

10-301/601: Introduction to Machine Learning

Lecture 11 – Linear Regression

Henry Chai

5/20/25

Recall: Regression

- Learning to diagnose heart disease as a **(supervised)** **regression** task

The diagram illustrates a decision tree node. At the top, a blue bracket labeled "features" covers the first three columns, and a red bracket labeled "targets" covers the last column. A vertical yellow bracket on the left is labeled "data points".

features			targets
x_1 Family History	x_2 Resting Blood Pressure	x_3 Cholesterol	y Heart Disease?
Yes	Low	Normal	\$0
No	Medium	Normal	\$20
No	Low	Abnormal	\$30
Yes	Medium	Normal	\$100
Yes	High	Abnormal	\$5000

Decision Tree Regression

- Learning to diagnose heart disease

as a **(supervised)**

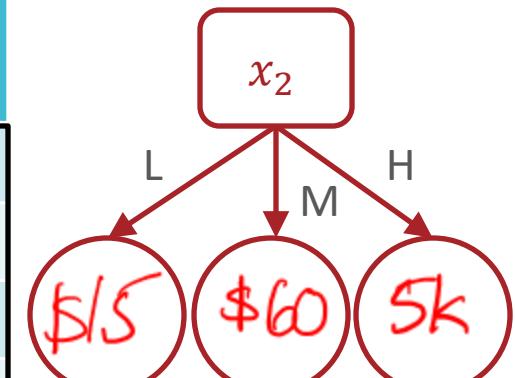
regression task

features

targets

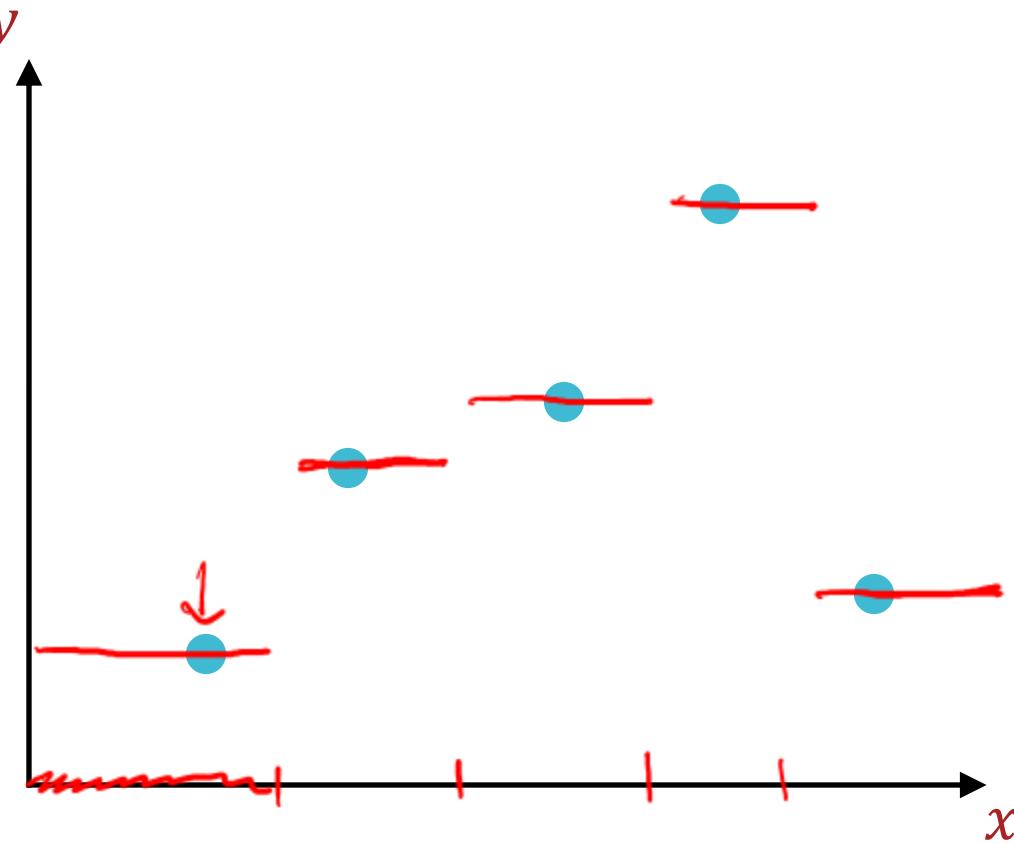
data points

x_1 Family History	x_2 Resting Blood Pressure	x_3 Cholesterol	y Heart Disease?
Yes	Low	Normal	\$0
No	Medium	Normal	\$20
No	Low	Abnormal	\$30
Yes	Medium	Normal	\$100
Yes	High	Abnormal	\$5000



2-NN Regression?

- Suppose we have real-valued targets $y \in \mathbb{R}$ and one-dimensional inputs $x \in \mathbb{R}$



Linear Regression

- Suppose we have real-valued targets $y \in \mathbb{R}$ and D -dimensional inputs $\mathbf{x} = [1, x_1, \dots, x_D]^T \in \mathbb{R}^{D+1}$

- Assume

$$y = \theta^T \mathbf{x} = [w_0 \ \mathbf{w}]^T \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix}$$

- Notation: given training data $\mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^N$

