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The Union

Bound...
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P{A U B} < P{A} + P{B)
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The Union

Bound is Bad!
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P{A U B} < P{A} + P{B)

P{A U B} = P{A} + P{B} — P{A N B)
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Intuition

If two hypotheses h{, h, € H are
very similar, then the events

* “h, is consistent with the first m
training data points”

* “h, is consistent with the first m
training data points”

will overlap a lot!
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Labellings
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* Given some finite set of data points § = (x(l), ...,x(M))

and some hypothesis h € H, applying h to each point in

S results in a labelling

‘ (h(x(l)), . h(x(M))) is a vector of M +1’s and -1’s

- Given § = (xV, ..., x(™), each hypothesis in 7

induces a labelling but not necessarily a unique labelling

* The set of labellings induced by Hon S is
#(S) ={(n(x®), ., n(x™)) | n € 7]
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Example: Labellings

H = {h1; h2) h3}
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Example: Labellings

H = {h1; h2) h3}

(h1 (x®D), by (x@), by (), by (x(4)))
=(—1,+1,—-1,+1)
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Example: Labellings

H = {h1; h2) h3}

(hz (x®), hy (x@), by (x®), (x(4)))
=(—1,+1,—-1,+1)
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Example: Labellings

H = {h1; h2) h3}

(h3 (x®D), s (x@), hy (x®), s (x(4)))
= (+1,+1,-1,-1)
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Example: Labellings
:7-[ = {hl'hZJhB}

H(S)
={(+1,+1,—-1,—-1),(—-1,+1,—-1,+1)}

|H ()] =2
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Example: Labellings
H = {hl)hZJhB}

H(S) =
{(+1,+1,—-1,-1)}

[H S =1
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VC-Dimension
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- H(S) is the set of all labellings induced by Hon S

- If |S| = M, then |H(S)| < 2M
- H shatters S if |7 (S)| = 2M

* The VC-dimension of H, VC(H), is the size of the largest

set S that can be shattered by H.

* If H can shatter arbitrarily large finite sets, then

ME(H) = oo

* To prove that VC(H) = d, you need to show

1. 3 some set of d data points that H can shatter and
2. A asetofd+ 1data points that H can shatter
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VC-Dimension:

Example
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- x € R? and H = all 2-dimensional linear separators

* Whatis VC(H)?

* Can H shatter some set of 1 point?
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VC-Dimension:

Example
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- x € R? and H = all 2-dimensional linear separators

* Whatis VC(H)?

* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?

\10—\-—1—51

—>
ralie T\

)
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VC-Dimension:

Example
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- x € R? and H = all 2-dimensional linear separators

* Whatis VC(H)?

* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?

* Can H shatter some set of 3 points?
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- x € R? and H = all 2-dimensional linear separators

* Whatis VC(H)?
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VC-Dimension:

Example
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- x € R? and H = all 2-dimensional linear separators

* Whatis VC(H)?
* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
* Can H shatter some set of 4 points?

°
°
o o o ®
° °
51 52
All points on the At least one point

convex hull inside the convex hull
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VC-Dimension:

Example
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- x € R? and H = all 2-dimensional linear separators

* Whatis VC(H)?
* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
* Can H shatter some set of 4 points?

O
°
O O ® o
O °
51 52
All points on the At least one point

convex hull inside the convex hull
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- x € R? and H = all 2-dimensional linear separators
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VC-Dimension:

Example
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- x € R? and H = all 2-dimensional linear separators

* Whatis VC(H)?
* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
* Can H shatter some set of 4 points?

o
°
O O ® o
o °
|7'[(51)| =14 Ay
All points on the At least one point

convex hull inside the convex hull
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VC-Dimension:

Example
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- x € R? and H = all 2-dimensional linear separators

* Whatis VC(H)?
* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
* Can H shatter some set of 4 points?

o
O
® o ® ®
o .
|7'[(51)| =14 Ay
All points on the At least one point

convex hull inside the convex hull
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- x € R? and H = all 2-dimensional linear separators

