
Henry Chai

5/28/25

10-301/601: Introduction 
to Machine Learning
Lecture 18 – Learning 
Theory (Infinite Case)



The Union 
Bound…
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A B

𝑃 𝐴 ∪ 𝐵 ≤ 𝑃 𝐴 + 𝑃{𝐵}
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B

𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃{𝐴 ∩ 𝐵}

The Union 
Bound is Bad!
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A

𝑃 𝐴 ∪ 𝐵 ≤ 𝑃 𝐴 + 𝑃{𝐵}

Henry Chai - 5/28/25



Intuition

 If two hypotheses ℎ1, ℎ2 ∈ ℋ are 
very similar, then the events 

 “ℎ1 is consistent with the first 𝑚 
training data points” 

 “ℎ2 is consistent with the first 𝑚 
training data points”

 will overlap a lot! 
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Intuition
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Labellings

 Given some finite set of data points 𝑆 = 𝒙 1 , … , 𝒙 𝑀  

and some hypothesis ℎ ∈ ℋ, applying ℎ to each point in 

𝑆 results in a labelling 

 ℎ 𝒙 1 , … , ℎ 𝒙 𝑀  is a vector of 𝑀 +1’s and -1’s 

 Given 𝑆 = 𝒙 1 , … , 𝒙 𝑀 , each hypothesis in ℋ 

induces a labelling but not necessarily a unique labelling

 The set of labellings induced by ℋon 𝑆 is        

ℋ 𝑆 = ℎ 𝒙 1 , … , ℎ 𝒙 𝑀  ℎ ∈ ℋ
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Example: Labellings

 ℋ = {ℎ1, ℎ2, ℎ3} 
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ℎ2ℎ1

ℎ3

𝒙 1

𝒙 3

𝒙 2

𝒙 4

Henry Chai - 5/28/25



ℋ = {ℎ1, ℎ2, ℎ3} 

ℎ1 𝒙 1 , ℎ1 𝒙 2 , ℎ1 𝒙 3 , ℎ1 𝒙 4

 = −1, +1, −1, +1

34

ℎ1

𝒙 1

𝒙 3

𝒙 2

𝒙 4

Example: Labellings
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Example: Labellings
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ℎ2

𝒙 1

𝒙 3

𝒙 2

𝒙 4

ℋ = {ℎ1, ℎ2, ℎ3} 

ℎ2 𝒙 1 , ℎ2 𝒙 2 , ℎ2 𝒙 3 , ℎ2 𝒙 4

 = −1, +1, −1, +1

Henry Chai - 5/28/25



Example: Labellings

36

ℎ3

𝒙 1

𝒙 3

𝒙 2

𝒙 4

ℋ = {ℎ1, ℎ2, ℎ3} 

ℎ3 𝒙 1 , ℎ3 𝒙 2 , ℎ3 𝒙 3 , ℎ3 𝒙 4

 = +1, +1, −1, −1
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Example: Labellings

ℋ = {ℎ1, ℎ2, ℎ3}

ℋ 𝑆
= +1, +1, −1, −1 , −1, +1, −1, +1

ℋ 𝑆 = 2
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ℎ3

𝒙 1
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𝒙 4
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Example: Labellings

ℋ = ℎ1, ℎ2, ℎ3

ℋ 𝑆 =
+1, +1, −1, −1

ℋ 𝑆 = 1

  
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ℎ2ℎ1

ℎ3

𝒙 1

𝒙 3

𝒙 2

𝒙 4
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 ℋ 𝑆  is the set of all labellings induced by ℋon 𝑆

 If 𝑆 = 𝑀, then ℋ 𝑆 ≤ 2𝑀

 ℋ shatters 𝑆 if ℋ 𝑆 = 2𝑀

 The VC-dimension of ℋ, 𝑉𝐶 ℋ , is the size of the largest 

set 𝑆 that can be shattered by ℋ. 

 If ℋ can shatter arbitrarily large finite sets, then 

𝑑𝑉𝐶 ℋ = ∞ 

 To prove that 𝑉𝐶 ℋ = 𝑑, you need to show

1.  ∃ some set of 𝑑 data points that ℋ can shatter and

2.  ∄ a set of 𝑑 + 1 data points that ℋ can shatter 

VC-Dimension
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VC-Dimension: 
Example

 𝒙 ∈ ℝ2 and ℋ = all 2-dimensional linear separators 

 What is 𝑉𝐶 ℋ ?

 Can ℋ shatter some set of 1 point?

 Can ℋ shatter some set of 2 points? 

 Can ℋ shatter some set of 3 points? 
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VC-Dimension: 
Example
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𝑆1 𝑆2
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VC-Dimension: 
Example

 𝒙 ∈ ℝ2 and ℋ = all 2-dimensional linear separators 

 What is 𝑉𝐶 ℋ ?

 Can ℋ shatter some set of 1 point?

 Can ℋ shatter some set of 2 points? 

 Can ℋ shatter some set of 3 points? 
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ℋ 𝑆2 = 8ℋ 𝑆1 = 6 

Henry Chai - 5/28/25



VC-Dimension: 
Example
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𝑆1 𝑆2

All points on the 
convex hull

At least one point 
inside the convex hull
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VC-Dimension: 
Example

 𝒙 ∈ ℝ2 and ℋ = all 2-dimensional linear separators 

 What is 𝑉𝐶 ℋ ?

 Can ℋ shatter some set of 1 point?

 Can ℋ shatter some set of 2 points? 

 Can ℋ shatter some set of 3 points? 

 Can ℋ shatter some set of 4 points? 

