10-301/601: Introduction to Machine Learning Lecture 14 — Backpropagation

Henry Chai

5/22/25

Front Matter

- Announcements:
 - HW3 released on 5/20, due 5/23 (tomorrow) at 11:59 PM
 - Quiz 2 on 5/23 (tomorrow) at 11:00 AM in BH A36 (here)
 - Study guide solutions partially released 5/21 (yesterday)
 - The remaining solutions to be released after recitation on 5/22 (today!)
 - Midterm on 5/30 at 9:30 AM in BH A36
 - Lectures 1 14 are in-scope; next week's lectures
 will not be tested on the midterm

Midterm Logistics

- Time and place:
 - Friday, 5/30 from 9:30 AM to 12:00 PM in BH A36 (here)
- Closed book/notes
 - 1-page cheatsheet allowed, both back and front; can be typeset or handwritten
 - No electronic devices allowed, including calculators

Midterm Coverage

- Lectures: 1 14 (through this week's lectures)
 - Foundations: probability, linear algebra, calculus
 - Important concepts: inductive bias, overfitting, model selection/hyperparameter optimization, regularization
 - Models: decision trees, kNN, Perceptron, linear regression, logistic regression, neural networks
 - Methods: (stochastic) gradient descent, closed-form optimization, backpropagation, MLE/MAP

Midterm Preparation

- Review midterm practice problems, to be posted on 5/26 to the course website (under <u>Schedule</u>)
- Attend the exam review recitation on 5/29
- Review the homeworks and study guides
- Consider whether you understand the "Key Takeaways"
 for each lecture / section
- Write your cheat sheet

Recall: Loss Functions for Neural Networks

- Multi-class classification cross-entropy loss
 - Express the label as a one-hot or one-of-C vector e.g.,

$$y = \begin{bmatrix} 0 & 0 & 1 & 0 & \cdots & 0 \end{bmatrix}$$

 $oldsymbol{\cdot}$ Assume the neural network output is also a vector of length $oldsymbol{\mathcal{C}}$

$$P(y[k] = 1 | \mathbf{x}, W^{(1)}, ..., W^{(L)}) = h_{W^{(1)}, ..., W^{(L)}}(\mathbf{x}^{(n)})[k]$$

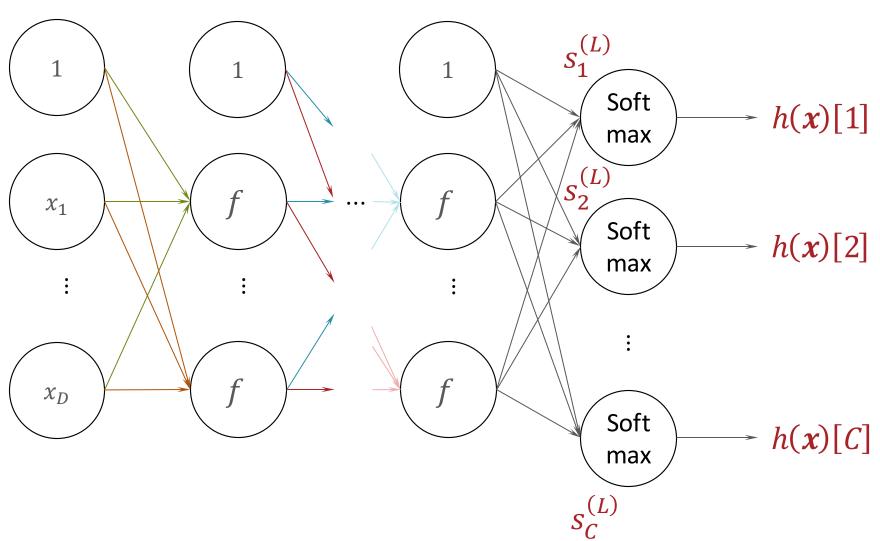
Then the cross-entropy loss is

$$\ell_{\mathcal{D}}\left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)}\right) = -\sum_{n=1}^{N} \log P(y^{(n)}|\mathbf{x}^{(n)}, W^{(1)}, \dots, W^{(L)})$$

$$= -\sum_{n=1}^{N} \sum_{k=1}^{C} y[k] \log h_{W^{(1)}, \dots, W^{(L)}}(\mathbf{x}^{(n)})[k]$$

