
Henry Chai

5/27/25

10-301/601: Introduction
to Machine Learning
Lecture 15 –
Differentiation

Front Matter

 Announcements:

 HW4 released on 5/23, due 5/28 (tomorrow) at

11:59 PM

 Midterm on 5/30 at 9:30 AM in BH A36

 Lectures 1 – 14 are in-scope; this week’s

lectures will not be tested on the midterm

 Recitation on 5/29 will be a review of the

practice problems

Henry Chai - 5/27/25 2

Recall:
Random
Restarts

 Run mini-batch gradient descent (with momentum &

adaptive gradients) multiple times, each time starting

with a different, random initialization for the weights.

 Compute the training error of each run at termination

and return the set of weights that achieves the lowest

training error.

Henry Chai - 5/27/25 3

Mini-batch
Stochastic
Gradient
Descent for
Neural
Networks

4Henry Chai - 5/27/25

 Input: 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
, 𝜂𝑀𝐵

0
, 𝐵

1. Initialize all weights 𝑊 0
1

, … , 𝑊 0
𝐿

 to small, random

numbers and set 𝑡 = 0 𝐺−1
𝑙

= 0 ∗ 𝑊 𝑙 ∀ 𝑙 = 1, … , 𝐿

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 𝑏 , 𝑦 𝑏
𝑏=1

𝐵

b. Compute the gradient w.r.t. the sampled batch,

𝐺 𝑙 =
1

𝐵
෍

𝑏=1

𝐵

∇𝑊 𝑙 ℓ 𝑏 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

 ∀ 𝑙

c. Update 𝑊 𝑙 : 𝑊𝑡+1
𝑙

← 𝑊𝑡
𝑙

− 𝜂𝑀𝐵
0

𝐺 𝑙 ∀ 𝑙

d. Increment 𝑡: 𝑡 ← 𝑡 + 1

 Output: 𝑊𝑡
1

, … , 𝑊𝑡
𝐿

Mini-batch
Stochastic
Gradient
Descent with
Momentum for
Learning

5Henry Chai - 5/27/25

 Input: 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
, 𝜂𝑀𝐵

0
, 𝐵, decay parameter 𝛽

1. Initialize all weights 𝑊 0
1

, … , 𝑊 0
𝐿

 to small, random

numbers and set 𝑡 = 0, 𝐺−1
𝑙

= 0 ⊙ 𝑊 𝑙 ∀ 𝑙 = 1, … , 𝐿

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 𝑏 , 𝑦 𝑏
𝑏=1

𝐵

b. Compute the gradient w.r.t. the sampled batch,

𝐺𝑡
𝑙

=
1

𝐵
෍

𝑏=1

𝐵

∇𝑊 𝑙 ℓ 𝑏 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

∀ 𝑙

c. Update 𝑊 𝑙 : 𝑊𝑡+1
𝑙

← 𝑊𝑡
𝑙

− 𝜂𝑀𝐵
0

𝛽𝐺𝑡−1
𝑙

+ 𝐺𝑡
𝑙

∀ 𝑙

d. Increment 𝑡: 𝑡 ← 𝑡 + 1

 Output: 𝑊𝑡
1

, … , 𝑊𝑡
𝐿

Henry Chai - 5/27/25 6

Mini-batch
Stochastic
Gradient
Descent with
Momentum for
Learning

Henry Chai - 5/27/25 7

Mini-batch
Stochastic
Gradient
Descent with
Momentum for
Learning

Henry Chai - 5/27/25 8

Mini-batch
Stochastic
Gradient
Descent with
Momentum for
Learning

Mini-batch
Stochastic
Gradient
Descent with
Root Mean
Square
Propagation
(RMSProp)