Design matrix: $\mathbf{X} = \begin{bmatrix} 1 & \vec{x}^{(1)T} \\ 1 & \vec{x}^{(2)T} \\ \vdots & \vdots \\ 1 & \vec{x}^{(N)T} \end{bmatrix} = \begin{bmatrix} 1 & x_1^{(1)} & x_2^{(1)} & \dots & x_D^{(1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(N)} & \dots & x_D^{(N)} \end{bmatrix}$

Target vector: $\vec{y} = [y^{(1)}, y^{(2)}, \dots, y^{(N)}]^T$

General Recipe for Machine Learning

- Define a model and model parameters
- Write down an objective function
- Optimize the objective w.r.t. the model parameters

Recipe for Linear Regression

- Define a model and model parameters

- Assume $y = \vec{\theta}^T \vec{x}$

- Parameters: $\vec{\theta} = [w_0, w_1, w_2, \dots, w_D]^T$

- Write down an objective function

- Minimize the mean squared error

$$l_D(\vec{\theta}) = \frac{1}{N} \sum_{n=1}^N (\vec{\theta}^T \vec{x}^{(n)} - y^{(n)})^2$$

- Optimize the objective w.r.t. the model parameters

1. Solve in closed form using the critical point method OR

2. Gradient descent

$$f(x) = cx \Rightarrow \frac{df}{dx} = c$$

$$f(x) = ax^2 \Rightarrow \frac{df}{dx} = 2ax$$

Minimizing the Squared Error

$$\ell_D(\theta) = \frac{1}{N} \sum_{n=1}^N (\theta^T x^{(n)} - y^{(n)})^2 = \frac{1}{N} \sum_{n=1}^N (\vec{x}^{(n)T} \vec{\theta} - \vec{y}^{(n)})^2$$

$$= \frac{1}{N} (\vec{x} \vec{\theta} - \vec{y})^T (\vec{x} \vec{\theta} - \vec{y})$$

"residuals"

$$= \frac{1}{N} (\vec{\theta}^T \vec{x}^T \vec{x} \vec{\theta} - 2 \vec{\theta}^T \vec{x}^T \vec{y} + \vec{y}^T \vec{y})$$

$$\nabla_{\vec{\theta}} \ell_D(\vec{\theta}) = \frac{1}{N} (2 \vec{x}^T \vec{x} \vec{\theta} - 2 \vec{x}^T \vec{y} + \vec{0}) = \begin{bmatrix} \frac{\partial \ell_D}{\partial \theta_0} \\ \frac{\partial \ell_D}{\partial \theta_1} \\ \vdots \\ \frac{\partial \ell_D}{\partial \theta_n} \end{bmatrix}$$