* Whatis VC(H)?
* Can H shatter some set of 1 point? N
* Can H shatter some set of 2 points? \./
- Can H shatter some set of 3 points? ~—"
* Can H shatter some set of 4 points? >C

VC-Dimension:

Example o .
® o ® ®
o e
|7'[(51)| =14 Ay
All points on the At least one point

convex hull inside the convex hull
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VC-Dimension:

Example
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- x € R? and H = all 2-dimensional linear separators

* Whatis VC(H)?
* Can H shatter some set of 1 point? »..”
* Can H shatter some set of 2 points? '\-/
* Can H shatter some set of 3 points? o
* Can H shatter some set of 4 points? X

o
o
® ® ® ®
o o
|F (S| = 14 |F(S,)] = 14
All points on the At least one point

convex hull inside the convex hull
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VC-Dimension:

Example
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- x € R? and H = all 2-dimensional linear separators

*VC(H) =3
* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
* Can H shatter some set of 4 points?

o
o
® ® ® ®
o o
|F (S| = 14 |F(S,)] = 14
All points on the At least one point

convex hull inside the convex hull
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VC-Dimension:

Example
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3

- x € R¥and H = all d-dimensional linear separators

“VC(H)=d+ 1
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VC-Dimension:

Example
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- x € Rand H = all 1-dimensional positive intervals

57



m

What is the VC-dimension of 2{ — all 1-dimensional positive intervals?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



VC-Dimension:

Example
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- x € Rand H = all 1-dimensional positive intervals

“VC(H) =2
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VC-Dimension:

Example
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- x(M € R? and H = all 2-dimensional positive convex sets

N

Non-convex
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VC-Dimension:

Example
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- x(M € R? and H = all 2-dimensional positive convex sets

* What is dvc(}[)?

@

(M) NG

NE)

NG @

NG
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- x(M € R? and H = all 2-dimensional positive convex sets

* What is dvc(}[)?
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- x(M € R? and H = all 2-dimensional positive convex sets

* What is dvc(}[)?
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- x(M € R? and H = all 2-dimensional positive convex sets

* dyc(H) = ool

@

VC-Dimension: X L@

Example

NE)

x (&) x@®

NG
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Theorem 3:
Vapnik-

Chervonenkis
(VC)-Bound
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* Infinite, realizable case: for any hypothesis set H and

distribution p*, if the number of labelled training data
points satisfies

C
s

V=0 G(vc(%) log (%) +log (%)))

then with p Hity at least 1 — §, all h € H with
R(h) =0haveR(h) <€
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* Infinite, realizable case: for any hypothesis set H and

distribution p*, given a training data set S s.t. |S| = M,

Statistical all b € H with B(h) = 0 have
Learning

1 M !
Theory R(h) <0 (M (VC(}[) log (Vc(}f)) +loe <5)>>
Corollary 3

with probability at least 1 — §.
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* Infinite, agnostic case: for any hypothesis set H and

distribution p*, if the number of labelled training data
points satisfies

Theorem 4:
Vapnik-

Ve L)

then with probability at least 1 — 6, all h € H have
|R(h) — ﬁ(h)| <e€

[ R(W) ﬂé(h)] < c(f—;\‘-;(VC(H)i (%) )
v = O (alCG TR B ROY-RE) < O (fR(icciyia05)) o




Statistical
Learning

Theory
Corollary 4
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* Infinite, agnostic case: for any hypothesis set H and
distribution p*, given a training data set S s.t. |S| = M,
all h € H have

1 1
f R(h) <R(h) +0| |—= (VC(}[) + log (—))
N M )

with probability at least 1 — §.
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How well does
h generalize?

. . N Y,
Approximation e
Generalization ) 1 1

e N

How well does h
approximate c¢*?
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Increases as
VC(H) increases

. . N Y,
Approximation e
Generalization ) 1 1

e N

Decreases as
VC(H) increases
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* For infinite hypothesis sets, use the VC-dimension (or

the growth function) as a measure of complexity
* Computing dy . (H)

- Sample complexity and statistical learning theory

style bounds using dy . (H)
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