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10-301/601: Introduction 
to Machine Learning
Lecture 17 – Learning 
Theory (Finite Case)



Front Matter

 Announcements: 

 HW4 released on 5/23, due 5/28 (today!) at 11:59 PM

 Midterm on 5/30 at 9:30 AM in BH A36

 Lectures 1 – 14 are in-scope; this week’s lectures 

will not be tested on the midterm

 Recitation on 5/29 will be a review of the practice 

problems
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Statistical 
Learning 
Theory Model

1. Data points are generated i.i.d. from some unknown 

distribution

𝒙 𝑛 ∼ 𝑝∗ 𝒙

2. Labels are generated from some unknown function

𝑦 𝑛 = 𝑐∗ 𝒙 𝑛

3. The learning algorithm chooses the hypothesis (or 

classifier) with lowest training error rate from a 

specified hypothesis set, ℋ

4. Goal: return a hypothesis (or classifier) with low true 

error rate
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Types of Error

 True error rate

 Actual quantity of interest in machine learning

 How well your hypothesis will perform on average across all 
possible data points

 Test error rate

 Used to evaluate hypothesis performance

 Good estimate of your hypothesis’s true error

 Validation error rate

 Used to set hypothesis hyperparameters

 Slightly “optimistic” estimate of your hypothesis’s true error

 Training error rate

 Used to set model parameters

 Very “optimistic” estimate of your hypothesis’s true error
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Types of Risk 
(a.k.a. Error)

 Expected risk of a hypothesis ℎ (a.k.a. true error)

𝑅 ℎ = 𝑃𝒙 ∼ 𝑝∗ 𝑐∗ 𝒙 ≠ ℎ 𝒙

 Empirical risk of a hypothesis ℎ (a.k.a. training error) 

෠𝑅 ℎ = 𝑃𝒙 ∼ 𝒟 𝑐∗ 𝒙 ≠ ℎ 𝒙

෠𝑅 ℎ =
1

𝑁
෍

𝑛=1

𝑁

𝟙 𝑐∗ 𝒙 𝑛 ≠ ℎ 𝒙 𝑛

෠𝑅 ℎ =
1

𝑁
෍

𝑛=1

𝑁

𝟙 𝑦 𝑛 ≠ ℎ 𝒙 𝑛

where 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
 is the training data set and 

𝒙 ∼ 𝒟 denotes a point sampled uniformly at random from 𝒟 
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Three 
Hypotheses of 
Interest
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1. The true function, 𝑐∗

2. The expected risk minimizer, 

ℎ∗ = argmin
ℎ ∈ ℋ

𝑅 ℎ

3. The empirical risk minimizer, 

෠ℎ = argmin
ℎ ∈ ℋ

෠𝑅 ℎ  







Key Question  Given a hypothesis with zero/low training error, what 

can we say about its true error? 
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PAC Learning

 PAC = Probably Approximately Correct

 PAC Criterion:

𝑃 𝑅 ℎ − ෠𝑅 ℎ ≤ 𝜖 ≥ 1 − 𝛿 ∀ ℎ ∈ ℋ

for some 𝜖 (difference between expected and empirical 

risk) and 𝛿 (probability of “failure”) 

 We want the PAC criterion to be satisfied for 

ℋ with small values of ϵ and δ
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Sample 
Complexity
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 The sample complexity of an algorithm/hypothesis set, ℋ, 