$$\Rightarrow \frac{1}{N} (2 \vec{x}^T \vec{x} \hat{\vec{\theta}} - 2 \vec{x}^T \vec{y}) = 0$$

$$\Rightarrow 2 \vec{x}^T \vec{x} \hat{\vec{\theta}} = 2 \vec{x}^T \vec{y}$$

$$\Rightarrow \hat{\vec{\theta}} = (\vec{x}^T \vec{x})^{-1} \vec{x}^T \vec{y}$$

Closed Form Solution

$$\widehat{\boldsymbol{\theta}} = (X^T X)^{-1} X^T \mathbf{y}$$

1. Is $X^T X$ invertible?
2. If so, how computationally expensive is inverting $X^T X$?

Is $X^T X$ always invertible?

Yes

No

Unsure

If $X^T X$ is invertible, how computationally expensive is it to invert?

$O(N^2)$

$O(D^2)$

$O(ND)$

$O(N^3)$

$O(D^3)$

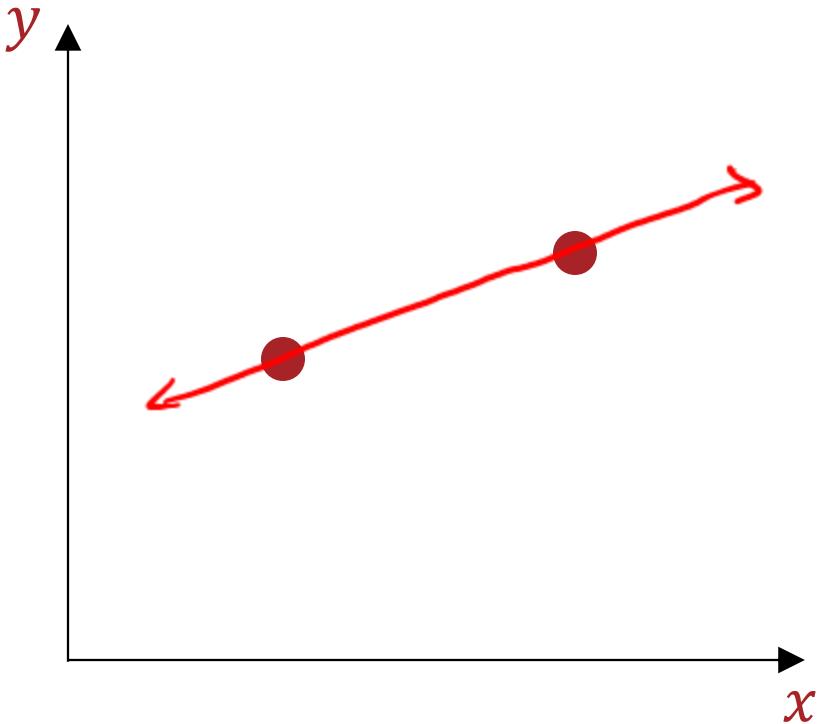
Closed Form Solution

$$\widehat{\boldsymbol{\theta}} = (X^T X)^{-1} X^T \mathbf{y}$$

1. Is $X^T X$ invertible?
 - When $N \gg D + 1$, $X^T X$ is (almost always) full rank and therefore, invertible!
 - If $X^T X$ is not invertible (occurs when one of the features is a linear combination of the others), what does that imply about our problem?
2. If so, how computationally expensive is inverting $X^T X$?
 - $X^T X \in \mathbb{R}^{D+1 \times D+1}$ so inverting $X^T X$ takes $O(D^3)$ time...
 - Computing $X^T X$ takes $O(ND^2)$ time
 - What alternative optimization method(s) can we use to minimize the mean squared error?