$$h(x)[c] = \frac{\exp s_c^{(L)}}{\sum_{k=1}^{C} \exp s_k^{(L)}}$$

Multidimensional Outputs



Recall: Gradient Descent for Learning

- Input: $\mathcal{D} = \{(\mathbf{x}^{(n)}, \mathbf{y}^{(n)})\}_{n=1}^{N}, \eta^{(0)}$
- Initialize all weights $W_{(0)}^{(1)}, \dots, W_{(0)}^{(L)}$ to small, random numbers and set t=0 (???)
- While TERMINATION CRITERION is not satisfied (???)
 - For l = 1, ..., L
 - Compute $G^{(l)} = \nabla_{W^{(l)}} \ell_{\mathcal{D}} \left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)} \right)$ (???)
 - Update $W^{(l)}$: $W^{(l)}_{(t+1)} = W^{(l)}_{(t)} \eta_0 G^{(l)}$
 - Increment t: t = t + 1
- Output: $W_{(t)}^{(1)}, ..., W_{(t)}^{(L)}$

Numerator

Matrix Calculus

	Types of Derivatives	scalar	vector	matrix
	scalar	$\frac{\partial y}{\partial x}$	$\frac{\partial \mathbf{y}}{\partial x}$	$\frac{\partial \mathbf{Y}}{\partial x}$
5	vector	$\frac{\partial y}{\partial \mathbf{x}}$	$rac{\partial \mathbf{y}}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{Y}}{\partial \mathbf{x}}$
	matrix	$rac{\partial y}{\partial \mathbf{X}}$	$rac{\partial \mathbf{y}}{\partial \mathbf{X}}$	$\frac{\partial \mathbf{Y}}{\partial \mathbf{X}}$

Denominator

Matrix Calculus: Denominator Layout

 Derivatives of a scalar always have the same shape as the entity that the derivative is being taken with respect to.

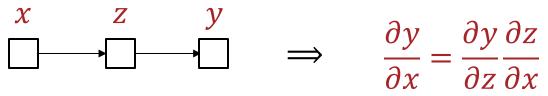
Types of Derivatives	scalar		
scalar	$\frac{\partial y}{\partial x} = \left[\frac{\partial y}{\partial x}\right]$		
vector	$\frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x_P} \end{bmatrix}$		
matrix	$\frac{\partial y}{\partial \mathbf{X}} = \begin{bmatrix} \frac{\partial y}{\partial X_{11}} & \frac{\partial y}{\partial X_{12}} & \cdots & \frac{\partial y}{\partial X_{1Q}} \\ \frac{\partial y}{\partial X_{21}} & \frac{\partial y}{\partial X_{22}} & \cdots & \frac{\partial y}{\partial X_{2Q}} \\ \vdots & & \vdots \\ \frac{\partial y}{\partial X_{P1}} & \frac{\partial y}{\partial X_{P2}} & \cdots & \frac{\partial y}{\partial X_{PQ}} \end{bmatrix}$		

	Types of Derivatives	scalar	vector
Matrix Calculus:	scalar	$\frac{\partial y}{\partial x} = \left[\frac{\partial y}{\partial x}\right]$	$\frac{\partial \mathbf{y}}{\partial x} = \begin{bmatrix} \frac{\partial y_1}{\partial x} & \frac{\partial y_2}{\partial x} & \cdots & \frac{\partial y_N}{\partial x} \end{bmatrix}$
Denominator Layout	vector	$\frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x_P} \end{bmatrix}$	$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_2}{\partial x_1} & \cdots & \frac{\partial y_N}{\partial x_1} \\ \frac{\partial y_1}{\partial x_2} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_N}{\partial x_2} \\ \vdots & & & & \\ \frac{\partial y_1}{\partial x_P} & \frac{\partial y_2}{\partial x_P} & \cdots & \frac{\partial y_N}{\partial x_P} \end{bmatrix}$

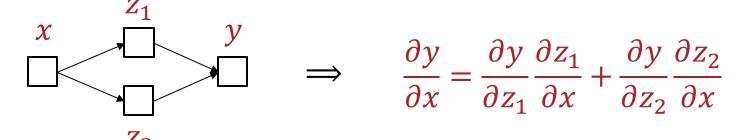
Henry Chai - 5/22/25 Table courtesy of Matt Gormley 11