Henry Chai - 5/27/25 9

 Input: 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
, 𝜂𝑀𝐵

0
, 𝐵, decay parameter 𝛽

1. Initialize all weights 𝑊 0
1

, … , 𝑊 0
𝐿

 to small, random

numbers and set 𝑡 = 0, 𝑆−1
𝑙

= 0 ⊙ 𝑊 𝑙 ∀ 𝑙 = 1, … , 𝐿

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 𝑏 , 𝑦 𝑏
𝑏=1

𝐵

b. Compute the gradient w.r.t. the sampled batch,

𝐺𝑡
𝑙

=
1

𝐵
෍

𝑏=1

𝐵

∇𝑊 𝑙 ℓ 𝑏 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

∀ 𝑙

c. Update the scaling factor: 𝑆𝑡 = 𝛽𝑆𝑡−1 + 1 − 𝛽 𝐺𝑡 ⊙ 𝐺𝑡

d. Update 𝑊 𝑙 : 𝑊𝑡+1
𝑙

← 𝑊𝑡
𝑙

 −
𝛾

𝑆𝑡
⊙ 𝐺𝑡

e. Increment 𝑡: 𝑡 ← 𝑡 + 1

 Output: 𝑊𝑡
1

, … , 𝑊𝑡
𝐿

Mini-batch
Stochastic
Gradient
Descent with
Root Mean
Square
Propagation
(RMSProp)

Henry Chai - 5/27/25 10Source: https://www.ruder.io/optimizing-gradient-descent/

https://www.ruder.io/optimizing-gradient-descent/
https://www.ruder.io/optimizing-gradient-descent/
https://www.ruder.io/optimizing-gradient-descent/
https://www.ruder.io/optimizing-gradient-descent/
https://www.ruder.io/optimizing-gradient-descent/

Adam
(Adaptive
Moment
Estimation) =
SGD +
Momentum +
RMSProp

Henry Chai - 5/27/25 11

 Input: 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
, 𝜂𝑀𝐵

0
, 𝐵, decay parameters 𝛽1 and 𝛽2

1. Initialize all weights 𝑊 0
1

, … , 𝑊 0
𝐿

 to small, random

numbers and set 𝑡 = 0, 𝑀−1 = 𝑆−1 = 0 ⊙ 𝑊 𝑙 ∀ 𝑙 = 1, … , 𝐿

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 𝑏 , 𝑦 𝑏
𝑏=1

𝐵

b. Compute the gradient (𝐺𝑡), momentum and scaling factor

𝑀𝑡 = 𝛽1𝑀𝑡−1 + 1 − 𝛽1 𝐺𝑡

𝑆𝑡 = 𝛽2𝑆𝑡−1 + 1 − 𝛽2 𝐺𝑡 ⊙ 𝐺𝑡

c. Update 𝑊 𝑙 : 𝑊𝑡+1
𝑙

← 𝑊𝑡
𝑙

 −
𝛾

Τ𝑆𝑡 1−𝛽2
𝑡

⊙ Τ𝑀𝑡 1 − 𝛽1
𝑡

d. Increment 𝑡: 𝑡 ← 𝑡 + 1

 Output: 𝑊𝑡
1

, … , 𝑊𝑡
𝐿

Terminating
Gradient
Descent

 For non-convex surfaces, the gradient’s magnitude is

often not a good metric for proximity to a minimum

Henry Chai - 5/27/25 12

Terminating
Gradient
Descent
“Early”

Henry Chai - 5/27/25 13

 For non-convex surfaces, the gradient’s magnitude is

often not a good metric for proximity to a minimum

 Combine multiple termination criteria e.g. only stop if

enough iterations have passed and the improvement in

error is small

 Alternatively, terminate early by using a validation data

set: if the validation error starts to increase, just stop!

 Early stopping asks like regularization by limiting

how much of the hypothesis set is explored

Neural
Networks and

Regularization

 Minimize ℓ𝒟
𝐴𝑈𝐺 𝑊 1 , … , 𝑊 𝐿 , 𝜆𝐶

e.g. L2 regularization

Henry Chai - 5/27/25 14

= ℓ𝒟 𝑊 1 , … , 𝑊 𝐿 + 𝜆𝐶𝑟 𝑊 1 , … , 𝑊 𝐿

𝑟 𝑊 1 , … , 𝑊 𝐿 = ෍

𝑙=1

𝐿

෍

𝑖=0

𝑑 𝑙−1

෍

𝑗=1

𝑑 𝑙

𝑤𝑗,𝑖
𝑙

2

Henry Chai - 5/27/25 15

Neural
Networks and
“Strange”
Regularization
(Srivastava et
al., 2014)