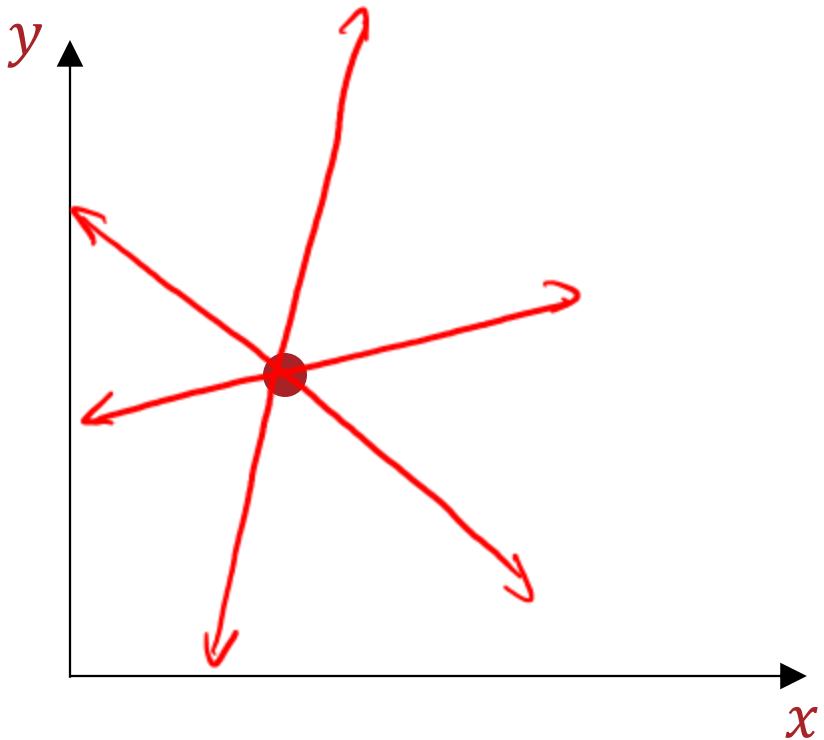
Linear Regression: Uniqueness

- Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?



Linear Regression: Uniqueness

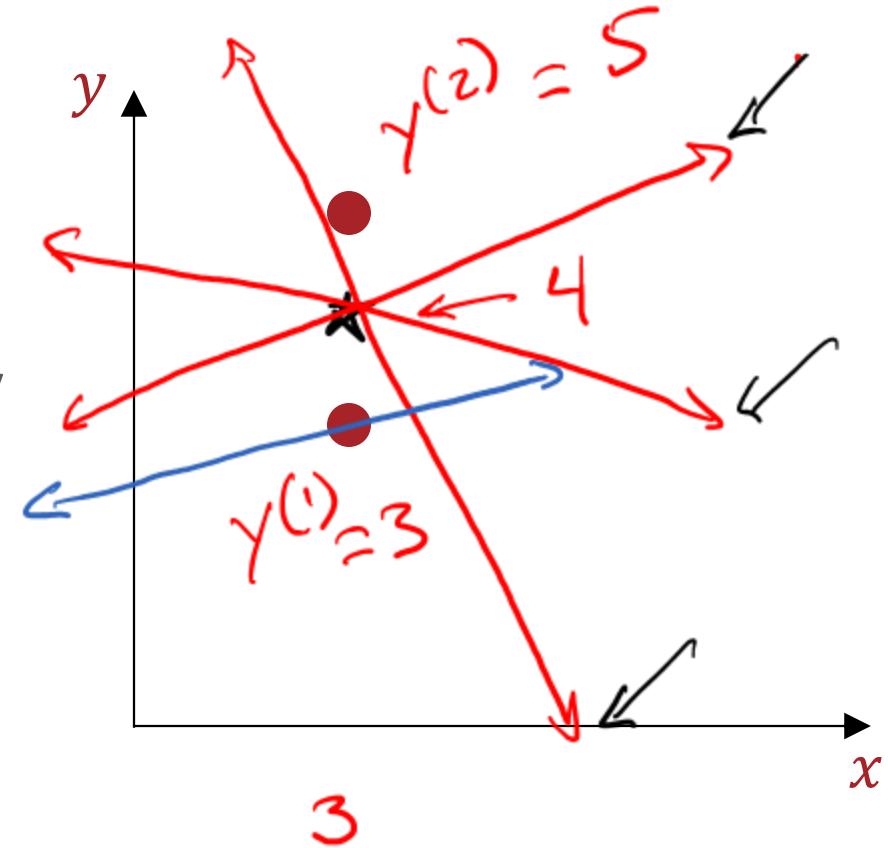
- Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?



