10-301/601: Introduction to Machine Learning Lecture 17 – Learning Theory (Finite Case)

Front Matter

- Announcements:
 - HW4 released on 5/23, due 5/28 (today!) at 11:59 PM
 - Midterm on 5/30 at 9:30 AM in BH A36
 - Lectures 1 14 are in-scope; this week's lectures
 will not be tested on the midterm
 - Recitation on 5/29 will be a review of the practice problems

Statistical Learning Theory Model

1. Data points are generated i.i.d. from some *unknown* distribution

$$\mathbf{x}^{(n)} \sim p^*(\mathbf{x})$$

2. Labels are generated from some *unknown* function

$$y^{(n)} = c^*(\boldsymbol{x}^{(n)})$$

- 3. The learning algorithm chooses the hypothesis (or classifier) with lowest training error rate from a specified hypothesis set, \mathcal{H}
- 4. Goal: return a hypothesis (or classifier) with low *true* error rate

Types of Error

- True error rate
 - Actual quantity of interest in machine learning
 - How well your hypothesis will perform on average across all possible data points
- Test error rate
 - Used to evaluate hypothesis performance
 - Good estimate of your hypothesis's true error
- Validation error rate
 - Used to set hypothesis hyperparameters
 - Slightly "optimistic" estimate of your hypothesis's true error
- Training error rate
 - Used to set model parameters
 - Very "optimistic" estimate of your hypothesis's true error

Types of Risk (a.k.a. Error)

• Expected risk of a hypothesis
$$h$$
 (a.k.a. true error)
$$R(h) = R_{x\sim P^*} \left(c^*(\vec{x}) \neq h(\vec{x}) \right)$$

• Empirical risk of a hypothesis *h* (a.k.a. training error)

$$\widehat{R}(h) = P_{\overrightarrow{x} \sim D}(c^*(\overrightarrow{x}) \neq h(\overrightarrow{x}))$$

$$= \frac{1}{N} \sum_{n=1}^{N} \mathbf{1}(c^*(\overrightarrow{x}^{(n)}) \neq h(\overrightarrow{x}^{(n)}))$$
indirector

when
$$D = \{(x^{(n)}, y^{(n)})\}_{n=1}^N$$
 is a training deteret at $x \sim D$ means uniform sampling

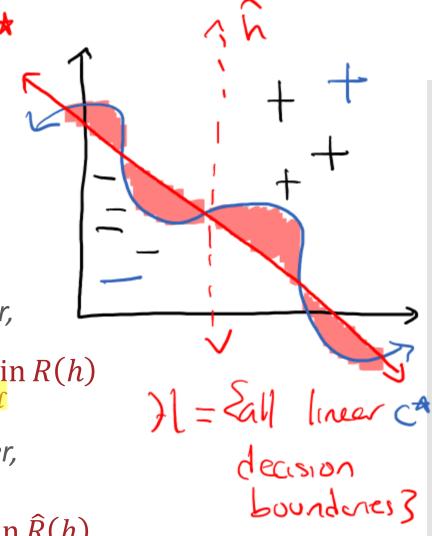
Three Hypotheses of Interest

1. The true function, c^*

$$h^* = \operatorname*{argmin}_{h \in \mathcal{H}} R(h)$$

3. The *empirical risk minimizer,*

$$\hat{h} = \operatorname*{argmin}_{h \in \mathcal{H}} \hat{R}(h)$$



Lecture 17 + 18 Polls

0 surveys completed

0 surveys underway

Select all that apply: Which of the following statements is *always* true?

$$c^* = h^*$$

$$c^* = \hat{h}$$

$$h^* = \hat{h}$$

All of the above ($c^*=h^*=\hat{h}$)

None of the above

Key Question

 Given a hypothesis with zero/low training error, what can we say about its true error?

PAC Learning

• PAC = **P**robably **A**pproximately **C**orrect

PAC Criterion:

$$P(|R(h) - \hat{R}(h)| \le \epsilon) \ge 1 - \delta \ \forall \ h \in \mathcal{H}$$

for some ϵ (difference between expected and empirical risk) and δ (probability of "failure")

• We want the PAC criterion to be satisfied for ${\cal H}$ with small values of ϵ and δ

Sample Complexity

- The sample complexity of an algorithm/hypothesis set, \mathcal{H} , is the number of labelled training data points needed to satisfy the PAC criterion for some δ and ϵ
- Four cases
 - Realizable vs. Agnostic
 - Realizable $\rightarrow c^* \in \mathcal{H}$
 - ightharpoonup Agnostic $ightharpoonup c^*$ might or might not be in ${\mathcal H}$
 - Finite vs. Infinite
 - $lac{1}{2}$ Finite $\rightarrow |\mathcal{H}| < \infty$
 - Infinite $\rightarrow |\mathcal{H}| = \infty$

Theorem 1: Finite, Realizable Case

• For a finite hypothesis set \mathcal{H} s.t. $c^* \in \mathcal{H}$ and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$M \ge \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ with $\widehat{R}(h) = 0$ have $R(h) \leq \epsilon$

1. Assume there are K "bad" hypotheses in H: Eh, hz, ..., hk S with R(hi)>E 2. Think about one bad hypothesis, hi a. P(hi correctly classifies the first training data point) < 1-6 b. P (hi correctly classifies all M training data point) < (1-E) 3. P (that at least one bad hypothesis correctly classifies all M training data P(R(hi)=0 U R(hz)=0 U ... U R(hx)=0)

