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Front Matter
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 Announcements: 

 HW3 released on 5/20, due 5/23 (tomorrow) at 

11:59 PM

 Quiz 2 on 5/23 (tomorrow) at 11:00 AM in BH A36 (here)

 Study guide solutions partially released 5/21 

(yesterday)

 The remaining solutions to be released after 

recitation on 5/22 (today!)

 Midterm on 5/30 at 9:30 AM in BH A36

 Lectures 1 – 14 are in-scope; next week’s lectures 

will not be tested on the midterm



Midterm 
Logistics

 Time and place: 

 Friday, 5/30 from 9:30 AM to 12:00 PM in BH A36 (here)

 Closed book/notes

 1-page cheatsheet allowed, both back and front; can be 

typeset or handwritten

 No electronic devices allowed, including calculators
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Midterm 
Coverage

 Lectures: 1 – 14 (through this week’s lectures) 

 Foundations: probability, linear algebra, calculus 

 Important concepts: inductive bias, overfitting, 

model selection/hyperparameter optimization, 

regularization

 Models: decision trees, kNN, Perceptron, linear 

regression, logistic regression, neural networks

 Methods: (stochastic) gradient descent, closed-form 

optimization, backpropagation, MLE/MAP
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Midterm 
Preparation

 Review midterm practice problems, to be posted on 5/26 

to the course website (under Schedule)

 Attend the exam review recitation on 5/29

 Review the homeworks and study guides

 Consider whether you understand the “Key Takeaways” 

for each lecture / section

 Write your cheat sheet 
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https://www.cs.cmu.edu/~hchai2/courses/10601/


Recall:
Loss 
Functions 
for Neural 
Networks

 Multi-class classification - cross-entropy loss

 Express the label as a one-hot or one-of-𝐶 vector e.g.,

𝑦 = 0 0 1 0 ⋯ 0

 Assume the neural network output is also a vector of length 𝐶

𝑃 𝑦 𝑘 = 1 𝒙, 𝑊 1 , … , 𝑊 𝐿 = ℎ𝑊 1 ,…,𝑊 𝐿 𝒙 𝑛 𝑘

 Then the cross-entropy loss is

ℓ𝒟 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

= − ෍

𝑛=1

𝑁

log 𝑃 𝑦 𝑛 |𝒙 𝑛 , 𝑊 1 , … , 𝑊 𝐿

ℓ𝒟 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

= − ෍

𝑛=1

𝑁

෍

𝑘=1

𝐶

𝑦 𝑘 log ℎ𝑊 1 ,…,𝑊 𝐿 𝒙 𝑛 𝑘
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𝑓

𝑓

𝑓
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𝑓

1

Soft
max

ℎ 𝒙 1

𝑥1

𝑥𝐷

1

⋮ ⋮ ⋮

⋯

1

Multi-
dimensional 
Outputs

Soft
max

Soft
max

⋮

𝑠1
𝐿

𝑠2
𝐿

𝑠𝐶
𝐿

ℎ 𝒙 2

ℎ 𝒙 𝐶



Recall: 
Gradient 
Descent 
for Learning

 Input: 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
, 𝜂 0

 Initialize all weights 𝑊 0
1

, … , 𝑊 0
𝐿

 to small, random 

numbers and set 𝑡 = 0 (???)

 While TERMINATION CRITERION is not satisfied (???)

 For 𝑙 = 1, … , 𝐿

 Compute 𝐺 𝑙 = ∇𝑊 𝑙 ℓ𝒟 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

 (???)

 Update 𝑊 𝑙 : 𝑊 𝑡+1
𝑙

= 𝑊 𝑡
𝑙

− 𝜂0𝐺 𝑙

 Increment 𝑡: 𝑡 = 𝑡 + 1 

 Output: 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿
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Matrix 
Calculus

Types of 
Derivatives

scalar vector matrix

scalar

vector

matrix

Numerator

D
en

om
in

at
or

Table courtesy of Matt GormleyHenry Chai - 5/22/25 9



Matrix 
Calculus: 
Denominator 
Layout

 Derivatives of a 

scalar always 

have the same 

shape as the 

entity that the 

derivative is 

being taken 

with respect to. 