Source: http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

 Dropout

 In each iteration of gradient descent, randomly

remove some of the nodes in the network

 Compute the gradient using only the remaining nodes

 The weights on edges going into and out of “dropped

out” nodes are not updated

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

 Theorem: any function that can be decomposed into

perceptrons can be modelled exactly using a 3-layer MLP

 Any smooth decision boundary can be approximated to an

arbitrary precision using a finite number of perceptrons
MLPs as
Universal
Approximators

Henry Chai - 5/27/25 16

 Theorem: any function that can be decomposed into

perceptrons can be modelled exactly using a 3-layer MLP

 Any smooth decision boundary can be approximated to an

arbitrary precision using a finite number of perceptrons

 Theorem: Any smooth decision boundary can be

approximated to an arbitrary precision using a 3-layer MLP

MLPs as
Universal
Approximators

Henry Chai - 5/27/25 17

NNs as
Universal
Approximators
(Cybenko, 1989
& Hornik, 1991)

Henry Chai - 5/27/25 18

 Theorem: Any bounded, continuous function can be

approximated to an arbitrary precision using a 2-layer

(1 hidden layer) feed-forward NN if the activation

function, 𝜃, is continuous, bounded and non-constant.

 What about unbounded or discontinuous functions?

 Use more layers!

Source: https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=F21A09B7475DFB9487990020839A39D2?doi=10.1.1.441.7873&rep=rep1&type=pdf
Source: https://doi.org/10.1016/0893-6080%2891%2990009-T

https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=F21A09B7475DFB9487990020839A39D2?doi=10.1.1.441.7873&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=F21A09B7475DFB9487990020839A39D2?doi=10.1.1.441.7873&rep=rep1&type=pdf
https://doi.org/10.1016/0893-6080%2891%2990009-T
https://doi.org/10.1016/0893-6080%2891%2990009-T
https://doi.org/10.1016/0893-6080%2891%2990009-T
https://doi.org/10.1016/0893-6080%2891%2990009-T
https://doi.org/10.1016/0893-6080%2891%2990009-T

NNs as
Universal
Approximators
(Cybenko, 1988)

Henry Chai - 5/27/25 19
Source: G. Cybenko. Continuous valued neural networks with two hidden layers are sufficient. Technical report, Dept. of
Computer Science, Tufts University, Medford, MA, 1988.

 Theorem: Any function can be approximated to an

arbitrary precision using a 3-layer (2 hidden layers)

feed-forward NN if the activation function, 𝜃, is

continuous, bounded and non-constant.

Three
Approaches to
Differentiation

 Given 𝑓: ℝ𝐷 → ℝ, compute ∇𝒙𝑓 𝒙 = ൗ𝜕𝑓 𝒙
𝜕𝒙

1. Finite difference method

 Requires the ability to call 𝑓 𝒙

 Great for checking accuracy of implementations of
more complex differentiation methods

 Computationally expensive for high-dimensional inputs

2. Symbolic differentiation

 Requires systematic knowledge of derivatives

 Can computationally expensive if poorly implemented

3. Automatic differentiation (reverse mode)

 Requires systematic knowledge of derivatives and an
algorithm for computing 𝑓 𝒙

 Computational cost of computing ൗ𝜕𝑓 𝒙
𝜕𝒙 is

proportional to the cost of computing 𝑓 𝒙
Henry Chai - 5/27/25 20

Henry Chai - 5/27/25 21

Approach 1:
Finite
Difference
Method

 Given 𝑓: ℝ𝐷 → ℝ, compute ∇𝒙𝑓 𝒙 = ൗ𝜕𝑓 𝒙
𝜕𝒙

𝜕𝑓 𝒙

𝜕𝑥𝑖
≈

𝑓 𝒙 + 𝜖𝒅𝑖 − 𝑓 𝒙 − 𝜖𝒅𝑖

2𝜖

where 𝒅𝑖 is a one-hot vector with a 1 in the 𝑖th position

 We want 𝜖 to be small to get a good approximation but we

run into floating point issues when 𝜖 is too small

 Getting the full gradient requires computing the above

approximation for each dimension of the input

𝑓 𝑥

𝑥𝜖 𝜖

Henry Chai - 5/27/25 22

Approach 1:
Finite
Difference
Method
Example

Example courtesy of Matt Gormley

 Given

𝑦 = 𝑓 𝑥, 𝑧 = 𝑒𝑥𝑧 +
𝑥𝑧

ln 𝑥
+

sin ln 𝑥

𝑥𝑧

what are ൗ𝜕𝑦
𝜕𝑥 and ൗ𝜕𝑦

𝜕𝑧 at 𝑥 = 2, 𝑧 = 3?

