10-301/601: Introduction
to Machine Learning
Lecture 15 —
Differentiation

Henry Chai
5/27/25

Front Matter

Henry Chai - 5/27/25

- Announcements:

* HW4 released on 5/23, due 5/28 (tomorrow) at
11:59 PM

* Midterm on 5/30 at 9:30 AM in BH A36

* Lectures 1 — 14 are in-scope; this week’s

lectures will not be tested on the midterm

* Recitation on 5/29 will be a review of the

practice problems

* Run mini-batch gradient descent (with momentum &

adaptive gradients) multiple times, each time starting

Recall: with a different, random initialization for the weights.

Random
Restarts

* Compute the training error of each run at termination
and return the set of weights that achieves the lowest

training error.

Henry Chai - 5/27/25

* Input: D = {(x("),y("))}gzl,ng%,B

WD (L)

1. Initialize all weights 0y Wy to small, random

numbersandsett = 0

Mini-batch 2. While TERMINATION CRITERION is not satisfied
Stochastic B
Gradient a. Randomly sample B data points from D, {(x(b),y(b))}b=1

Descent for b. Compute the gradient w.r.t. the sampled batch,

Neural 1L

n — — (b) (1) (L)

Networks G = BZ Vit (W<t> r e ()) vi
b=1

c. Update W®: Wt(f)l — Wt(l) — 77%:1)1)36(0 V1

d. Incrementt:t<t+1

Henry Chai - 5/27/25 ° OUtpUt: M/t(l); . M/t(L)

* Input: D = {(x("),y(”))}:ﬂ,n,(\%, B, decay parameter 8

1. Initialize all weights W((Ol)), e ((OL)) to small, random
Mini-b h numbers and set t = 0, Gfll) =0OWWOvi=1,..L
St Inll; alit:c 2. While TERMINATION CRITERION is not satisfied
OCNnastiC
Gradient a. Randomly sample B data points from D, {(x(b),y(b))};j:l
Descent with b. Compute the gradient w.r.t. the sampled batch,
B
Momentum for MO lz 9, 0t® (WD, ., WS v
Learning T pLw? ©
b=1

c. Update W: Wt(i)l « Wt(l) — 77,(\23 (,BG,fi)l + Ggl)) Vi

d. Incrementt:t<t+1

Henry Chai-5/27/25 ° Output Vl/t(l), ., VI/t(L)

Mini-batch
Stochastic
Gradient

Descent with
Momentum for
Learning

Henry Chai - 5/27/25

Mini-batch
Stochastic
Gradient

Descent with
Momentum for
Learning

Henry Chai - 5/27/25

Mini-batch
Stochastic
Gradient

Descent with
Momentum for
Learning

Henry Chai - 5/27/25

N
* Input: D = {(x("),y("))}nzl,n,(\%, B, decay parameter f8

1. Initialize all weights W((Ol)), . W((OL)) to small, random

Mini-batch numbers and set t = 0, SS? =00owWWvi=1,..,L
Stochastic 2. While TERMINATION CRITERION is not satisfied
: | OINOMNY
Gradient a. Randomly sample B data points from D, {(x Y)}b=1
Descent with b. Compute the gradient w.r.t. the sampled batch,
B
ROOEIVIEER GP = 12 V,0f® (W(l) (L))VI
Square © B4V e
Propagation c. Update the scaling factor: S; = BS,_; + (1 — B)(G; © G,)
0. 0
(RMSProp) d. Update W®: W «w, —%t O G,

e. Incrementt:t<t+1

1 L
Henry Chai - 5/27/25 ¢ OUtput: Vl/t()’ e Vvt()

Mini-batch
Stochastic
Gradient
Descent with

Root Mean
Square
Propagation
(RMSProp)

Henry Chai - 5/27/25

- SGD

- Momentum
- NAG

- Adagrad
Adadelta
Rmsprop

1.0

10

https://www.ruder.io/optimizing-gradient-descent/
https://www.ruder.io/optimizing-gradient-descent/
https://www.ruder.io/optimizing-gradient-descent/
https://www.ruder.io/optimizing-gradient-descent/
https://www.ruder.io/optimizing-gradient-descent/

Adam
(Adaptive
Moment

Estimation) =
SGD +
Momentum +
RMSProp

Henry Chai - 5/27/25

* Input: D = {(x("),y("))}gzl,n,(\%,B, decay parameters [, and f3,

1.