The Chain Rule of Calculus

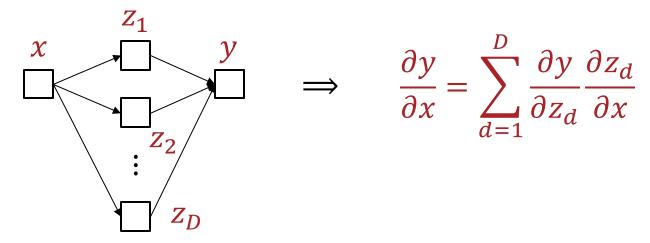
- If y = f(z) and z = g(x) then
- computation graph is



• If $y = f(z_1, z_2)$ and $z_1 = g_1(x), z_2 = g_2(x)$ then



• If $y = f(\mathbf{z})$ and $\mathbf{z} = g(x)$ then



Computing Gradients

$$\begin{split} \ell_{\mathcal{D}}\left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)}\right) &= \sum_{n=1}^{N} \ell^{(n)}\left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)}\right) \\ \nabla_{W^{(l)}}\ell_{\mathcal{D}}\left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)}\right) &= \begin{bmatrix} \frac{\partial \ell_{\mathcal{D}}}{\partial w_{1,0}^{(l)}} & \frac{\partial \ell_{\mathcal{D}}}{\partial w_{1,1}^{(l)}} & \dots & \frac{\partial \ell_{\mathcal{D}}}{\partial w_{1,d^{(l-1)}}} \\ \frac{\partial \ell_{\mathcal{D}}}{\partial w_{2,0}} & \frac{\partial \ell_{\mathcal{D}}}{\partial w_{2,1}^{(l)}} & \dots & \frac{\partial \ell_{\mathcal{D}}}{\partial w_{2,d^{(l-1)}}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \ell_{\mathcal{D}}}{\partial w_{d^{(l)},0}} & \frac{\partial \ell_{\mathcal{D}}}{\partial w_{d^{(l)},1}^{(l)}} & \dots & \frac{\partial \ell_{\mathcal{D}}}{\partial w_{d^{(l)},d^{(l-1)}}} \end{bmatrix} \\ \ell_{\mathcal{D}}^{\mathcal{D}} &= \sum_{i=1}^{N} \frac{\partial \ell^{(n)}\left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)}\right)}{\partial w_{1,1}^{(l)}} & \dots & \frac{\partial \ell_{\mathcal{D}}}{\partial w_{2,d^{(l-1)}}^{(l)}} \end{bmatrix} \end{split}$$

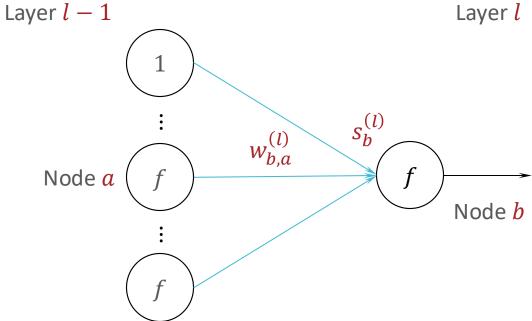
Computing Gradients: Intuition

- A weight affects the prediction of the network (and therefore the error) through downstream signals/outputs
 - Use the chain rule!
- Any weight going into the same node will affect the prediction through the same downstream path
 - Compute derivatives starting from the last layer and move "backwards"
 - Store computed derivatives and reuse for efficiency (automatic differentiation)

Computing $\nabla_{W^{(l)}} \ell_{\mathcal{D}}\left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)}\right)$ reduces to computing

$$\frac{\partial \ell^{(n)}}{\partial w_{b,a}^{(l)}}$$

Insight: $w_{b,a}^{(l)}$ only affects $\ell^{(n)}$ via $s_b^{(l)}$



Computing
$$\nabla_{W^{(l)}} \ell_{\mathcal{D}} \left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)} \right)$$
 reduces to computing

$$\frac{\partial \ell^{(n)}}{\partial w_{b,a}^{(l)}}$$

Insight: $w_{b,a}^{(l)}$ only affects $\ell^{(n)}$ via $s_b^{(l)}$

Chain rule:
$$\frac{\partial \ell^{(n)}}{\partial w_{b,a}^{(l)}} = \frac{\partial \ell^{(n)}}{\partial s_b^{(l)}} \left(\frac{\partial s_b^{(l)}}{\partial w_{b,a}^{(l)}} \right)$$
$$s_b^{(l)} = \sum_{a=0}^{d^{(l-1)}} w_{b,a}^{(l)} o_a^{(l-1)} \rightarrow \frac{\partial s_b^{(l)}}{\partial w_{b,a}^{(l)}} = o_a^{(l-1)}$$