Types of 
Derivatives

scalar

scalar

vector

matrix
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Matrix 
Calculus: 
Denominator 
Layout

Types of 
Derivatives

scalar vector

scalar

vector

Table courtesy of Matt GormleyHenry Chai - 5/22/25 11



The Chain Rule 
of Calculus

 If 𝑦 = 𝑓 𝑧  and 𝑧 = 𝑔 𝑥  then 

 computation graph is 

 If 𝑦 = 𝑓 𝑧1, 𝑧2  and 𝑧1 = 𝑔1 𝑥 , 𝑧2 = 𝑔2 𝑥  then 

 If 𝑦 = 𝑓 𝒛  and 𝒛 = 𝑔 𝑥  then 
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⟹
𝜕𝑦

𝜕𝑥
=

𝜕𝑦

𝜕𝑧

𝜕𝑧

𝜕𝑥

⟹
𝜕𝑦

𝜕𝑥
=

𝜕𝑦

𝜕𝑧1

𝜕𝑧1

𝜕𝑥
+

𝜕𝑦

𝜕𝑧2

𝜕𝑧2

𝜕𝑥

⟹
𝜕𝑦

𝜕𝑥
= ෍

𝑑=1

𝐷
𝜕𝑦

𝜕𝑧𝑑

𝜕𝑧𝑑

𝜕𝑥

⋮

𝑥 𝑧 𝑦

𝑥
𝑧1

𝑧2

𝑦

𝑥 𝑦

𝑧𝐷

𝑧1

𝑧2



Computing 
Gradients

∇𝑊 𝑙 ℓ𝒟 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

=

𝜕ℓ𝒟

𝜕𝑤1,0
𝑙

𝜕ℓ𝒟

𝜕𝑤1,1
𝑙

⋯
𝜕ℓ𝒟

𝜕𝑤
1,𝑑 𝑙−1

𝑙

𝜕ℓ𝒟

𝜕𝑤2,0
𝑙

𝜕ℓ𝒟

𝜕𝑤2,1
𝑙

⋯
𝜕ℓ𝒟

𝜕𝑤
2,𝑑 𝑙−1

𝑙

⋮ ⋮ ⋱ ⋮
𝜕ℓ𝒟

𝜕𝑤
𝑑 𝑙 ,0

𝑙

𝜕ℓ𝒟

𝜕𝑤
𝑑 𝑙 ,1

𝑙
…

𝜕ℓ𝒟

𝜕𝑤
𝑑 𝑙 ,𝑑 𝑙−1

𝑙
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ℓ𝒟 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

= ෍

𝑛 = 1

𝑁

ℓ(𝑛) 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

𝜕ℓ𝒟

𝜕𝑤𝑏,𝑎
𝑙

= ෍

𝑛 = 1

𝑁 𝜕ℓ(𝑛) 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

𝜕𝑤𝑏,𝑎
𝑙



Computing 
Gradients:
Intuition

 A weight affects the prediction of the network (and 

therefore the error) through downstream signals/outputs

 Use the chain rule!

 Any weight going into the same node will affect the 

prediction through the same downstream path

 Compute derivatives starting from the last layer and 

move “backwards”

 Store computed derivatives and reuse for efficiency 

(dynamic programming)
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Computing 
Partial 
Derivatives

Computing ∇𝑊 𝑙 ℓ𝒟 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

 reduces to computing
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𝑓𝑓

𝑓

1

⋮

Layer 𝑙 − 1 Layer 𝑙

𝑤𝑏,𝑎
𝑙

Node 𝑎

Node 𝑏

𝑠𝑏
𝑙⋮

Insight: 𝑤𝑏,𝑎
𝑙

 only affects ℓ 𝑛  via 𝑠𝑏
𝑙

 

