10-301/601: Introduction to Machine Learning Lecture 18 – Learning Theory (Infinite Case)

Labellings

• Given some finite set of data points $S = (x^{(1)}, ..., x^{(M)})$ and some hypothesis $h \in \mathcal{H}$, applying h to each point in S results in a <u>labelling</u>

•
$$\left(h(\boldsymbol{x}^{(1)}), \dots, h(\boldsymbol{x}^{(M)})\right)$$
 is a vector of M +1's and -1's

- Given $S = (x^{(1)}, ..., x^{(M)})$, each hypothesis in \mathcal{H} induces a labelling but not necessarily a unique labelling
 - The set of labellings induced by ${\mathcal H}$ on S is

$$\mathcal{H}(S) = \left\{ \left(h(\boldsymbol{x}^{(1)}), \dots, h(\boldsymbol{x}^{(M)}) \right) \middle| h \in \mathcal{H} \right\}$$

$$\mathcal{H} = \{h_1, h_2, h_3\}$$

 $h_1 h_2$

$$\mathcal{H} = \{h_1, h_2, h_3\}$$

$$(h_1(\mathbf{x}^{(1)}), h_1(\mathbf{x}^{(2)}), h_1(\mathbf{x}^{(3)}), h_1(\mathbf{x}^{(4)}))$$

$$= (-1, +1, -1, +1)$$

 h_1

$$\mathcal{H} = \{h_1, h_2, h_3\}$$

$$(h_2(\mathbf{x}^{(1)}), h_2(\mathbf{x}^{(2)}), h_2(\mathbf{x}^{(3)}), h_2(\mathbf{x}^{(4)}))$$

= (-1, +1, -1, +1)

 h_2

$$\mathcal{H} = \{h_1, h_2, h_3\}$$

$$(h_3(\mathbf{x}^{(1)}), h_3(\mathbf{x}^{(2)}), h_3(\mathbf{x}^{(3)}), h_3(\mathbf{x}^{(4)}))$$

= (+1, +1, -1, -1)

$$\mathcal{H} = \{h_1, h_2, h_3\}$$

$$\mathcal{H}(S)$$

= {(+1,+1,-1,-1), (-1,+1,-1,+1)}

$$|\mathcal{H}(S)| = 2$$

 $h_1 h_2$

$$\mathcal{H} = \{h_1, h_2, h_3\}$$

$$\mathcal{H}(S) = \{(+1, +1, -1, -1)\}$$

$$|\mathcal{H}(S)| = 1$$

 h_1 h_2

VC-Dimension

- $\mathcal{H}(S)$ is the set of all labellings induced by \mathcal{H} on S
 - If |S| = M, then $|\mathcal{H}(S)| \le 2^M$
 - \mathcal{H} shatters S if $|\mathcal{H}(S)| = 2^M$
- The <u>VC-dimension</u> of \mathcal{H} , $VC(\mathcal{H})$, is the size of the largest set S that can be shattered by \mathcal{H} .
 - If $\mathcal H$ can shatter arbitrarily large finite sets, then $V\mathcal C(\mathcal H)=\infty$
- To prove that $VC(\mathcal{H}) = d$, you need to show
 - 1. \exists some set of d data points that \mathcal{H} can shatter and
 - 2. $\not\exists$ a set of d+1 data points that \mathcal{H} can shatter

• $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators

- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?

VC-Dimension: Example

• $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators

- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter **some** set of 3 points?

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?

$$|\mathcal{H}(S_1)| = 6$$

$$|\mathcal{H}(S_2)| = 8$$

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?
 - Can \mathcal{H} shatter some set of 4 points?

All points on the convex hull

At least one point inside the convex hull

18

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?
 - Can \mathcal{H} shatter some set of 4 points?

All points on the convex hull

At least one point inside the convex hull

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?
 - Can \mathcal{H} shatter some set of 4 points?

