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* Announcements:

* HW4 released on 5/23, due 5/28 (today!) at 11:59 PM
* Midterm on 5/30 at 9:30 AM in BH A36
Front Matter * Lectures 1 — 14 are in-scope; this week’s lectures

will not be tested on the midterm

* Recitation on 5/29 will be a review of the practice

problems
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Statistical

Learning
Theory Model
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Data points are generated i.i.d. from some unknown
distribution

x™ ~p(x)

Labels are generated from some unknown function
y(n) — c*(x("))

The learning algorithm chooses the hypothesis (or
classifier) with lowest training error rate from a
specified hypothesis set, H

Goal: return a hypothesis (or classifier) with low true
error rate



* True error rate
* Actual quantity of interest in machine learning

* How well your hypothesis will perform on average across all
possible data points

* Test error rate
- Used to evaluate hypothesis performance

Types of Error

- Good estimate of your hypothesis’s true error

* Validation error rate
- Used to set hypothesis hyperparameters

- Slightly “optimistic” estimate of your hypothesis’s true error

* Training error rate
- Used to set model parameters

* Very “optimistic” estimate of your hypothesis’s true error
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* Expected risk of a hypothesis h (a.k.a. true err 87
%))

R(R) = B pr (PTX) £ b

. Emplrlcal risk of a hypothesis h (a.k.a. training error)

KW= _p(c*PIEL(R))

(a.k.a. Error) -1 Z_’&_(C*C (m) 751«;( 7(-11))
\mévc:&"br

Types of Risk




1. The true function, c*

Three 2. The expected risk minimizer,

Hypotheses of h* = argmin R(h) N
Interest e M =<l lasar 2
3. The empirical risk minimizer, decesion
Lovadenes S

h = argmin R(h)
heXH
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m

Lecture 17 + 18 Polls

0 surveys completed

0 surveys underway

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



m

Select all that apply: Which of the following statements is always true?

ct=h"
¢t =h
h* = h

All of the above (¢* = h* = h)

None of the above

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app




* Given a hypothesis with zero/low training error, what

Key Question

can we say about its true error?
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PAC Learning
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* PAC = Probably Approximately Correct

* PAC Criterion:
P(|[R(h) —R(W)|<€e)=1-6VheH

for some € (difference between expected and empirical
risk) and 6 (probability of “failure”)

- We want the PAC criterion to be satisfied for

H with small values of € and 6
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Sample

Complexity
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* The sample complexity of an algorithm/hypothesis set,
is the number of labelled training data points needed to

satisfy the PAC criterion for some 6 and €

* Four cases

* Realizable vs. Agnostic

° Realizable » c* € H

* Agnostic = ¢* might or might not be in H
* Finite vs. Infinite

* Finite = |H| < o

D« Infinite - || = o
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Theorem 1:

Finite,
Realizable Case
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* For a finite hypothesis set H s.t. ¢* € H and arbitrary
distribution p*, if the number of labelled training data

points satisfies

M > l(mmp +1n (1))
€ o

then with probability at least 1 — 6, all h € H with
R(h) =0haveR(h) <€
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Y, Use XTL—- NN Lounc]
P(AUB) = P(A)+ P(B) ~P(ANB)
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Aside: Proof by

Contrapositive
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* The contrapositive of a statement A = Bis =B = -4

- A statement and its contrapositive are logically equivalent,

i.,e., A = B meansthat =B = =4

* Example: “it’s raining = Henry brings am umbrella”

is the same as saying

“Henry didn’t bring an umbrella = it’s not raining ”
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6. Given M > E(ln(l}[l) + In (%)) labelled training
data points, the probability that 3 a bad hypothesis
h, € H withR(hy) > eand R(h) = 0is < 6
)

Proof of
Theorem 1:

Finite,
Realizable Case B €CiCN/E= i(ln(l}[l) + In (%)) labelled training data
points, the probability that all hypotheses h; € H with

R(h;) > ehave R(h) >0is>1—6

A =2 B
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Proof of
Theorem 1:

Finite,
Realizable Case
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6. GivenM > i(ln(l}[l) + In (%)) labelled training

data points, the probability that all hypotheses h;, €
H with R(hy) > e have R(h,) > 0is>1—6
()

Given M > - (ln(l?—[l) + ln( )) labelled training data

points, the probability that all hypotheses h;, € H with
}?(hk) = 0 have R(hk) <eis>1-§

proo by cor?aposmve) 2
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Theorem 1:

Finite,
Realizable Case
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* For a finite hypothesis set H s.t. ¢* € H and arbitrary
distribution p*, if the number of labelled training data

points satisfies o — —}\-ﬂ o n

ly&zj (ln(lel) + In (%))

ast1 — ¢, all h € H with

then with probability a
R(h) =0haveR(h) <€

- Making the bound tight and solving for € gives...
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* For a finite hypothesis set H s.t. ¢* € H and arbitrary
distribution p*, given a training data set S s.t. |S| = M,
Statistical all h € I with R(h) = 0 have

Learning

R(h) < ! (l (I1H]) +1 (1)>
<—|In n{—
Theory M 0
Corollary with probability at least 1 — §.
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Theorem 2:

Finite,
Agnostic Case
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* For a finite hypothesis set H and arbitrary distribution

p”, if the number of labelled training data points satisfies

1 B
M > n—z(ln(l}[l) + In (—))
25 °

then with probkability at least 1 — §, all h € H satisfy
IR(h) —R(h)| < €

* Bound is inversely quadratic in €, e.g., halving € means

we need four times as many labelled training data points

* Again, making the bound tight and solving for € gives...
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Statistical
Learning

Theory
Corollary
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* For a finite hypothesis set H and arbitrary distribution
p*, given a training dataset Ss.t. [S| =M, allh € H

have

R(h) < R(h) + . % (ln(I}[I) + In (%))

with probability at least 1 — 6.
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What happens

when
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?

* For a finite hypothesis set H and arbitrary distribution
p*, given a training dataset Ss.t. [S| =M, allh € H

have

R(h) < R(h) + . % (ln(I}[I) + In (%))

with probability at least 1 — 6.
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- Statistical learning theory model
- Expected vs. empirical risk of a hypothesis

* Four possible cases of interest

* realizable vs. agnostic

* finite vs. infinite

- Sample complexity bounds and statistical learning

theory corollaries for finite hypothesis sets

30
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