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Front Matter

Henry Chai - 5/22/25

* Announcements:

- HW3 released on 5/20, due 5/23 (tomorrow) at
11:59 PM

* Quiz 2 on 5/23 (tomorrow) at 11:00 AM in BH A36 (here)

- Study guide solutions partially released 5/21
(yesterday)

* The remaining solutions to be released after
recitation on 5/22 (today!)

* Midterm on 5/30 at 9:30 AM in BH A36

* Lectures 1 — 14 are in-scope; next week’s lectures

will not be tested on the midterm



* Time and place:

* Friday, 5/30 from 9:30 AM to 12:00 PM in BH A36 (here)
Midterm - Closed book/notes
I-OngthS - 1-page cheatsheet allowed, both back and front; can be

typeset or handwritten

* No electronic devices allowed, including calculators
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* Lectures: 1 — 14 (through this week’s lectures)

* Foundations: probability, linear algebra, calculus

* Important concepts: inductive bias, overfitting,

. model selection/hyperparameter optimization,
Midterm YPEIP P

regularization

Coverage

* Models: decision trees, kNN, Perceptron, linear

regression, logistic regression, neural networks

* Methods: (stochastic) gradient descent, closed-form

optimization, backpropagation, MLE/MAP
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* Review midterm practice problems, to be posted on 5/26

to the course website (under Schedule)

- Attend the exam review recitation on 5/29

Midterm

* Review the homeworks and study guides

Preparation

* Consider whether you understand the “Key Takeaways”

for each lecture / section

* Write your cheat sheet
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https://www.cs.cmu.edu/~hchai2/courses/10601/

Recall:
Loss

Functions
for Neural
Networks

Henry Chai - 5/22/25

* Multi-class classification - cross-entropy loss

* Express the label as a one-hot or one-of-C vector e.g.,
y=/0 0 1 0 -- O]
- Assume the neural network output is also a vector of length C

P(y[k] = 1|x,W(1), ...,W(L)) = hy@ o (x("))[k]

* Then the cross-entropy Ioss is

ey (W, o w) = ZIOgP(y(")|x(") w®, . wh)

"Noc
Z Z klloghy,a ya(x™)[k]



Multi-

dimensional
Outputs
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Recall:
Gradient

Descent
for Learning
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‘ Input: D = {(x("),y("))},lz:l,n(o)

(1) (L)

* Initialize all weights W(o) o Wi to small, random

numbers and sett = 0 (??7?)

* While TERMINATION CRITERION is not satisfied (??7?)

*Forl=1,...,L
- Compute ¢ = V,ofp (W(%), (%)) (?7?7)
l l
- Update W: W((til) = ((t)) —1oGW
*Incrementt:t=t+1

(1) (L)

* Output: W(t) y o Wi



scalar vector matrix

Types of
Derivatives

@ oy 0Y

Matrix calar _J
Calculus 0z oz oz

oy Oy @ 0Y

;\ vector 8_X 8_X 8—X
§ matrix 83} 8y 8Y

X oX oX

Henry Chai - 5/22/25 Table courtesy of Matt Gormley




Matrix
Calculus:

Denominator
Layout
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* Derivatives of a
scalar always
have the same
shape as the
entity that the
derivative is

being taken

with respect to.

Types o
J p .f scalar
Derivatives
0
scalar 99 _ [g_y]
ox z
- oy
oz
By
)
vector 2
Oy
| Oz p _
- _Oy 9y dy
6X11 3X12 3X1Q
. oy Oy oy
matrix 0X31  0Xaz 0X20
dy oy oy
| 0 X p1 00X pa 0Xpg 4

Table courtesy of Matt Gormley
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Matrix
Calculus:

Denominator
Layout
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Types of

Derivatives scalar vector

scalar % — [@] 8_y — [Byl Oy2 ByN]
i a_y ] - Oy O0yY2 OynN
0x1 Oz Ox1 0x1
Oy Oy1  Oyz Dyn
8y 8172 8y 8172 8:,:2 8.’,[72

vector 8_)( = . 8_)( = .
Oy Oy1 Oyo YN
dzrp | Oxp oz p Oz p

Table courtesy of Matt Gormley
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The Chain Rule

of Calculus
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“Ify = f(z) and z = g(x) then

computation graph is

X Z y /)f_ 6)\/ Nz
{ ] — a
Ox Yz 9X

“Ify = f(z4,2,) and z; = g,(x), 2z, = g,(x) then

Z1
e s I LR DT

@X @Zl Dx 822

A

“Ify = f(2) ar21d z = g(x) then

X & y - > oy o)z
= — / :Z 8)8 é
Ox A= 4 Sx

Zp 12



Computing

Gradients
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1
VW(l) 31) (W((t))' .

- 94,

ow (l)

b,a

t'p

(WS-

ow
0

ow

(D
Wi0

t'p

(D)
W20

20,

, W,

(L)
(t)

(L))

()

9,

ow (D

1,1

9,

w
Wa1

20,

P

awd(l)

)

awd(l) .

)

wL
(t)

9y

(D)
6W1 a-1)
04y

()
0W2 d(l 5

aéD

9o (

0
Wy -

w
W

)

n=1

ow ()

aW(l)

d, q-1)

w (L
(t)

)

13



Computing

Gradients:
Intuition
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- A weight affects the prediction of the network (and

therefore the error) through downstream signals/outputs

* Use the chain rule!