Compute outputs $o^{(l)} \forall l \in \{0, ..., L\}$ by forward propagation

Computing
$$\nabla_{W^{(l)}} \ell_{\mathcal{D}}\left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)}\right)$$
 reduces to computing

$$\frac{\partial \ell^{(n)}}{\partial w_{b,a}^{(l)}}$$

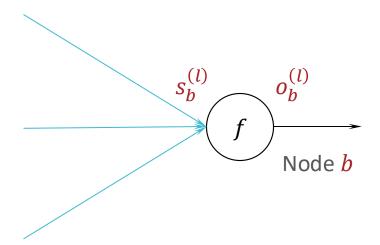
Insight: $w_{b,a}^{(l)}$ only affects $\ell^{(n)}$ via $s_b^{(l)}$

Chain rule:
$$\frac{\partial \ell^{(n)}}{\partial w_{b,a}^{(l)}} = \frac{\partial \ell^{(n)}}{\partial s_b^{(l)}} \left(\frac{\partial s_b^{(l)}}{\partial w_{b,a}^{(l)}} \right)$$
$$\delta_b^{(l)} \coloneqq \frac{\partial \ell^{(n)}}{\partial s_b^{(l)}}$$

Insight: $s_b^{(l)}$ only affects $\ell^{(n)}$ via $o_b^{(l)}$

Layer *l*

Computing Partial Derivatives



Insight: $s_h^{(l)}$ only affects $\ell^{(n)}$ via $o_h^{(l)}$

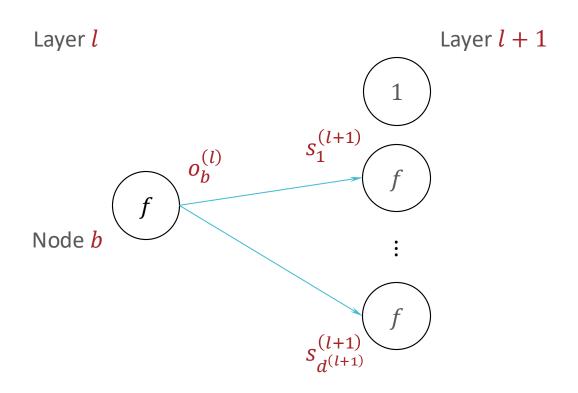
Chain rule:
$$\delta_b^{(l)} = \frac{\partial \ell^{(n)}}{\partial o_b^{(l)}} \left(\frac{\partial o_b^{(l)}}{\partial s_b^{(l)}} \right)$$

$$o_b^{(l)} = f\left(s_b^{(l)} \right) \rightarrow \frac{\partial o_b^{(l)}}{\partial s_b^{(l)}} = \frac{\partial f\left(s_b^{(l)} \right)}{\partial s_b^{(l)}}$$

$$= 1 - \left(\tanh\left(s_b^{(l)} \right) \right)^2$$
when $f(\cdot) = \tanh(\cdot)$

when $f(\cdot) = \tanh(\cdot)$

Insight: $o_b^{(l)}$ affects $\ell^{(n)}$ via $s_1^{(l+1)}, \dots, s_{d^{(l+1)}}^{(l+1)}$



Insight:
$$o_b^{(l)}$$
 affects $\ell^{(n)}$ via $s_1^{(l+1)}, \dots, s_{d^{(l+1)}}^{(l+1)}$

Chain rule:
$$\frac{\partial \ell^{(n)}}{\partial o_b^{(l)}} = \sum_{c=1}^{d^{(l+1)}} \frac{\partial \ell^{(n)}}{\partial s_c^{(l+1)}} \left(\frac{\partial s_c^{(l+1)}}{\partial o_b^{(l)}} \right)$$

$$s_c^{(l+1)} = \sum_{b=0}^{d^{(l)}} w_{c,b}^{(l+1)} o_b^{(l)} \to \frac{\partial s_c^{(l+1)}}{\partial o_b^{(l)}} = w_{c,b}^{(l+1)}$$

$$\frac{\partial \ell^{(n)}}{\partial o_b^{(l)}} = \sum_{c=1}^{d^{(l+1)}} \delta_c^{(l+1)} \left(w_{c,b}^{(l+1)} \right)$$