>>> import math

>>> y = lambda x,z:
math.exp(x*z)+(x*z)/math.log(x)+math.sin(math.log(x))/(x*z)

>>> x = 2

>>> z = 3

>>> e = 10**-8

>>> dydx = (y(x+e,z)-y(x-e,z))/(2*e)

>>> dydz = (y(x,z+e)-y(x,z-e))/(2*e)

>>> print(dydx, dydz)

 Given 𝑓: ℝ𝐷 → ℝ, compute ∇𝒙𝑓 𝒙 = ൗ𝜕𝑓 𝒙
𝜕𝒙

1. Finite difference method

 Requires the ability to call 𝑓 𝒙

 Great for checking accuracy of implementations of
more complex differentiation methods

 Computationally expensive for high-dimensional inputs

2. Symbolic differentiation

 Requires systematic knowledge of derivatives

 Can be computationally expensive if poorly implemented

3. Automatic differentiation (reverse mode)

 Requires systematic knowledge of derivatives and an
algorithm for computing 𝑓 𝒙

 Computational cost of computing ൗ𝜕𝑓 𝒙
𝜕𝒙 is proportional

to the cost of computing 𝑓 𝒙

Three
Approaches to
Differentiation

Henry Chai - 5/27/25 23

Henry Chai - 5/27/25 24

Approach 2:
Symbolic
Differentiation

 Given

𝑦 = 𝑓 𝑥, 𝑧 = 𝑒𝑥𝑧 +
𝑥𝑧

ln 𝑥
+

sin ln 𝑥

𝑥𝑧

what are ൗ𝜕𝑦
𝜕𝑥 and ൗ𝜕𝑦

𝜕𝑧 at 𝑥 = 2, 𝑧 = 3?

 Looks like we’re gonna need the chain rule!

Example courtesy of Matt Gormley

Henry Chai - 5/27/25 25

Approach 2:
Symbolic
Differentiation

 Given

𝑦 = 𝑓 𝑥, 𝑧 = 𝑒𝑥𝑧 +
𝑥𝑧

ln 𝑥
+

sin ln 𝑥

𝑥𝑧

what are ൗ𝜕𝑦
𝜕𝑥 and ൗ𝜕𝑦

𝜕𝑧 at 𝑥 = 2, 𝑧 = 3?

𝜕𝑦

𝜕𝑥
=

𝜕

𝜕𝑥
𝑒𝑥𝑧 +

𝜕

𝜕𝑥

𝑥𝑧

ln 𝑥
+

𝜕

𝜕𝑥

sin ln 𝑥

𝑥𝑧

𝜕𝑦

𝜕𝑥
= 𝑧𝑒𝑥𝑧 +

𝑧

ln 𝑥
−

𝑧

ln 𝑥 2
+

cos ln 𝑥

𝑥2𝑧
−

sin ln 𝑥

𝑥2𝑧

𝜕𝑦

𝜕𝑥
= 3𝑒6 +

3

ln 2
−

3

ln 2 2
+

cos ln 2

12
−

sin ln 2

12

𝜕𝑦

𝜕𝑧
=

𝜕

𝜕𝑧
𝑒𝑥𝑧 +

𝜕

𝜕𝑧

𝑥𝑧

ln 𝑥
+

𝜕

𝜕𝑧

sin ln 𝑥

𝑥𝑧

𝜕𝑦

𝜕𝑥
= 2𝑒6 +

2

ln 2
−

sin ln 2

18 Example courtesy of Matt Gormley

 Given 𝑓: ℝ𝐷 → ℝ, compute ∇𝒙𝑓 𝒙 = ൗ𝜕𝑓 𝒙
𝜕𝒙

1. Finite difference method

 Requires the ability to call 𝑓 𝒙

 Great for checking accuracy of implementations of
more complex differentiation methods