4. Use the union bound
$$P(AUB) = P(A) + P(B) - P(ADB)$$

$$\leq P(A) + P(B)$$

$$A B$$

$$P(R(h_1) = 0 \cup R(h_2) = 0 \cup ... \cup R(h_R) = 0)$$

$$\leq \sum_{k=1}^{K} P(R(h_k) = 0) < \sum_{k=1}^{K} (1 - \epsilon)^{M}$$

$$= K(1 - \epsilon)^{M}$$

$$P(\text{at least one bad hypothesis tracks us}) < K(1 - \epsilon)^{M}$$

5.
$$K(1-\epsilon)^{M} < |H|(1-\epsilon)^{M}$$

6. Use the fact that $\int 1 - x \le \exp(-x)^{M}$

$$\Rightarrow (1-\epsilon)^{M} \le \exp(-\epsilon)^{M}$$

$$|H|(1-\epsilon)^{M} \le |H| \exp(-\epsilon)^{M} \le \delta$$

7. $\Rightarrow \exp(-\epsilon)^{M} \le \frac{\delta}{|H|}$

$$\Rightarrow M \ge \frac{1}{\epsilon} \ln(\delta)^{M} = \frac{1}{\epsilon} \ln(|H|)^{M} = \ln(|H|)^{M}$$

$$\Rightarrow M \ge \frac{1}{\epsilon} \ln(|H|)^{M} = \frac{1}{\epsilon} \ln(|H|)^{M}$$

G. Given $M \ge \frac{1}{6} \left(\ln \left(1HI \right) + \ln \left(\frac{1}{6} \right) \right)$ training data points, the probability $\exists a$ but hypothesis $hi \in H$ with R(hi) > 6 and $\hat{R}(hi) = 0$ is ≤ 8

Green M Z = (In (IHI) + In (1/8)) t.d.p.,

the probability that all bad hypothus

with R(hi)>E have R(hi)>0 is

Z 1-8

Aside: Proof by Contrapositive

- The contrapositive of a statement $A \Rightarrow B$ is $\neg B \Rightarrow \neg A$
- A statement and its contrapositive are logically equivalent, i.e., $A \Rightarrow B$ means that $\neg B \Rightarrow \neg A$
- Example: "it's raining ⇒ Henry brings am umbrella"

is the same as saying

"Henry didn't bring an umbrella ⇒ it's not raining "

- 6. Given $M \geq \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$ labelled training data points, the probability that \exists a bad hypothesis $h_k \in \mathcal{H}$ with $R(h_k) > \epsilon$ and $\hat{R}(h_k) = 0$ is $\leq \delta$
- Given $M \geq \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$ labelled training data points, the probability that all hypotheses $h_k \in \mathcal{H}$ with $R(h_k) > \epsilon$ have $\hat{R}(h_k) > 0$ is $\geq 1 \delta$

6. Given $M \ge \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\epsilon}\right) \right)$ labelled training data points, the probability that all hypotheses $h_k \in$ \mathcal{H} with $R(h_k) > \epsilon$ have $\hat{R}(h_k) > 0$ is $\geq 1 - \delta$

Given $M \ge \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln(\frac{1}{\epsilon}) \right)$ labelled training data points, the probability that all hypotheses $h_k \in \mathcal{H}$ with $\widehat{R}(h_k) = 0$ have $R(h_k) \le \epsilon$ is $\ge 1 - \delta$ (proof by contrapositive)

Theorem 1: Finite, Realizable Case

• For a finite hypothesis set \mathcal{H} s.t. $c^* \in \mathcal{H}$ and arbitrary distribution p^* , if the number of labelled training data points satisfies $\epsilon = \frac{1}{2}$

$$\underbrace{M} \geq \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$$

then with probability at least $1-\delta$, all $h\in\mathcal{H}$ with $\widehat{R}(h)=0$ have $R(h)\leq\epsilon$

• Making the bound tight and solving for ϵ gives...

Statistical Learning Theory Corollary

• For a finite hypothesis set \mathcal{H} s.t. $c^* \in \mathcal{H}$ and arbitrary distribution p^* , given a training data set S s.t. |S| = M, all $h \in \mathcal{H}$ with $\hat{R}(h) = 0$ have

$$R(h) \le \frac{1}{M} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$$

with probability at least $1 - \delta$.

Theorem 2: Finite, Agnostic Case

• For a finite hypothesis set \mathcal{H} and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$M \geq \frac{1}{2\epsilon^2} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)$$
 then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ satisfy

$$\left| R(h) - \hat{R}(h) \right| \le \epsilon$$

- Bound is inversely quadratic in ϵ , e.g., halving ϵ means we need four times as many labelled training data points
- Again, making the bound tight and solving for ϵ gives...

Statistical Learning Theory Corollary

• For a finite hypothesis set \mathcal{H} and arbitrary distribution p^* , given a training data set S s.t. |S| = M, all $h \in \mathcal{H}$ have

$$R(h) \le \hat{R}(h) + \sqrt{\frac{1}{2M}} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)$$

with probability at least $1 - \delta$.

What happens when $|\mathcal{H}| = \infty$?

• For a finite hypothesis set \mathcal{H} and arbitrary distribution p^* , given a training data set S s.t. |S|=M, all $h\in\mathcal{H}$ have

$$R(h) \le \hat{R}(h) + \sqrt{\frac{1}{2M}} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)$$

with probability at least $1 - \delta$.

Key Takeaways

- Statistical learning theory model
- Expected vs. empirical risk of a hypothesis
- Four possible cases of interest
 - realizable vs. agnostic
 - finite vs. infinite
- Sample complexity bounds and statistical learning theory corollaries for finite hypothesis sets