𝜕ℓ 𝑛

𝜕𝑤𝑏,𝑎
𝑙



Computing 
Partial 
Derivatives

Computing ∇𝑊 𝑙 ℓ𝒟 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

 reduces to computing
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𝜕ℓ 𝑛

𝜕𝑤𝑏,𝑎
𝑙

=
𝜕ℓ 𝑛

𝜕𝑠𝑏
𝑙

𝜕𝑠𝑏
𝑙

𝜕𝑤𝑏,𝑎
𝑙

Chain rule:

𝑠𝑏
𝑙

= ෍

𝑎 = 0

𝑑 𝑙−1

𝑤𝑏,𝑎
𝑙

𝑜𝑎
𝑙−1

→
𝜕𝑠𝑏

𝑙

𝜕𝑤𝑏,𝑎
𝑙

= 𝑜𝑎
𝑙−1

Compute outputs 𝒐 𝑙  ∀ 𝑙 ∈ 0, … , 𝐿  by forward propagation

Insight: 𝑤𝑏,𝑎
𝑙

 only affects ℓ 𝑛  via 𝑠𝑏
𝑙

 

𝜕ℓ 𝑛

𝜕𝑤𝑏,𝑎
𝑙
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Computing 
Partial 
Derivatives

Insight: 𝑠𝑏
𝑙

only affects ℓ 𝑛  via 𝑜𝑏
𝑙

 

𝑓

Layer 𝑙

𝑜𝑏
𝑙

Node 𝑏

𝑠𝑏
𝑙
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Computing 
Partial 
Derivatives

𝛿𝑏
𝑙

=
𝜕ℓ 𝑛

𝜕𝑜𝑏
𝑙

𝜕𝑜𝑏
𝑙

𝜕𝑠𝑏
𝑙

Chain rule:

𝑜𝑏
𝑙

= 𝑓 𝑠𝑏
𝑙

→
𝜕𝑜𝑏

𝑙

𝜕𝑠𝑏
𝑙

=
𝜕𝑓 𝑠𝑏

𝑙

𝜕𝑠𝑏
𝑙

= 1 − tanh 𝑠𝑏
𝑙

2

when 𝑓 ⋅ = tanh ⋅

Insight: 𝑠𝑏
𝑙

only affects ℓ 𝑛  via 𝑜𝑏
𝑙
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Computing 
Partial 
Derivatives

𝑓

⋮

Layer 𝑙 + 1Layer 𝑙

Node 𝑏

𝑜𝑏
𝑙

𝑓

𝑓

1

𝑠1
𝑙+1

𝑠
𝑑 𝑙+1

𝑙+1

Insight: 𝑜𝑏
𝑙

 affects ℓ 𝑛  via 𝑠1
𝑙+1

, … , 𝑠
𝑑 𝑙+1

𝑙+1
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𝜕ℓ 𝑛

𝜕𝑜𝑏
𝑙

= ෍

𝑐 = 1

𝑑 𝑙+1

𝜕ℓ 𝑛

𝜕𝑠𝑐
𝑙+1

𝜕𝑠𝑐
𝑙+1

𝜕𝑜𝑏
𝑙

𝜕ℓ 𝑛

𝜕𝑜𝑏
𝑙

= ෍

𝑐 = 1

𝑑 𝑙+1

𝛿𝑐
𝑙+1

𝑤𝑐,𝑏
𝑙+1

Chain rule:

𝑠𝑐
𝑙+1

= ෍

𝑏 = 0

𝑑 𝑙

𝑤𝑐,𝑏
𝑙+1

𝑜𝑏
𝑙

→
𝜕𝑠𝑐

𝑙+1

𝜕𝑜𝑏
𝑙

= 𝑤𝑐,𝑏
𝑙+1

Computing 
Partial 
Derivatives

Insight: 𝑜𝑏
𝑙

 affects ℓ 𝑛  via 𝑠1
𝑙+1

, … , 𝑠
𝑑 𝑙+1

𝑙+1
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Computing 
Partial 
Derivatives