 Computationally expensive for high-dimensional inputs

2. Symbolic differentiation

 Requires systematic knowledge of derivatives

 Can be computationally expensive if poorly implemented

3. Automatic differentiation (reverse mode)

 Requires systematic knowledge of derivatives and an
algorithm for computing 𝑓 𝒙

 Computational cost of computing ൗ𝜕𝑓 𝒙
𝜕𝒙 is proportional

to the cost of computing 𝑓 𝒙

Three
Approaches to
Differentiation

Henry Chai - 5/27/25 26

 Given

𝑦 = 𝑓 𝑥, 𝑧 = 𝑒𝑥𝑧 +
𝑥𝑧

ln 𝑥
+

sin ln 𝑥

𝑥𝑧

what are ൗ𝜕𝑦
𝜕𝑥 and ൗ𝜕𝑦

𝜕𝑧 at 𝑥 = 2, 𝑧 = 3?

 First define some intermediate quantities, draw the

computation graph and run the “forward” computation

Henry Chai - 5/27/25 27

Approach 3:
Automatic
Differentiation
(reverse mode)

𝑎 = 𝑥𝑧

𝑏 = ln 𝑥

𝑐 = sin 𝑏

𝑑 = 𝑒𝑎

𝑒 = ൗ𝑎
𝑏

𝑓 = Τ𝑐
𝑎

𝑦 = 𝑑 + 𝑒 + 𝑓

2

𝑥

𝑧

3

∗

𝑙𝑛

𝑎

𝑏

𝑠𝑖𝑛𝑐

𝑒𝑥𝑝

+/

/

𝑦

𝑑

𝑒

𝑓

Example courtesy of Matt Gormley

• 𝑔𝑧 =
𝜕𝑦

𝜕𝑧
=

𝜕𝑦

𝜕𝑎

𝜕𝑎

𝜕𝑧
= 𝑔𝑎 𝑥

 Given

𝑦 = 𝑓 𝑥, 𝑧 = 𝑒𝑥𝑧 +
𝑥𝑧

ln 𝑥
+

sin ln 𝑥

𝑥𝑧

what are ൗ𝜕𝑦
𝜕𝑥 and ൗ𝜕𝑦

𝜕𝑧 at 𝑥 = 2, 𝑧 = 3?

 Then compute partial derivatives,

starting from 𝑦 and working back

Henry Chai - 5/27/25 28

Approach 3:
Automatic
Differentiation
(reverse mode)

Example courtesy of Matt Gormley

2

𝑥

𝑧

3

∗

𝑙𝑛

𝑎

𝑏

𝑠𝑖𝑛𝑐

𝑒𝑥𝑝

+/

/

𝑦

𝑑

𝑒

𝑓

• 𝑔𝑦 =
𝜕𝑦

𝜕𝑦
= 1

• 𝑔𝑑 = 𝑔𝑒 = 𝑔𝑓 = 1

• 𝑔𝑐 =
𝜕𝑦

𝜕𝑐
=

𝜕𝑦

𝜕𝑓

𝜕𝑓

𝜕𝑐
= 𝑔𝑓

1

𝑎

• 𝑔𝑏 =
𝜕𝑦

𝜕𝑏
=

𝜕𝑦

𝜕𝑒

𝜕𝑒

𝜕𝑏
+

𝜕𝑦

𝜕𝑐

𝜕𝑐

𝜕𝑏

• 𝑔𝑏 = 𝑔𝑒 −
𝑎

𝑏2 + 𝑔𝑐 cos 𝑏

• 𝑔𝑎 =
𝜕𝑦

𝜕𝑎
=

𝜕𝑦

𝜕𝑓

𝜕𝑓

𝜕𝑎
+

𝜕𝑦

𝜕𝑒

𝜕𝑒

𝜕𝑎
+

𝜕𝑦

𝜕𝑑

𝜕𝑑

𝜕𝑎

• 𝑔𝑎 = 𝑔𝑓
−𝑐

𝑎2 + 𝑔𝑒
1

𝑏
+ 𝑔𝑑 𝑒𝑎

• 𝑔𝑥 =
𝜕𝑦

𝜕𝑥
=

𝜕𝑦

𝜕𝑏

𝜕𝑏

𝜕𝑥
+

𝜕𝑦

𝜕𝑎

𝜕𝑎

𝜕𝑥
= 𝑔𝑏

1

𝑥
+ 𝑔𝑎 𝑧

Three
Approaches to
Differentiation

Henry Chai - 5/27/25 29

 Given 𝑓: ℝ𝐷 → ℝ, compute ∇𝒙𝑓 𝒙 = ൗ𝜕𝑓 𝒙
𝜕𝒙

1. Finite difference method

 Requires the ability to call 𝑓 𝒙

 Great for checking accuracy of implementations of
more complex differentiation methods