* Any weight going into the same node will affect the

prediction through the same downstream path

- Compute derivatives starting from the last layer and

move “backwards”

- Store computed derivatives and reuse for efficiency

(dynamic programming)
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Computing

Partial
Derivatives
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Computing V,,y€p (W(%) W((t))) reduces to computing

LVAQ)
(l)

6W

()

Insight: w,, only affects VASORVIP Slgl)

Layer [ — 1 Layer [
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Computing

Partial
Derivatives
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Computing V,,y€p (W(%), e W((tL))) reduces to computing

94
Wy
Insight: ng’lc)l only affects M via s
o0t 9™
LD A
Wy, 9sf )
4/ ¢
QC!L) W ")
()
\ G
* S'EJ\ST{I\II

(D
b

Iy 5.5( 2)

0
gwbﬁ,c‘ (-5



Insight: slgl)only affects £(M via Olgl)

Layer [

Computing

Partial
Derivatives
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Computing

Partial
Derivatives
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(D

Insight: s, “ only affects £(M) yia Olgl)
80?3 22" L 9 OCQ)
o QSS’.) 25 gﬂ) Dg;gm
o é \ )
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Computing

Partial
Derivatives
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Insight: olgl) affects £(™ via S£l+1),

Layer [

Node b

(I+1)
s S S (1HD)

Sd(l+1)

Layer [ + 1
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Computing

Partial
Derivatives
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insight: o affects £ via s4*D, ..., s&D

y 2 (+1)
0g™ A0 5 ol
| — Z (=)
aoﬁﬂ C=\ 'BSC_ aog?.\
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Computing

Partial
Derivatives
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m_

Based solely on their shape alone, which of the following could be an expression for 60 =

V.o 6(0(” ; y(”) )? Here (© is the element-wise product operation.

WD §+1) ®(1 - 0(3))

0%
WY 5041 6 (1 — 0O

0%
5 1)TW(£ ) o (1-— 0(3])

0%
S+ 1) ® (1 - O(E)T)

0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



Computing

Partial
Derivatives

Henry Chai - 5/22/25

0
s _ 02" <6ob )
b — 4 (0
aob Osb
(l+1)

z 5(z+1) (z+1) (1_(0151))2)

c=1

S, IR

5(5'2 WD g+ ©) (1 =yIONO 0(1))

where (O is the element-wise product operation

e+ €A \3
Saady cheok WD 40 < (&
y e R

o) &Y ¢ R
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Computing

Gradients
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L™ aSzgl) W (.1-1)
aw(” = Op aw(” = Op ( )



Computing

Partial
Derivatives
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Can recursively compute 6V using 6¢+1); need to
compute the base case: 5L

* Assume the output layer is a single node and the error

function is the squared error: 8 = 5%, o) = o{¥)

and £ (W(%), . ((tg)) = (oiL) _ yh))z
de O(L)’y(n) 5
e (alsl(” - 5@ (=)
-9 (O(L) _ (n))ao_g) —9 (O(L) _ (n)) (1 B (O(L))Z)
1 y 651(]‘) 1 y N

A1
when £() = tanh() ———
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Back-

propagation
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“Input: WD . W) and D = {(x(n)'y(n))}:ﬂ

* Initialize: £ = 0 and ¢ =0 O TAORVE S 1,..,L
*Forn=1,..,N

- Run forward propagation with x(™ to get 0%, ..., 0¥
* (Optional) Increment £o: £ = € + (O(L) — y(”))z
- Initialize: 61 = 2 (oiL) — y(")) (1 — (oiL))z)
“Forl=L-1,..,1
- Compute 80 = WD §+D (1-0Y © oY)
Increment G©: ¢® = O 4 5D -D"

- Output: GV, ..., G, the gradients of £ w.rt W, . W)
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* Iterative method for minimizing functions

* Requires the gradient to exist everywhere

Recall:
Gradient

Descent

Henry Chai - 5/22/25 28



Non-convexity

Henry Chai - 5/22/25

* Gradient descent is not guaranteed to find a global

minimum on non-convex surfaces
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* Input: D = {(x(n)’ y(n))}ngnggl)

1. Initialize all weights W((Ol)), . ((OL)) to small, random

numbersandsett = 0

2. While TERMINATION CRITERION is not satisfied

Stochastic
Gradient a. Randomly sample a data point from D, (x("),y("))
Descent for b. Compute the pointwise gradient using backpropagation
Neural

1) — (n) (1) (L)
Networks 6O =Vt ™ (WE, . W ) V1

c. Update WD: WY « WP — 5% ¢y

d. Incrementt:t<t+1

Henry Chai - 5/22/25 * Qutput: ]/Vt(l), e Vl/t(L) 30



* Input: D = {(x("),y("))}gzl,ng%,B

W((Ol)), ) ((OL)) to small, random

1. Initialize all weights
numbersandsett =0

Mini-batch 2. While TERMINATION CRITERION is not satisfied

Stochastic ]
Gradient a. Randomly sample B data points from D, {(x(b),y(b))}b=1

Descent for b. Compute the gradient w.r.t. the sampled batch,

Neural 1<

0 — — (b) (1) (L)

Networks G = BZ Vit (W<t> e (t)) vl
b=1

c. Update W®: Wt(f)l — Wt(l) — 77%:1)1)36(0 V1

d. Incrementt:t<t+1

Henry Chai - 5/22/25 ° OUtpUt: M/t(l); . M/t(L)



* Run mini-batch gradient descent (¥@h methentmm&
Haptivegradieats) multiple times, each time starting
Random with a different, random initialization for the weights.

Restarts

* Compute the training error of each run at termination
and return the set of weights that achieves the lowest

training error.

Henry Chai - 5/22/25 32



Random

Restarts

Henry Chai - 5/22/25
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Random

Restarts

Henry Chai - 5/22/25
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* Backpropagation for efficient gradient computation

- Advanced optimization and regularization techniques for

neural networks

* SGD and Mini-batch gradient descent

\GVAELGCEWENR

- Random restarts

- Jitter & dropout act like regularization for neural
networks by preventing them fitting the training

dataset perfectly

Henry Chai - 5/22/25 40
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