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Recall:

Regression
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* Learning to diagnose heart disease
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* Learning to diagnose heart disease

as a (supervised) regression task

features targets

Decision Tree

Resting Blood | Cholesterol | Heart

Regression Pressure Disease?
" ~ Yes Low Normal $0
% No Medium Normal $20
- '< No Low Abnormal $30
% Yes Medium Normal $100
© . Yes High Abnormal $5000
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2-NN

Regression?
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* Suppose we have real-valued targets y € R and
one-dimensional inputs x € R
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* Suppose we have real-valued targets y € R and

D-dimensional inputs x = [1, x4, ..., xp]’ € RP*1

~
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General
Recipe

for
Machine
Learning
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* Define a model and model parameters

- Write down an objective function

- Optimize the objective w.r.t. the model parameters
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* Define a model and model parameters

- Assume @
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Minimizing the
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Closed Form

Solution
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1.

2.

0=X"X)"xTy

Is XT X invertible?

If so, how computationally expensive is inverting X7 X?
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1s X' X always invertible?

Yes

No

Unsure

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



m

If X' Xis invertible, how computationally expensive is it to invert?

O(ND)

O(N?3)

O(D?)

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



Closed Form

Solution
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0=X"X)"xTy

Is XT X invertible?

* When N >» D + 1, XX is (almost always) full rank and
therefore, invertible!

* If XT X is not invertible (occurs when one of the
features is a linear combination of the others), what

does that imply about our problem?

If so, how computationally expensive is inverting X7 X?

« XTX € RP+1XP+1 5 inverting XT X takes O(D3) time...

* Computing XT X takes O(ND?) time
* What alternative optimization method(s) can we use to

minimize the mean squared error?
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Linear

Regression:
Uniqueness
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* Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?

=V
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Linear

Regression:
Uniqueness
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* Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?

=V
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* Consider a 1D linear Va
regression model trained
to minimize the mean

Linear
squared error: how many L

Regression:
Uniqueness

optimal solutions (i.e., ,—

sets of parameters 0) are

there for the given

dataset?

3 ((3-9)" (3-57) =2
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Linear

Regression:
Uniqueness
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* Consider a 2D linear yA

regression model trained
to minimize the mean .
squared error: how many ",'
: : : ',0’
optimal solutions (i.e., .-
L -
sets of parameters 0) are >
X1

there for the given

dataset? X,
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Linear

Regression:
Uniqueness
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* Consider a 2D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset? X,
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Linear

Regression:
Uniqueness
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* Consider a 2D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset? X,

52



Closed Form

Solution
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0=X"X)"xTy

Is XT X invertible?

* When N >» D + 1, XX is (almost always) full rank and
therefore, invertible!

* If XT X is not invertible (occurs when one of the
features is a linear combination of the others) then

there are infinitely many solutions.

If so, how computationally expensive is inverting X7 X?

« XTX € RP+1XP+1 5 inverting XT X takes O(D3) time...

* Computing XT X takes O(ND?) time
* Can use gradient descent to (potentially) speed things

up when N and D are large!
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Gradient

Descent:
Intuition
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* An iterative method for minimizing functions

* Requires the gradient to exist everywhere

* Good news: the squared error is also convex!
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Gradient

Descent for
Linear
Regression
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PV 0.00g %\
0=X"X)"1xTy ’// \\‘
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Closed Form o O

Optimization
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* Decision tree and kNN regression

* Closed form solution for linear regression
- Setting partial derivative/gradients to 0 and solving

for critical points

* Potential issues with the closed form solution:

invertibility and computational costs
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