Initialize all weights W((Ol)),) W((OL)) to small, random
numbersandsett =0, M_, =S, =00WWvi=1,..L
While TERMINATION CRITERION is not satisfied
a. Randomly sample B data points from D, {(x?), y(b))}izl
b. Compute the gradient (G;), momentum and scaling factor
My = BiMe_q + (1 = B1)G;
St = B2St—1 + (1= Br)(G: © Gp)

c. Update WO W « wiP — Lo (1,/(1 - BD))
Jse/(-5)

d. Incrementt:t < t+1

* Output: Wt(l), e Wt(L)

11

* For non-convex surfaces, the gradient’s magnitude is

often not a good metric for proximity to a minimum

Terminating
Gradient

Descent

Henry Chai - 5/27/25 12

Terminating
Gradient

Descent
llEa rlyll

Henry Chai - 5/27/25

* For non-convex surfaces, the gradient’s magnitude is
often not a good metric for proximity to a minimum

- Combine multiple termination criteria e.g. only stop if
enough iterations have passed and the improvement in
error is small

- Alternatively, terminate early by using a validation data
set: if the validation error starts to increase, just stop!

* Early stopping asks like regularization by limiting

how much of the hypothesis set is explored

13

* Minimize £5Y¢ (W(l), A Ac)

= Lp(WD, W) + Acr(WD, ., wD
Neural o() + Acr()

Networks and e.g. L2 regularization
L at-1 gl

o (WD . ww =Z Z Z (z)
Regularization () 2.

Henry Chai-5/27/25

14

Neural
Networks and
“Strange”

Regularization

(Srivastava et
al., 2014)

Henry Chai - 5/27/25

* Dropout
* In each iteration of gradient descent, randomly

remove some of the nodes in the network
- Compute the gradient using only the remaining nodes

* The weights on edges going into and out of “dropped

out” nodes are not updated

(b) After applying dropout.

Source: http://imlr.org/papers/volumel5 /srivastaval4a/srivastavalda.pdf 15

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

MILPs as
Universal

Approximators

Henry Chai - 5/27/25

* Theorem: any function that can be decomposed into

perceptrons can be modelled exactly using a 3-layer MLP

* Any smooth decision boundary can be approximated to an

arbitrary precision using a finite number of perceptrons

16

MILPs as
Universal

Approximators

Henry Chai - 5/27/25

* Theorem: any function that can be decomposed into

perceptrons can be modelled exactly using a 3-layer MLP

* Any smooth decision boundary can be approximated to an

arbitrary precision using a finite number of perceptrons

* Theorem: Any smooth decision boundary can be

approximated to an arbitrary precision using a 3-layer MLP

17

* Theorem: Any bounded, continuous function can be
NNs as approximated to an arbitrary precision using a 2-layer
Universal (1 hidden layer) feed-forward NN if the activation
Approximators function, @, is continuous, bounded and non-constant.
(Cybenko, 1989
& Hornik, 1991)

* What about unbounded or discontinuous functions?

* Use more layers!

Source: https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=F2 1A09B7475DFB9487990020839A39D27d0i=10.1.1.441.7873&rep=rep1&type=pdf
https://doi.org/10.1016/0893-6080%2891%2990009-T

Henry Chai - 5/27/25

18

https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=F21A09B7475DFB9487990020839A39D2?doi=10.1.1.441.7873&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=F21A09B7475DFB9487990020839A39D2?doi=10.1.1.441.7873&rep=rep1&type=pdf
https://doi.org/10.1016/0893-6080%2891%2990009-T
https://doi.org/10.1016/0893-6080%2891%2990009-T
https://doi.org/10.1016/0893-6080%2891%2990009-T
https://doi.org/10.1016/0893-6080%2891%2990009-T
https://doi.org/10.1016/0893-6080%2891%2990009-T

NNs as
Universal

Approximators
(Cybenko, 1988)

Henry Chai - 5/27/25

* Theorem: Any function can be approximated to an
arbitrary precision using a 3-layer (2 hidden layers)
feed-forward NN if the activation function, 8, is

continuous, bounded and non-constant.