$$\begin{split} \delta_b^{(l)} &= \frac{\partial \ell^{(n)}}{\partial o_b^{(l)}} \left(\frac{\partial o_b^{(l)}}{\partial s_b^{(l)}} \right) \\ &= \left(\sum_{c=1}^{d^{(l+1)}} \delta_c^{(l+1)} \left(w_{c,b}^{(l+1)} \right) \right) \left(1 - \left(o_b^{(l)} \right)^2 \right) \\ \boldsymbol{\delta}^{(l)} &\coloneqq \nabla_{\boldsymbol{s}^{(l)}} \ell^{(n)} \left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)} \right) \end{split}$$

$$\delta_b^{(l)} = \frac{\partial \ell^{(n)}}{\partial o_b^{(l)}} \left(\frac{\partial o_b^{(l)}}{\partial s_b^{(l)}} \right)$$

$$= \left(\sum_{c=1}^{d^{(l+1)}} \delta_c^{(l+1)} \left(w_{c,b}^{(l+1)} \right) \right) \left(1 - \left(o_b^{(l)} \right)^2 \right)$$

$$\boldsymbol{\delta}^{(l)} = W^{(l+1)T} \boldsymbol{\delta}^{(l+1)} \odot \left(1 - \boldsymbol{o}^{(l)} \odot \boldsymbol{o}^{(l)} \right)$$

where o is the element-wise product operation

Sanity check:
$$W^{(l+1)} \in \mathbb{R}^{d^{(l+1)} \times (d^{(l)}+1)}$$
 and
$$\boldsymbol{\delta}^{(l+1)} \in \mathbb{R}^{d^{(l+1)} \times 1} \text{ so}$$

 $W^{(l+1)^T} \boldsymbol{\delta}^{(l+1)} \in \mathbb{R}^{(d^{(l)}+1)\times 1}$, the same size as $\boldsymbol{o}^{(l)}$!

Computing Gradients

$$\frac{\partial \ell^{(n)}}{\partial w_{b,a}^{(l)}} = \delta_b^{(l)} \left(\frac{\partial s_b^{(l)}}{\partial w_{b,a}^{(l)}} \right) = \delta_b^{(l)} \left(o_a^{(l-1)} \right)$$

$$\nabla_{W^{(l)}}\ell^{(n)} = \boldsymbol{\delta}^{(l)}\boldsymbol{o}^{(l-1)^T}$$

Sanity check:
$$o^{(l-1)} \in \mathbb{R}^{(d^{(l-1)}+1) \times 1}$$
 and $\delta^{(l)} \in \mathbb{R}^{d^{(l)} \times 1}$ so

$$\boldsymbol{\delta}^{(l)} \boldsymbol{o}^{(l-1)^T} \in \mathbb{R}^{d^{(l)} \times (d^{(l-1)}+1)}$$
, the same size as $W^{(l)}!$

Can recursively compute $\boldsymbol{\delta}^{(l)}$ using $\boldsymbol{\delta}^{(l+1)}$; need to compute the base case: $\boldsymbol{\delta}^{(L)}$

Assume the output layer is a single node and the error

function is the squared error: $\boldsymbol{\delta}^{(L)} = \delta_1^{(L)}$, $\boldsymbol{o}^{(L)} = o_1^{(L)}$

and
$$\ell^{(n)}\left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)}\right) = \left(o_1^{(L)} - y^{(i)}\right)^2$$

$$\delta_1^{(L)} = \frac{\partial e\left(o_1^{(L)}, y^{(n)}\right)}{\partial s_1^{(L)}} = \frac{\partial}{\partial s_1^{(L)}} \left(o_1^{(L)} - y^{(n)}\right)^2$$

$$= 2\left(o_1^{(L)} - y^{(n)}\right) \frac{\partial o_1^{(L)}}{\partial s_1^{(L)}} = 2\left(o_1^{(L)} - y^{(n)}\right) \left(1 - \left(o_1^{(L)}\right)^2\right)$$