 Computationally expensive for high-dimensional inputs

2. Symbolic differentiation

 Requires systematic knowledge of derivatives

 Can be computationally expensive if poorly implemented

3. Automatic differentiation (reverse mode)

 Requires systematic knowledge of derivatives and an
algorithm for computing 𝑓 𝒙

 Computational cost of computing ൗ𝜕𝑓 𝒙
𝜕𝒙 is proportional

to the cost of computing 𝑓 𝒙

Computation
Graph
10-301/601
Conventions

Henry Chai - 5/27/25 30

 The diagram represents an algorithm

 Nodes are rectangles with one node per intermediate

variable in the algorithm

 Each node is labeled with the function that it computes

(inside the box) and the variable name (outside the box)

 Edges are directed and do not have labels

 For neural networks:

 Each weight, feature value, label and bias term

appears as a node

 We can include the loss function

Neural
Network
Diagram
Conventions

 The diagram represents a neural network

 Nodes are circles with one node per hidden unit

 Each node is labeled with the variable corresponding to

the hidden unit

 Edges are directed and each edge is labeled with its weight

 Following standard convention, the bias term is typically

not shown as a node, but rather is assumed to be part of

the activation function i.e., its weight does not appear in

the picture anywhere.

 The diagram typically does not include any nodes related

to the loss computation
Henry Chai - 5/27/25 31

Key Takeaways

 Finite difference method is a simple but computationally

expensive approximation technique

 You should use this to unit test your implementation

of backpropagation!

 Symbolic differentiation is the “default” differentiation

method but can also also be computationally expensive

 Automatic differentiation (reverse mode) saves

intermediate quantities for computational efficiency

 Backpropagation is an instance of automatic

differentiation in the reverse mode

Henry Chai - 5/27/25 32

	Slide 1: 10-301/601: Introduction to Machine Learning Lecture 15 – Differentiation
	Slide 2: Front Matter
	Slide 3: Recall: Random Restarts
	Slide 4: Mini-batch Stochastic Gradient Descent for Neural Networks
	Slide 5: Mini-batch Stochastic Gradient Descent with Momentum for Learning
	Slide 6: Mini-batch Stochastic Gradient Descent with Momentum for Learning
	Slide 7: Mini-batch Stochastic Gradient Descent with Momentum for Learning
	Slide 8: Mini-batch Stochastic Gradient Descent with Momentum for Learning
	Slide 9: Mini-batch Stochastic Gradient Descent with Root Mean Square Propagation (RMSProp)
	Slide 10: Mini-batch Stochastic Gradient Descent with Root Mean Square Propagation (RMSProp)
	Slide 11: Adam (Adaptive Moment Estimation) = SGD + Momentum + RMSProp
	Slide 12: Terminating Gradient Descent
	Slide 13: Terminating Gradient Descent “Early”
	Slide 14: Neural Networks and Regularization
	Slide 15: Neural Networks and “Strange” Regularization (Srivastava et al., 2014)
	Slide 16: MLPs as Universal Approximators
	Slide 17: MLPs as Universal Approximators
	Slide 18: NNs as Universal Approximators (Cybenko, 1989 & Hornik, 1991)
	Slide 19: NNs as Universal Approximators (Cybenko, 1988)
	Slide 20: Three Approaches to Differentiation
	Slide 21
	Slide 22
	Slide 23: Three Approaches to Differentiation
	Slide 24
	Slide 25
	Slide 26: Three Approaches to Differentiation
	Slide 27
	Slide 28
	Slide 29: Three Approaches to Differentiation
	Slide 30: Computation Graph 10-301/601 Conventions
	Slide 31: Neural Network Diagram Conventions
	Slide 32: Key Takeaways