= ෍

𝑐 = 1

𝑑 𝑙+1

𝛿𝑐
𝑙+1

𝑤𝑐,𝑏
𝑙+1

1 − 𝑜𝑏
𝑙

2

𝛿𝑏
𝑙

=
𝜕ℓ 𝑛

𝜕𝑜𝑏
𝑙

𝜕𝑜𝑏
𝑙

𝜕𝑠𝑏
𝑙

𝜹 𝑙 ≔ ∇𝒔 𝑙 ℓ 𝑛 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿
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Computing 
Partial 
Derivatives

where ⊙ is the element-wise product operation

Sanity check: 𝑊 𝑙+1 ∈ ℝ𝑑 𝑙+1  × 𝑑 𝑙 +1  and                    

                    𝜹 𝑙+1 ∈ ℝ𝑑 𝑙+1 × 1 so               

     𝑊 𝑙+1 𝑇
𝜹 𝑙+1  ∈ ℝ 𝑑 𝑙 +1 × 1, the same size as 𝒐 𝑙 !

𝜹 𝑙 = 𝑊 𝑙+1 𝑇
𝜹 𝑙+1 ⊙ 1 − 𝒐 𝑙 ⊙ 𝒐 𝑙

= ෍

𝑐 = 1

𝑑 𝑙+1

𝛿𝑐
𝑙+1

𝑤𝑐,𝑏
𝑙+1

1 − 𝑜𝑏
𝑙

2

𝛿𝑏
𝑙

=
𝜕ℓ 𝑛

𝜕𝑜𝑏
𝑙

𝜕𝑜𝑏
𝑙

𝜕𝑠𝑏
𝑙



Computing 
Gradients
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∇𝑊 𝑙 ℓ 𝑛 = 𝜹 𝑙 𝒐 𝑙−1 𝑇

𝜕ℓ 𝑛

𝜕𝑤𝑏,𝑎
𝑙

= 𝛿𝑏
𝑙 𝜕𝑠𝑏

𝑙

𝜕𝑤𝑏,𝑎
𝑙

= 𝛿𝑏
𝑙

𝑜𝑎
𝑙−1



Computing 
Partial 
Derivatives

Can recursively compute 𝜹 𝑙  using 𝜹 𝑙+1 ; need to 

compute the base case: 𝜹 𝐿
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• Assume the output layer is a single node and the error 

function is the squared error: 𝜹 𝐿 = 𝛿1
𝐿

, 𝒐 𝐿 = 𝑜1
𝐿

 

and ℓ 𝑛 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

= 𝑜1
𝐿

− 𝑦 𝑖
2

𝛿1
𝐿

=
𝜕𝑒 𝑜1

𝐿
, 𝑦 𝑛

𝜕𝑠1
𝐿

=
𝜕

𝜕𝑠1
𝐿

𝑜1
𝐿

− 𝑦 𝑛
2

𝛿1
𝐿

= 2 𝑜1
𝐿

− 𝑦 𝑛
𝜕𝑜1

𝐿

𝜕𝑠1
𝐿

= 2 𝑜1
𝐿

− 𝑦 𝑛 1 − 𝑜1
𝐿

2

when 𝑓 ⋅ = tanh ⋅



Back-
propagation
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 Input: 𝑊 1 , … , 𝑊 𝐿  and 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁

 Initialize: ℓ𝒟 = 0 and 𝐺 𝑙 = 0 ⊙ 𝑊 𝑙  ∀ 𝑙 = 1, … , 𝐿

 For 𝑛 = 1, … , 𝑁

 Run forward propagation with 𝒙 𝑛  to get 𝒐 1 , … , 𝒐 𝐿

 (Optional) Increment ℓ𝒟: ℓ𝒟 = ℓ𝒟 + 𝑜 𝐿 − 𝑦 𝑛 2

 Initialize: 𝜹 𝐿 = 2 𝑜1
𝐿

− 𝑦 𝑛 1 − 𝑜1
𝐿

2

 For 𝑙 = 𝐿 − 1, … , 1

 Compute 𝜹 𝑙 = 𝑊 𝑙+1 𝑇
𝜹 𝑙+1 ⊙ 1 − 𝒐 𝑙 ⊙ 𝒐 𝑙

 Increment 𝐺 𝑙 : 𝐺 𝑙 = 𝐺 𝑙 + 𝜹 𝑙 𝒐 𝑙−1 𝑇

 Output: 𝐺 1 , … , 𝐺 𝐿 , the gradients of ℓ𝒟 w.r.t 𝑊 1 , … , 𝑊 𝐿



Recall: 
Gradient 
Descent

 Iterative method for minimizing functions

 Requires the gradient to exist everywhere
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Non-convexity

 Gradient descent is not guaranteed to find a global 

minimum on non-convex surfaces
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Stochastic
Gradient 
Descent for 
Neural 
Networks

30Henry Chai - 5/22/25

 Input: 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
, 𝜂𝑆𝐺𝐷

0

1. Initialize all weights 𝑊 0
1

, … , 𝑊 0
𝐿

 to small, random         

numbers and set 𝑡 = 0𝐺−1
𝑙

= 0 ∗ 𝑊 𝑙  ∀ 𝑙 = 1, … , 𝐿

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample a data point from 𝒟, 𝒙 𝑛 , 𝑦 𝑛

b. Compute the pointwise gradient using backpropagation

𝐺 𝑙 = ∇𝑊 𝑙 ℓ 𝑛 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

∀ 𝑙 ෍

𝑏=1

𝐵

c. Update 𝑊 𝑙 : 𝑊𝑡+1
𝑙

← 𝑊𝑡
𝑙

− 𝜂𝑆𝐺𝐷
0

𝐺 𝑙  ∀ 𝑙

d. Increment 𝑡: 𝑡 ← 𝑡 + 1 

 Output: 𝑊𝑡
1

, … , 𝑊𝑡
𝐿



Mini-batch
Stochastic
Gradient 
Descent for 
Neural 
Networks
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 Input: 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
, 𝜂𝑀𝐵

0
, 𝐵

1. Initialize all weights 𝑊 0
1

, … , 𝑊 0
𝐿

 to small, random         

numbers and set 𝑡 = 0 𝐺−1
𝑙

= 0 ∗ 𝑊 𝑙  ∀ 𝑙 = 1, … , 𝐿

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 𝑏 , 𝑦 𝑏
𝑏=1

𝐵

b. Compute the gradient w.r.t. the sampled batch,

𝐺 𝑙 =
1

𝐵
෍

𝑏=1

𝐵

∇𝑊 𝑙 ℓ 𝑏 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

∀ 𝑙

c. Update 𝑊 𝑙 : 𝑊𝑡+1
𝑙

← 𝑊𝑡
𝑙

− 𝜂𝑀𝐵
0

𝐺 𝑙  ∀ 𝑙

d. Increment 𝑡: 𝑡 ← 𝑡 + 1 

 Output: 𝑊𝑡
1

, … , 𝑊𝑡
𝐿



Random 
Restarts

 Run mini-batch gradient descent (with momentum & 

adaptive gradients) multiple times, each time starting 

with a different, random initialization for the weights.

 Compute the training error of each run at termination 

and return the set of weights that achieves the lowest 

training error.
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Key Takeaways

 Backpropagation for efficient gradient computation

 Advanced optimization and regularization techniques for 

neural networks

 SGD and Mini-batch gradient descent

 Random restarts

 Jitter & dropout act like regularization for neural 

networks by preventing them fitting the training 

dataset perfectly
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