is the number of labelled training data points needed to 

satisfy the PAC criterion for some 𝛿 and 𝜖

 Four cases

 Realizable vs. Agnostic

 Realizable → 𝑐∗ ∈ ℋ

 Agnostic → 𝑐∗ might or might not be in ℋ

 Finite vs. Infinite

 Finite → ℋ < ∞

 Infinite → ℋ = ∞



Theorem 1: 
Finite, 
Realizable Case

Henry Chai - 5/28/25 12

 For a finite hypothesis set ℋ s.t. 𝑐∗ ∈ ℋ and arbitrary 

distribution 𝑝∗, if the number of labelled training data 

points satisfies 

𝑀 ≥
1

𝜖
ln ℋ + ln

1

𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ with 

෠𝑅 ℎ = 0 have 𝑅 ℎ ≤ 𝜖



Proof of
Theorem 1: 
Finite, 
Realizable Case

1. Assume there are 𝐾 “bad” hypotheses in ℋ, i.e., 

ℎ1, ℎ2, … , ℎ𝐾  that all have 𝑅 ℎ𝑘 > 𝜖

2. Pick one bad hypothesis, ℎ𝑘

A. Probability that ℎ𝑘  correctly classifies the first 

training data point < 1 − 𝜖

B. Probability that ℎ𝑘  correctly classifies all 𝑀 

training data points < 1 − 𝜖 𝑀

3. Probability that at least one bad hypothesis correctly 

classifies all 𝑀 training data points =

𝑃(ℎ1 correctly classifies all 𝑀 training data points ∪

 ℎ2 correctly classifies all 𝑀 training data points ∪

⋮

 ∪ ℎ𝐾  correctly classifies all 𝑀 training data points)
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Proof of
Theorem 1: 
Finite, 
Realizable Case

𝑃(ℎ1 correctly classifies all 𝑀 training data points ∪

 ℎ2 correctly classifies all 𝑀 training data points ∪

⋮

 ∪ ℎ𝐾  correctly classifies all 𝑀 training data points)

≤ ෍

𝑘=1

𝐾

𝑃 ℎ𝑘  correctly classifies all 𝑀 training data points

by the union bound: 𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃 𝐴 ∩ 𝐵

by the union bound: 𝑃 𝐴 ∪ 𝐵 ≤ 𝑃 𝐴 + 𝑃 𝐵 − 𝑃 𝐴 ∩ 𝐵
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Proof of
Theorem 1: 
Finite, 
Realizable Case

෍

𝑘=1

𝐾

𝑃 ℎ𝑘  correctly classifies all 𝑀 training data points

< 𝑘 1 − 𝜖 𝑀 ≤ ℋ 1 − 𝜖 𝑀

because 𝑘 ≤ ℋ

3. Probability that at least one bad hypothesis correctly 

classifies all 𝑀 training data points ≤ ℋ 1 − 𝜖 𝑀

4. Using the fact that 1 − 𝑥 ≤ exp −𝑥  ∀ 𝑥, 

ℋ 1 − 𝜖 𝑀 ≤ ℋ exp −𝜖 𝑀 = ℋ exp −𝑀𝜖

5. Probability that at least one bad hypothesis correctly 

classifies all 𝑀 training data points ≤ ℋ exp −𝑀𝜖 , 

which we want to be low, i.e., ℋ exp −𝑀𝜖 ≤ 𝛿
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Proof of
Theorem 1: 
Finite, 
Realizable Case

ℋ exp −𝑀𝜖 ≤ 𝛿 → exp −𝑀𝜖 ≤
𝛿

ℋ

ℋ exp −𝑁𝜖 ≤ 𝛿 → −𝑀𝜖 ≤ ln
𝛿

ℋ

ℋ exp −𝑁𝜖 ≤ 𝛿 → 𝑀 ≥
1

𝜖
− ln

𝛿

ℋ

ℋ exp −𝑁𝜖 ≤ 𝛿 → 𝑀 ≥
1

𝜖
ln

ℋ

𝛿

ℋ exp −𝑁𝜖 ≤ 𝛿 → 𝑀 ≥
1

𝜖
ln ℋ + ln

1

𝛿
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Aside: Proof by 
Contrapositive

 The contrapositive of a statement 𝐴 ⇒ 𝐵 is ¬𝐵 ⇒ ¬𝐴 

 A statement and its contrapositive are logically equivalent, 

i.e., 𝐴 ⇒ 𝐵 means that ¬𝐵 ⇒ ¬𝐴 

 Example: “it’s raining ⇒ Henry brings am umbrella”

is the same as saying 

“Henry didn’t bring an umbrella ⇒ it’s not raining ” 
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Proof of
Theorem 1: 
Finite, 
Realizable Case