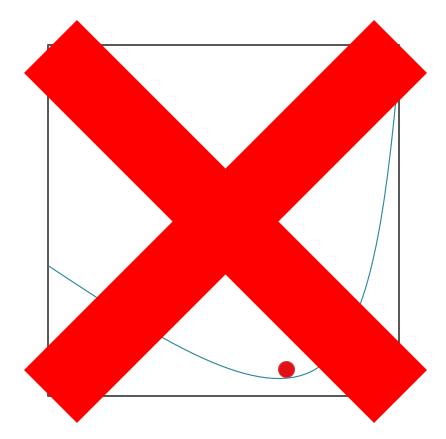
when $f(\cdot) = \tanh(\cdot)$

Backpropagation

- Input: $W^{(1)}, ..., W^{(L)}$ and $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^N$
- Initialize: $\ell_{\mathcal{D}}=0$ and $G^{(l)}=0\odot W^{(l)}$ \forall $l=1,\ldots,L$
- For n = 1, ..., N
 - Run forward propagation with $\boldsymbol{x}^{(n)}$ to get $\boldsymbol{o}^{(1)}$, ..., $\boldsymbol{o}^{(L)}$
 - (Optional) Increment $\ell_{\mathcal{D}}$: $\ell_{\mathcal{D}} = \ell_{\mathcal{D}} + \left(o^{(L)} y^{(n)}\right)^2$
 - Initialize: $\delta^{(L)} = 2(o_1^{(L)} y^{(n)})(1 (o_1^{(L)})^2)$
 - For l = L 1, ..., 1
 - Compute $\boldsymbol{\delta}^{(l)} = W^{(l+1)^T} \boldsymbol{\delta}^{(l+1)} \odot (1 \boldsymbol{o}^{(l)} \odot \boldsymbol{o}^{(l)})$
 - Increment $G^{(l)}: G^{(l)} = G^{(l)} + \delta^{(l)} o^{(l-1)^T}$
- Output: $G^{(1)}$, ..., $G^{(L)}$, the gradients of $\ell_{\mathcal{D}}$ w.r.t $W^{(1)}$, ..., $W^{(L)}$

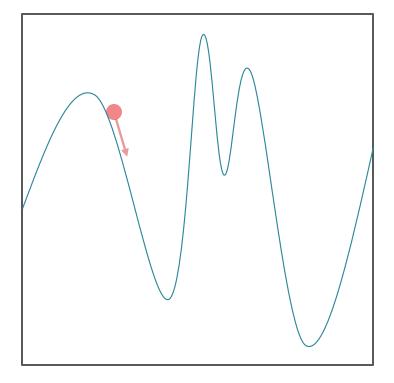
Recall: Gradient Descent

- Iterative method for minimizing functions
- Requires the gradient to exist everywhere



Non-convexity

 Gradient descent is not guaranteed to find a global minimum on non-convex surfaces



Stochastic Gradient Descent for Neural Networks

• Input:
$$\mathcal{D} = \{ (\mathbf{x}^{(n)}, y^{(n)}) \}_{n=1}^{N}, \eta_{SGD}^{(0)}$$

- 1. Initialize all weights $W_{(0)}^{(1)}, \dots, W_{(0)}^{(L)}$ to small, random numbers and set t=0
- 2. While TERMINATION CRITERION is not satisfied
 - a. Randomly sample a data point from \mathcal{D} , $(x^{(n)}, y^{(n)})$
 - b. Compute the pointwise gradient using backpropagation

$$G^{(l)} = \nabla_{W^{(l)}} \ell^{(n)} \left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)} \right) \forall \ l$$

- c. Update $W^{(l)}: W_{t+1}^{(l)} \leftarrow W_t^{(l)} \eta_{SGD}^{(0)} G^{(l)} \ \forall \ l$
- d. Increment $t: t \leftarrow t + 1$
- Output: $W_t^{(1)}, ..., W_t^{(L)}$

Mini-batch Stochastic Gradient Descent for Neural Networks

- Input: $\mathcal{D} = \{ (\mathbf{x}^{(n)}, y^{(n)}) \}_{n=1}^{N}, \eta_{MB}^{(0)}, B$
- 1. Initialize all weights $W_{(0)}^{(1)}, \dots, W_{(0)}^{(L)}$ to small, random numbers and set t=0
- While TERMINATION CRITERION is not satisfied
 - a. Randomly sample B data points from \mathcal{D} , $\{(x^{(b)}, y^{(b)})\}_{b=1}^{B}$
 - b. Compute the gradient w.r.t. the sampled batch,

$$G^{(l)} = \frac{1}{B} \sum_{b=1}^{B} \nabla_{W^{(l)}} \ell^{(b)} \left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)} \right) \forall l$$