Source: G. Cybenko. Continuous valued neural networks with two hidden layers are sufficient. Technical report, Dept. of

Computer Science, Tufts University, Medford, MA, 1988. 19

Three

Approaches to
Differentiation

Henry Chai - 5/27/25

- Given f: RP - R, compute V. f(x) = af(x)/ax

1. Finite difference method

2. Symbolic differentiation

3. Automatic differentiation (reverse mode)

20

Approach 1:
Finite
Difference
Method

Henry Chai - 5/27/25

+ Given f: RP = R, compute V, f(x) = ¥/,
of(x) f(x+ed;)—f(x—ed))
0x; 2€

where d; is a one-hot vector with a 1 in the i*" position

Fx) /\\/

* We want € to be small to get a good approximation but we

run into floating point issues when € is too small

- Getting the full gradient requires computing the above

approximation for each dimension of the input

21

Approach 1:
Finite
Difference
Method

Example

Henry Chai - 5/27/25

* Given
xz sin(In(x))

y=flnz) =e™+ In(x) XZ

what are 9%/, and %Y/, atx =2,z = 3?

>>> import math

>>> y = lambda x,z:
math.exp(x*z)+(x*z)/math.log(x)+math.sin(math.log(x))/(x*z)

>>> X = 2

>>> z =3

>>> e = 10**-8

>>> dydx = (y(x+e,z)-y(x-e,z))/(2*e)
>>> dydz = (y(x,z+e)-y(x,z-e))/(2*e)
>>> print(dydx, dydz)

Example courtesy of Matt Gormley

22

Three

Approaches to
Differentiation

Henry Chai - 5/27/25

- Given f: RP - R, compute V. f(x) = af(x)/ax

1. Finite difference method
* Requires the ability to call f(x)

* Great for checking accuracy of implementations of
more complex differentiation methods

- Computationally expensive for high-dimensional inputs

2. Symbolic differentiation

3. Automatic differentiation (reverse mode)

23

Approach 2:
Symbolic
Differentiation

Henry Chai - 5/27/25

* Given

XZ N sin(In(x))

y=[floz) =e™+ In(x) XZ

what are /5 and %Y/, atx =2,z = 3?

* Looks like we’re gonna need the chain rule!

Example courtesy of Matt Gormley

24

Approach 2:
Symbolic
Differentiation

Henry Chai - 5/27/25

* Given

XZ sin(In(x))
In(x) * XZ

y=f(xz) =e”+

what are %/, _and %/, atx =2,z = 3?

dy d 0 ([xz 0 (sin(In(x))

ox 0Ox (e™) + 0x (ln(x)) * ax< XZ)
., A A cos(In(x)) sin(In(x))
-zt In(x) In(x)2 x2z x2z

3 3 cos(In(2)) sin(In(2))

=3t Thrt T 12 12

dy 9 d [xz d (sin(In(x))

9z 0z (e™) + 0z (ln(x)) T az(XZ)

2 sin(In(2))
In(2) 18

Example courtesy of Matt Gormley 25

- Given f: RP - R, compute V. f(x) = af(x)/ax

1. Finite difference method
* Requires the ability to call f(x)

* Great for checking accuracy of implementations of
more complex differentiation methods

- Computationally expensive for high-dimensional inputs
Three g VP . g

2. Symbolic differentiation
* Requires systematic knowledge of derivatives

* Can be computationally expensive if poorly implemented

Approaches to
Differentiation

3. Automatic differentiation (reverse mode)

Henry Chai - 5/27/25 26

* Given
XZ sin(In(x))
In(x) XZ

y=f(x,z) =e* +

what are Y/, and %Y/, atx = 2,z = 3?

* First define some intermediate quantities, draw the
computation graph and run the “forward” computation

Approach 3: T x a d
Automatic b=Inl 15 * K—lexp
Differentiation : :i”;(ab) z b e y
(reverse mode) =1, 3 In / +
f=%a , !
y=d+e+f ¢ st L/

Henry Chai - 5/27/25 Example courtesy of Matt Gormley

* Given
XZ sin(In(x

y=f(x,2)=e+

In(x) XZ
og _a_y: 1
what are ay/ax and ay/az atx =2,z =137 Y oy
‘da = YJe = 9f =

* Then compute partial derivatives, oy _oyor "
starting from y and working back “Ydc = 3, T 9fdc = I9r (_)

a
dy Jdyde 0dyadc

Approach 3: X a d "9p = 3, T Beon T acab
Automatic : o N = Je (—b%) + gc(cos(b))
Differentiation z b e Y .g, =2 _2y0F dyde 2yod
da df da Odeda 0doaoa
(reverse mode) QJE n]{ + = 97 (25) + g (2) + gale®
c |sin /9 :azzging“%%:gb (;)+ga(z)

dy dyada
= ga(x)

