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Front Matter

� Announcements

� HW5 to be released on 6/3 (tomorrow), due 6/6 at 
11:59 PM

� Schedule change: two recitations this week 

� Recitation on 6/4 will be a PyTorch tutorial

� Recitation on 6/5 will be Quiz 3 preparation
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Deep Learning

� From Wikipedia’s page on Deep Learning…

� Deep learning = more than one layer
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Deep Learning
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First layer: computes the 
perceptrons’ predictions

Second layer: combines 
lower-level components



Convolutional 
Neural 
Networks

� Neural networks are frequently applied to inputs with 
some inherent spatial structure, e.g., images

� Idea: use the first few layers to identify relevant macro-
features, e.g., edges

� Insight: for spatially-structured inputs, many useful 
macro-features are shift or location-invariant, e.g., an 
edge in the upper left corner of a picture looks like an 
edge in the center

� Strategy: learn a filter for macro-feature detection in a 
small window and apply it over the entire image

Henry Chai - 6/2/25 5



Convolutional 
Filters

� Images can be represented as matrices, where each 

element corresponds to a pixel

� A filter is just a small matrix that is convolved with 
same-sized sections of the image matrix
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Convolutional 
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Convolutional 
Filters
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More 
Filters
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� Images can be represented as matrices, where each 

element corresponds to a pixel

� A filter is just a small matrix that is convolved with 
same-sized sections of the image matrix

Convolutional 
Filters
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Convolutional 
Filters
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� Convolutions can be represented by a feed forward neural 

network where:

1. Nodes in the input layer are only connected to 
some nodes in the next layer but not all nodes.

2. Many of the weights have the same value.

� Many fewer weights than a fully connected layer!

� Convolution weights are learned using gradient descent/ 
backpropagation, not prespecified



� What if relevant features exist at the border of our image?

� Add zeros around the image to allow for the filter to be 
applied “everywhere” e.g. a padding of 1 with a 3x3 filter 
preserves image size and allows every pixel to be the center

0 0 0 0 0 0 0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0 0 0 0 0 0 0

Convolutional 
Filters: Padding
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Downsampling: 
Pooling
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� Combine multiple adjacent nodes into a single node
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Downsampling: 
Pooling

� Combine multiple adjacent nodes into a single node

� Reduces the dimensionality of the input to subsequent 
layers and thus, the number of weights to be learned

� Protects the network from (slightly) noisy inputs



� Only apply the convolution to some subset of the image 

e.g., every other column and row = a stride of 2
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Downsampling: 
Stride
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Downsampling: 
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� Only apply the convolution to some subset of the image 

e.g., every other column and row = a stride of 2
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� Only apply the convolution to some subset of the image 

e.g., every other column and row = a stride of 2
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� Only apply the convolution to some subset of the image 

e.g., every other column and row = a stride of 2

� Reduces the dimensionality of the input to subsequent 

layers and thus, the number of weights to be learned

� Many relevant macro-features will tend to span large 

portions of the image, so taking strides with the 
convolution tends not to miss out on too much
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LeNet (LeCun et al., 1998)
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• Used sigmoid (or logistic) activation functions between layers and mean-pooling, both 
of which are pretty uncommon in modern architectures 
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• One of the earliest, most famous deep learning models – achieved remarkable 

performance at handwritten digit recognition (< 1% test error rate on MNIST) 
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Wait how did we go from 6 to 16?
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Channels
Henry Chai - 6/2/25 25



• An image can be represented as the sum of red, green and blue pixel intensities
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• Each color corresponds to a channel

4 1 2 16 3 6

1 7 5 8 19 27

5 2 5 12 17 8

0 4 9 9 6 11

5 2 6 14 15 8

26 3 6 8 4 9

0 15 24 6 1 8

7 4 9 5 24 17

4 6 8 9 5 3

16 5 2 8 2 1

5 2 14 11 7 8

15 2 5 0 9 8
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• An image can be represented as a tensor or multidimensional array
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4 1 2 16 3 6

1 7 5 8 19 27

5 2 5 12 17 8

0 4 9 9 6 11

5 2 6 14 15 8

26 3 6 8 4 9

0 15 24 6 1 8

7 4 9 5 24 17

4 6 8 9 5 3

16 5 2 8 2 1

5 2 14 11 7 8

15 2 5 0 9 8

Example: 
3	×	4	×	6 tensor
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� Given multiple input channels, we can specify a filter for 

each one and sum the results to get a 2-D output tensor

�  For 𝑐 channels and ℎ	×	𝑤 filters, we have 𝑐ℎ𝑤 + 𝑐 
learnable parameters (each filter has a bias term)

Convolutions 
on Multiple 
Input Channels
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Convolutions 
on Multiple 
Input Channels

� Given multiple input channels, we can specify a filter for 

each one and sum the results to get a 2-D output tensor

�  Questions:

1. Why might we want a different filter for each input? 

2. Why do we combine them together into a single 
output channel?
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• Channels in hidden layers correspond to different macro-features, which we might 

want to manipulate differently → one filter per channel
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• We can combine these macro-features into a new, interesting, “higher-level” feature 

• But we don’t always need to combine all of them! 
• Different combinations → multiple output channels
• Common architecture: more output channels and smaller outputs in deeper layers
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Key Takeaways

� Convolutional neural networks use convolutions to learn 

macro-features 

� Can be thought of as slight modifications to the fully-
connected feed-forward neural network

� Can still be learned using SGD

� Padding is used to preserve spatial dimensions while 

pooling, stride and 1	×	1 convolutions are used to 
downsample intermediate representations

� Channels are used to represent color; different filters 
are learned on different (combinations) of channels
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