53

All points on the 
convex hull

ℋ 𝑆1 = 14
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VC-Dimension: 
Example

 𝒙 ∈ ℝ2 and ℋ = all 2-dimensional linear separators 

 What is 𝑉𝐶 ℋ ?

 Can ℋ shatter some set of 1 point?
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VC-Dimension: 
Example

 𝒙 ∈ ℝ2 and ℋ = all 2-dimensional linear separators 

 𝑉𝐶 ℋ  = 3

 Can ℋ shatter some set of 1 point?

 Can ℋ shatter some set of 2 points? 

 Can ℋ shatter some set of 3 points? 

 Can ℋ shatter some set of 4 points? 
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All points on the 
convex hull

At least one point 
inside the convex hull
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VC-Dimension: 
Example

 𝒙 ∈ ℝ2 and ℋ = all 𝑑-dimensional linear separators 

 𝑉𝐶 ℋ  = 𝑑 + 1

 Can ℋ shatter some set of 1 point?

 Can ℋ shatter some set of 2 points? 

 Can ℋ shatter some set of 3 points? 

 Can ℋ shatter some set of 4 points? 
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All points on the 
convex hull

One point inside 
the convex hull

ℋ 𝑆1 = 14 ℋ 𝑆2 = 14
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 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive intervals

VC-Dimension: 
Example
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𝑎 𝑏
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 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive intervals

 𝑉𝐶 ℋ = 2

VC-Dimension: 
Example
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𝑎 𝑏

𝑥 1 𝑥 3𝑥 2
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VC-Dimension: 
Example
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 𝑥 𝑚 ∈ ℝ2 and ℋ = all 2-dimensional positive convex sets 

ConvexConvex

Non-convex
Non-convex
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VC-Dimension: 
Example
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…

𝑥 1

𝑥 2

𝑥 3

𝑥 𝑚

𝑥 4

𝑥 5

𝑥 6

 𝑥 𝑚 ∈ ℝ2 and ℋ = all 2-dimensional positive convex sets 

 What is 𝑑𝑉𝐶 ℋ ?
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 𝑥 𝑚 ∈ ℝ2 and ℋ = all 2-dimensional positive convex sets 

 What is 𝑑𝑉𝐶 ℋ ?

VC-Dimension: 
Example
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 𝑥 𝑚 ∈ ℝ2 and ℋ = all 2-dimensional positive convex sets 

 What is 𝑑𝑉𝐶 ℋ ?

VC-Dimension: 
Example
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 𝑥 𝑚 ∈ ℝ2 and ℋ = all 2-dimensional positive convex sets 

 𝑑𝑉𝐶 ℋ = ∞!

VC-Dimension: 
Example
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Theorem 3: 
Vapnik-
Chervonenkis 
(VC)-Bound

65

 Infinite, realizable case: for any hypothesis set ℋ and 

distribution 𝑝∗, if the number of labelled training data 

points satisfies 

𝑀 = 𝑂
1

𝜖
𝑉𝐶 ℋ log

1

𝜖
+ log

1

𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ with 

෠𝑅 ℎ = 0 have 𝑅 ℎ ≤ 𝜖
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Statistical 
Learning 
Theory 
Corollary 3

66

 Infinite, realizable case: for any hypothesis set ℋ and 

distribution 𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, 

all ℎ ∈ ℋ with ෠𝑅 ℎ = 0 have

𝑅 ℎ ≤ 𝑂
1

𝑀
𝑉𝐶 ℋ log

𝑀

𝑉𝐶 ℋ
+ log

1

𝛿

with probability at least 1 − 𝛿.
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Theorem 4: 
Vapnik-
Chervonenkis 
(VC)-Bound
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 Infinite, agnostic case: for any hypothesis set ℋ and 

distribution 𝑝∗, if the number of labelled training data 

points satisfies 

𝑀 = 𝑂
1

𝜖2
𝑉𝐶 ℋ + log

1

𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ have 

𝑅 ℎ − ෠𝑅 ℎ ≤ 𝜖
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Statistical 
Learning 
Theory 
Corollary 4

68

 Infinite, agnostic case: for any hypothesis set ℋ and 

distribution 𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, 

all ℎ ∈ ℋ have 

𝑅 ℎ ≤ ෠𝑅 ℎ + 𝑂
1

𝑀
𝑉𝐶 ℋ + log

1

𝛿

with probability at least 1 − 𝛿.
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Agnostic case: for any hypothesis class ℋ and 

distribution 𝐷, given a training data set 𝑆 𝑆 = 𝑚, all ℎ ∈

ℋ have 

𝑅 ℎ ≤ ෠𝑅 ℎ + 𝑂
1

𝑀
𝑉𝐶 ℋ + log

1

𝛿

with probability at least 1 − 𝛿.
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Approximation 
Generalization 
Tradeoff

How well does ℎ 
approximate 𝑐∗?

How well does 
ℎ generalize?
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Agnostic case: for any hypothesis class ℋ and 

distribution 𝐷, given a training data set 𝑆 𝑆 = 𝑚, all ℎ ∈

ℋ have 

𝑅 ℎ ≤ ෠𝑅 ℎ + 𝑂
1

𝑀
𝑉𝐶 ℋ + log

1

𝛿

with probability at least 1 − 𝛿.
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Approximation 
Generalization 
Tradeoff

Increases as 
𝑉𝐶 ℋ  increases

Decreases as 
𝑉𝐶 ℋ  increases
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Key Takeaways

 For infinite hypothesis sets, use the VC-dimension (or 

the growth function) as a measure of complexity

 Computing 𝑑𝑉𝐶 ℋ  

 Sample complexity and statistical learning theory 

style bounds using 𝑑𝑉𝐶 ℋ
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