll

0 surveys completed
S

0 surveys underway

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



m

Is a hot dog a sandwich?

Yes, of course!

No, absolutely not!

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



m

Briefly justify your response to the previous question ("Is a hot dog a sandwich?")

Join by QR code
Scan with your camera app

Jain by Web

PollEv.com/301601polls

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



Logistics:

Programming
Assighments

Henry Chai - 5/12/25

https://www.cs.cmu.edu/~hchai2/courses/10601/#Syllabus

* 8 programming assignments which focus on implementing
machine learning methods presented in class

* Each will have a programming component and some
written, empirical questions
* Your answers to the written questions must be
typeset in LaTeX
- We will always provide a LaTeX starter template
that you can just fill in with your answers.

* You will submit your code and your answers to the
written questions separately, both using Gradescope

35
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https://www.cs.cmu.edu/~hchai2/courses/10601/#Syllabus

- 8 grace days for use across all homework assignments
* Only 2 grace days may be used per homework

* Late submissions w/o grace days:
- 1 day late = 75% multiplicative penalty

Late » 2 days late = 50% multiplicative penalty
Policy

Logistics:

* No submissions accepted more than 2 days late

Henry Chai - 5/12/25
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https://www.cs.cmu.edu/~hchai2/courses/10601/#Syllabus

- 4 weekly quizzes that cover the week’s content

* The goal of these regular quizzes is to keep you up to
date on the material and serve as check-ins for your

understanding

* To help you prepare, we will release a “Study Guide” at
the beginning of each week with practice problems

Logistics:

In-class 1. You are encouraged to be working on these
Quizzes problems throughout the week

2. Our TAs will go over some subset of these
problems in recitations

- At least 50% of the points on the in-class quizzes will
come from questions in the Study Guides

Henry Chai - 5/12/25 37
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Logistics:

Collaboration
Policy

Henry Chai - 5/12/25

https://www.cs.cmu.edu/~hchai2/courses/10601/#Syllabus

- On study materials, you may collaborate freely, to any extent

* However, you still have a duty to protect your work: you
may not post your solutions publicly/share your solutions
with anyone outside of the course

* Collaboration on programming assignments is encouraged but
must be documented

* You must always write your own code/answers

* You may not use generative Al tools to complete the
programming assignments

* Good approach to collaborating on programming assignments:

1. Collectively sketch pseudocode on an impermanent
surface, then

2. Disperse, erase all notes and start from scratch

38
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Logistics:

Technologies

Henry Chai - 5/12/25

https://www.cs.cmu.edu/~hchai2/courses/10601/#Syllabus

* Piazza, for course discussion:
https://piazza.com/cmu/summer2025/10301601/home

* Gradescope, for submitting homework assignments:
https://www.gradescope.com/courses/1030511

* Polleverywhere, for in-class participation:
https://pollev.com/301601polls

* Panopto, for lecture recordings:
https://scs.hosted.panopto.com/Panopto/Pages/Sessions/List.

aspx?folderIiD=caeal2f7-c2b4-48c2-b947-b2cf00e7bfee

39
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https://www.cs.cmu.edu/~hchai2/courses/10601/#Schedule

Monday 9:30 — 10:30
Monday 11 — 12
Tuesday 9:30 - 10:30
Lecture Tuesday 11 —12

Logistics: Wednesday 9:30 — 10:30
Weekly Wednesday 11 —12
Schedule Thursday 9:30 — 10:30
edieiilel i Thursday 11— 12
Friday 11 - 12
HW1 Released Tuesday Due Friday

Released Friday Due Tuesday

Henry Chai - 5/12/25
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https://www.cs.cmu.edu/~hchai2/courses/10601/#Schedule

Schedule

Date Topic Slides/Handout Readings/Resources

Introduction: Notation & Problem Formulation t’SL 3{'_'5
“Cf"'—"\c\‘ ,_3;_]

[ ] [ ]
LO g I St I CS : Mon, 5/12 Decision Trees - Model Definition & Making Predictions ﬁ 31‘1 1-L-)
L t Decision Trees - Learning
e C u re Tue s Overfitting
SC h e d u | e Wed, 514 Nearest Neighbors

Model Selection

Perceptron
Thu, 5/15
Recitation - Week 1 Review

Henry Chai - 5/12/25
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https://www.cs.cmu.edu/~hchai2/courses/10601/#Quizzes

Quizzes

Date Topic Study Guide Quiz

Logistics: — o Lstidy guécd

Qu i Z Fri, 6/6 Quiz 3

Fri, 613 Quiz 4

Schedule

Henry Chai - 5/12/25


https://www.cs.cmu.edu/~hchai2/courses/10601/

https://www.cs.cmu.edu/~hchai2/courses/10601/#Schedule

Date

Schedule

Topic

Slides/Handout

Readings/Resources

Logistics:

Exam 520

Schedule

Wed, 6/18

Thu, 6/19

Fri, 6/20

Henry Chai - 5/12/25

Recitation - Midterm Review

Midterm Exam

Recitation - Final Review
No Class (Juneteenth)

Final Exam

43
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Logistics:

Homework
Assighments

Henry Chai - 5/12/25

https://www.cs.cmu.edu/~hchai2/courses/10601/#Homeworks

Homework Assignments

Release Date Topic Files Due Date

Tue, 5/13 PA: Decision Trees v Moot Fi, 5/16 at 11:59 PM
Fri, 5/16 PAZ2: kNNs C ‘Mm Tue, 5/20 at 11:59 PM
Tue, 5/20 PA3: Logistic Regression Fri, 5/23 at 11:59 PM
Fri, 523 PA4: Meural Networks Wed, 5/28 at 11:59 PM
Tue, 6/3 PAS: Deep Learning Fri, 6/6 at 11:59 PM
Fri, 6/6 PAB: Unsupervised Learning Tue, 610 at 11:59 PM
Tue, 610 PAT: Reinforcement Learning Fri, 6/13 at 11:59 PM
Fri, 613 PAS: Ensemble Methods Tue, /17 at 11:59 PM
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Course Calendar

SUN MON TUE WED THU FRI SAT
27 28 29 30 May 1 2 3

Logistics: e
Course " . , ; . . ,
Calendar

18 19 20 21 22 23 24

25 26 27 28 29 30 31

M25 10-601 Course Calendar
Events shown in time zone: (GMT-04:00) Eastern Time - New York Google Calendar
Add to Google Calendar

Henry Chai - 5/12/25
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