6. Given 𝑀 ≥
1

𝜖
ln ℋ + ln

1

𝛿
 labelled training 

data points, the probability that ∃ a bad hypothesis 

ℎ𝑘 ∈ ℋ with 𝑅 ℎ𝑘 > 𝜖 and ෠𝑅 ℎ𝑘 = 0 is ≤ 𝛿

⇕

Given 𝑀 ≥
1

𝜖
ln ℋ + ln

1

𝛿
 labelled training data 

points, the probability that all hypotheses ℎ𝑘 ∈ ℋ with 

𝑅 ℎ𝑘 > 𝜖 have ෠𝑅 ℎ𝑘 > 0 is ≥ 1 − 𝛿
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Proof of
Theorem 1: 
Finite, 
Realizable Case
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6. Given 𝑀 ≥
1

𝜖
ln ℋ + ln

1

𝛿
 labelled training 

data points, the probability that all hypotheses ℎ𝑘 ∈

ℋ with 𝑅 ℎ𝑘 > 𝜖 have ෠𝑅 ℎ𝑘 > 0 is ≥ 1 − 𝛿

⇕

Given 𝑀 ≥
1

𝜖
ln ℋ + ln

1

𝛿
 labelled training data 

points, the probability that all hypotheses ℎ𝑘 ∈ ℋ with 

෠𝑅 ℎ𝑘 = 0 have 𝑅 ℎ𝑘 ≤ 𝜖 is ≥ 1 − 𝛿

(proof by contrapositive) 



Theorem 1: 
Finite, 
Realizable Case

Henry Chai - 5/28/25 21

 For a finite hypothesis set ℋ s.t. 𝑐∗ ∈ ℋ and arbitrary 

distribution 𝑝∗, if the number of labelled training data 

points satisfies 

𝑀 ≥
1

𝜖
ln ℋ + ln

1

𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ with 

෠𝑅 ℎ = 0 have 𝑅 ℎ ≤ 𝜖

 Making the bound tight and solving for 𝜖 gives... 



Statistical 
Learning 
Theory 
Corollary
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 For a finite hypothesis set ℋ s.t. 𝑐∗ ∈ ℋ and arbitrary 

distribution 𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, 

all ℎ ∈ ℋ with ෠𝑅 ℎ = 0 have

𝑅 ℎ ≤
1

𝑀
ln ℋ + ln

1

𝛿

with probability at least 1 − 𝛿.



Theorem 2: 
Finite,  
Agnostic Case
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 For a finite hypothesis set ℋ and arbitrary distribution 

𝑝∗, if the number of labelled training data points satisfies 

𝑀 ≥
1

2𝜖2
ln ℋ + ln

2

𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ satisfy  

𝑅 ℎ − ෠𝑅 ℎ ≤ 𝜖

 Bound is inversely quadratic in 𝜖, e.g., halving 𝜖 means 

we need four times as many labelled training data points

 Again, making the bound tight and solving for 𝜖 gives…



Statistical 
Learning 
Theory 
Corollary
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 For a finite hypothesis set ℋ and arbitrary distribution 

𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, all ℎ ∈ ℋ 

have

𝑅 ℎ ≤ ෠𝑅 ℎ +
1

2𝑀
ln ℋ + ln

2

𝛿

with probability at least 1 − 𝛿.
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 For a finite hypothesis set ℋ and arbitrary distribution 

𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, all ℎ ∈ ℋ 

have

𝑅 ℎ ≤ ෠𝑅 ℎ +
1

2𝑀
ln ℋ + ln

2

𝛿

with probability at least 1 − 𝛿.

What happens 
when ℋ = ∞?



Key Takeaways

 Statistical learning theory model

 Expected vs. empirical risk of a hypothesis  

 Four possible cases of interest 

 realizable vs. agnostic

 finite vs. infinite

 Sample complexity bounds and statistical learning 

theory corollaries for finite hypothesis sets 
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