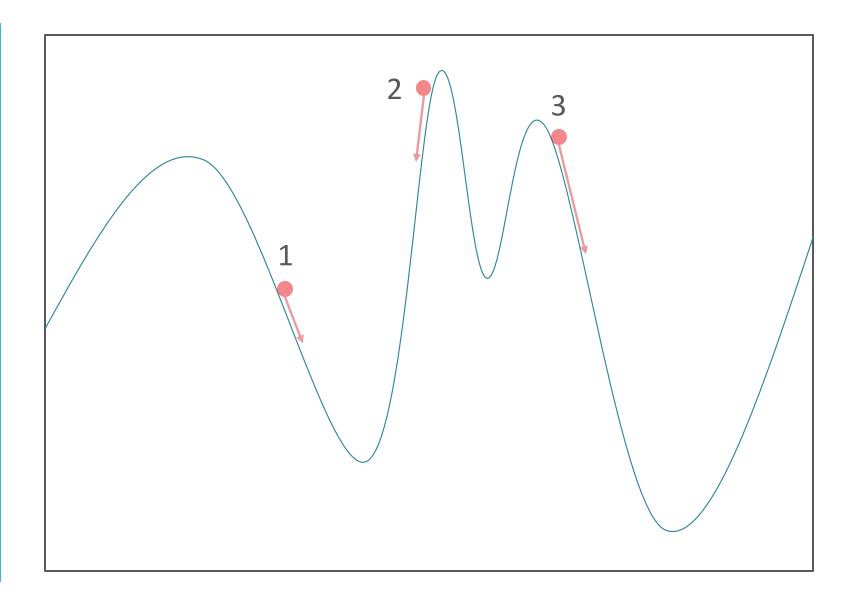
- c. Update $W^{(l)}: W_{t+1}^{(l)} \leftarrow W_t^{(l)} \eta_{MB}^{(0)} G^{(l)} \ \forall \ l$
- d. Increment $t: t \leftarrow t + 1$

• Output: $W_t^{(1)}, ..., W_t^{(L)}$

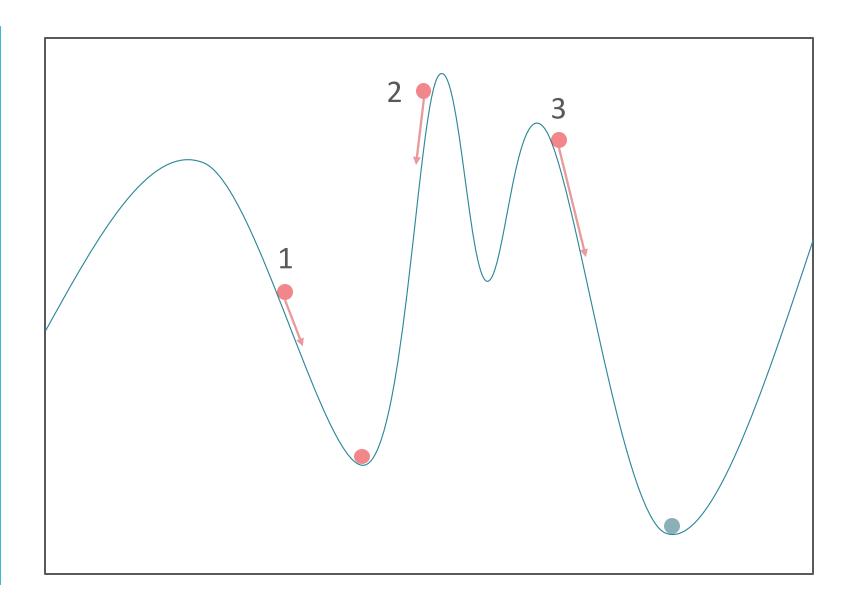
Random Restarts

- Run mini-batch gradient descent (with momentum & adaptive gradients) multiple times, each time starting with a *different*, *random* initialization for the weights.
- Compute the training error of each run at termination and return the set of weights that achieves the lowest training error.

Random Restarts



Random Restarts



Key Takeaways

- Backpropagation for efficient gradient computation
- Advanced optimization and regularization techniques for neural networks
 - SGD and Mini-batch gradient descent
 - Random restarts
 - Jitter & dropout act like regularization for neural networks by preventing them fitting the training dataset perfectly