All points on the convex hull

At least one point inside the convex hull

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?
 - Can \mathcal{H} shatter some set of 4 points?

$$|\mathcal{H}(S_1)| = 14$$

All points on the convex hull

At least one point inside the convex hull

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?
 - Can \mathcal{H} shatter some set of 4 points?

$$|\mathcal{H}(S_1)| = 14$$

All points on the convex hull

At least one point inside the convex hull

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?
 - Can \mathcal{H} shatter some set of 4 points?

$$|\mathcal{H}(S_1)| = 14$$

All points on the convex hull

At least one point inside the convex hull

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?
 - Can \mathcal{H} shatter some set of 4 points?

$$|\mathcal{H}(S_1)| = 14$$

All points on the convex hull

$$|\mathcal{H}(S_2)| = 14$$

At least one point
inside the convex hull

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- $VC(\mathcal{H}) = 3$
 - Can \mathcal{H} shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?
 - Can \mathcal{H} shatter some set of 4 points?

$$|\mathcal{H}(S_1)| = 14$$

All points on the convex hull

$$|\mathcal{H}(S_2)| = 14$$

At least one point
inside the convex hull

• $\mathbf{x} \in \mathbb{R}^d$ and $\mathbf{\mathcal{H}} = \operatorname{all} d$ -dimensional linear separators

• $VC(\mathcal{H}) = d + 1$

• $x \in \mathbb{R}$ and $\mathcal{H} =$ all 1-dimensional positive intervals

VC-Dimension: Example

• $x \in \mathbb{R}$ and $\mathcal{H} = \text{all 1-dimensional positive intervals}$

VC-Dimension: Example

• $VC(\mathcal{H}) = 2$

• $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional positive convex sets

• $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional positive convex sets

• What is $VC(\mathcal{H})$?

• $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional positive convex sets

• What is $VC(\mathcal{H})$?

• $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional positive convex sets

• What is $VC(\mathcal{H})$?

• $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional positive convex sets

• $VC(\mathcal{H}) = \infty!$

Theorem 3: Vapnik-Chervonenkis (VC)-Bound

• Infinite, realizable case: for any hypothesis set ${\cal H}$ and distribution p^* , if the number of labelled training data points satisfies

$$M = O\left(\frac{1}{\epsilon} \left(VC(\mathcal{H})\log\left(\frac{1}{\epsilon}\right) + \log\left(\frac{1}{\delta}\right)\right)\right)$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ with

$$\widehat{R}(h) = 0$$
 have $R(h) \le \epsilon$

Statistical Learning Theory Corollary 3

• Infinite, realizable case: for any hypothesis set \mathcal{H} and distribution p^* , given a training data set S s.t. |S| = M, all $h \in \mathcal{H}$ with $\hat{R}(h) = 0$ have

$$R(h) \le O\left(\frac{1}{M}\left(VC(\mathcal{H})\log\left(\frac{M}{VC(\mathcal{H})}\right) + \log\left(\frac{1}{\delta}\right)\right)\right)$$

with probability at least $1 - \delta$.

Theorem 4: Vapnik-Chervonenkis (VC)-Bound

• Infinite, agnostic case: for any hypothesis set ${\cal H}$ and distribution p^* , if the number of labelled training data points satisfies

$$M = O\left(\frac{1}{\epsilon^2} \left(VC(\mathcal{H}) + \log\left(\frac{1}{\delta}\right)\right)\right)$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ have

$$\left| R(h) - \hat{R}(h) \right| \le \epsilon$$

Statistical Learning Theory Corollary 4

• Infinite, agnostic case: for any hypothesis set \mathcal{H} and distribution p^* , given a training data set S s.t. |S|=M, all $h\in\mathcal{H}$ have

$$R(h) \le \hat{R}(h) + O\left(\sqrt{\frac{1}{M}}\left(VC(\mathcal{H}) + \log\left(\frac{1}{\delta}\right)\right)\right)$$

with probability at least $1 - \delta$.

Approximation Generalization Tradeoff

How well does h generalize?

$$R(h) \le \widehat{R}(h) + O\left(\sqrt{\frac{1}{M}\left(VC(\mathcal{H}) + \log\left(\frac{1}{\delta}\right)\right)}\right)$$

How well does *h* approximate *c**?

Approximation Generalization Tradeoff

Increases as $VC(\mathcal{H})$ increases $R(h) \le \widehat{R}(h) + O\left(\sqrt{\frac{1}{M}}\left(VC(\mathcal{H}) + \log\left(\frac{1}{\delta}\right)\right)\right)$ Decreases as $VC(\mathcal{H})$ increases

39

Key Takeaways

- For infinite hypothesis sets, use the VC-dimension (or the growth function) as a measure of complexity
 - Computing $d_{VC}(\mathcal{H})$
 - Sample complexity and statistical learning theory style bounds using $d_{VC}(\mathcal{H})$