® j—
Henry Chai - 5/27/25 Example courtesy of Matt Gormley gZ 0z 6 a aZ 28

- Given f: RP - R, compute V. f(x) = af(x)/ax

1. Finite difference method
* Requires the ability to call f(x)

* Great for checking accuracy of implementations of
more complex differentiation methods

- Computationally expensive for high-dimensional inputs
Three g VP . g

2. Symbolic differentiation
* Requires systematic knowledge of derivatives

* Can be computationally expensive if poorly implemented

Approaches to
Differentiation

3. Automatic differentiation (reverse mode)
* Requires systematic knowledge of derivatives and an
algorithm for computing f(x)

- Computational cost of computing af(x)/ax is proportional
to the cost of computing f(x)

Henry Chai - 5/27/25 29

Computation
Graph

10-301/601
Conventions

Henry Chai - 5/27/25

* The diagram represents an algorithm

* Nodes are rectangles with one node per intermediate

variable in the algorithm

- Each node is labeled with the function that it computes

(inside the box) and the variable name (outside the box)

* Edges are directed and do not have labels

* For neural networks:

* Each weight, feature value, label and bias term

appears as a node

* We can include the loss function

30

Neural
Network

Diagram
Conventions

Henry Chai - 5/27/25

* The diagram represents a neural network
* Nodes are circles with one node per hidden unit

* Each node is labeled with the variable corresponding to

the hidden unit

- Edges are directed and each edge is labeled with its weight

* Following standard convention, the bias term is typically

not shown as a node, but rather is assumed to be part of
the activation function i.e., its weight does not appear in

the picture anywhere.

* The diagram typically does not include any nodes related

to the loss computation
31

* Finite difference method is a simple but computationally

expensive approximation technique

* You should use this to unit test your implementation

of backpropagation!

- Symbolic differentiation is the “default” differentiation

\GVAELGCEWENR

method but can also also be computationally expensive

- Automatic differentiation (reverse mode) saves

intermediate quantities for computational efficiency

* Backpropagation is an instance of automatic

differentiation in the reverse mode

Henry Chai - 5/27/25 32

	Slide 1: 10-301/601: Introduction to Machine Learning Lecture 15 – Differentiation
	Slide 2: Front Matter
	Slide 3: Recall: Random Restarts
	Slide 4: Mini-batch Stochastic Gradient Descent for Neural Networks
	Slide 5: Mini-batch Stochastic Gradient Descent with Momentum for Learning
	Slide 6: Mini-batch Stochastic Gradient Descent with Momentum for Learning
	Slide 7: Mini-batch Stochastic Gradient Descent with Momentum for Learning
	Slide 8: Mini-batch Stochastic Gradient Descent with Momentum for Learning
	Slide 9: Mini-batch Stochastic Gradient Descent with Root Mean Square Propagation (RMSProp)
	Slide 10: Mini-batch Stochastic Gradient Descent with Root Mean Square Propagation (RMSProp)
	Slide 11: Adam (Adaptive Moment Estimation) = SGD + Momentum + RMSProp
	Slide 12: Terminating Gradient Descent
	Slide 13: Terminating Gradient Descent “Early”
	Slide 14: Neural Networks and Regularization
	Slide 15: Neural Networks and “Strange” Regularization (Srivastava et al., 2014)
	Slide 16: MLPs as Universal Approximators
	Slide 17: MLPs as Universal Approximators
	Slide 18: NNs as Universal Approximators (Cybenko, 1989 & Hornik, 1991)
	Slide 19: NNs as Universal Approximators (Cybenko, 1988)
	Slide 20: Three Approaches to Differentiation
	Slide 21
	Slide 22
	Slide 23: Three Approaches to Differentiation
	Slide 24
	Slide 25
	Slide 26: Three Approaches to Differentiation
	Slide 27
	Slide 28
	Slide 29: Three Approaches to Differentiation
	Slide 30: Computation Graph 10-301/601 Conventions
	Slide 31: Neural Network Diagram Conventions
	Slide 32: Key Takeaways