Linear Regression: Uniqueness

- Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

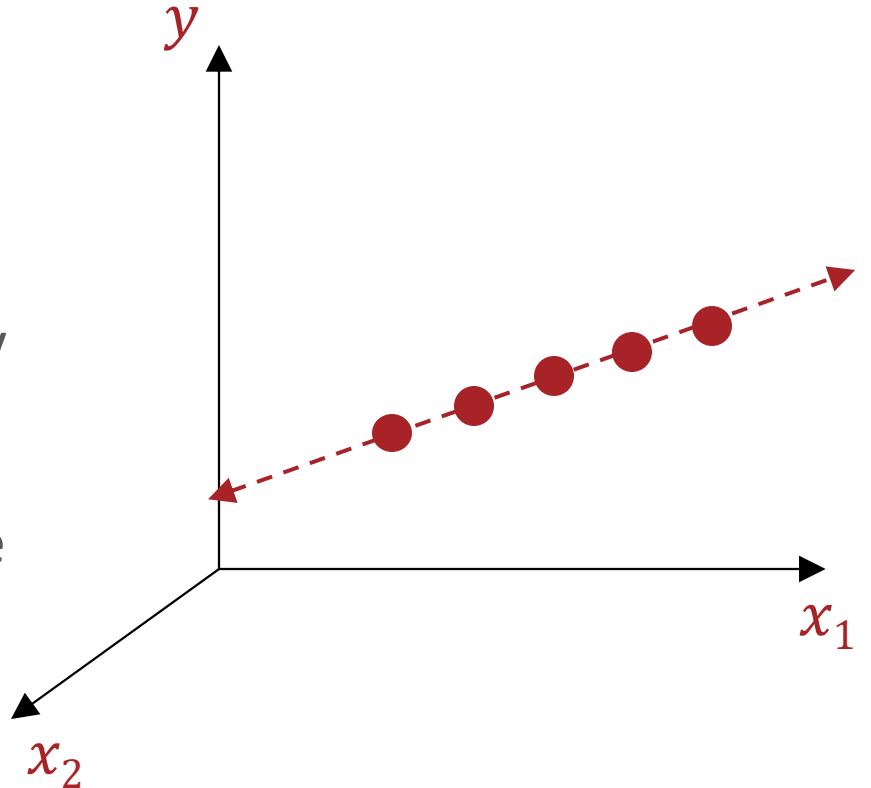
$$\frac{1}{2} ((4-3)^2 + (4-5)^2) = 1$$



$$\frac{1}{2} ((3-3)^2 + (3-5)^2) = 2$$

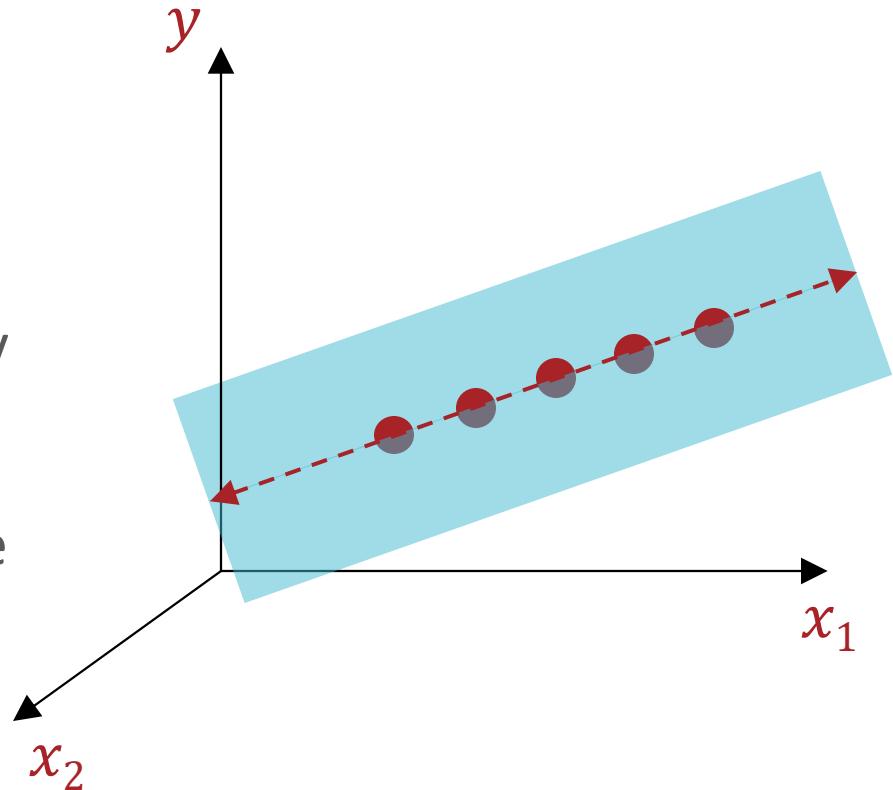
Linear Regression: Uniqueness

- Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?



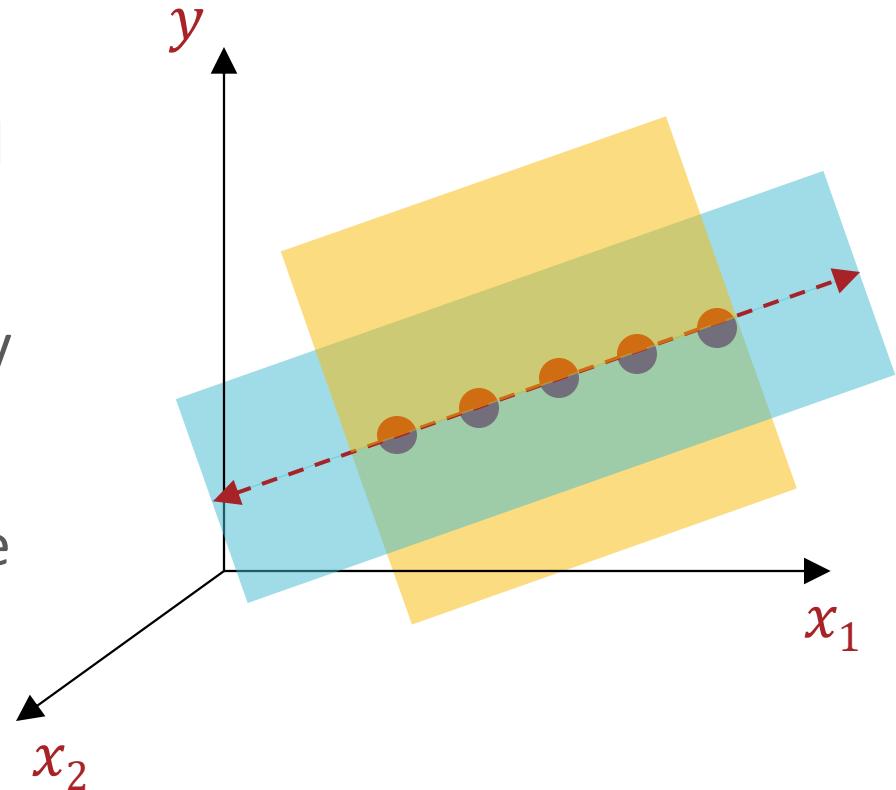
Linear Regression: Uniqueness

- Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?



Linear Regression: Uniqueness

- Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?



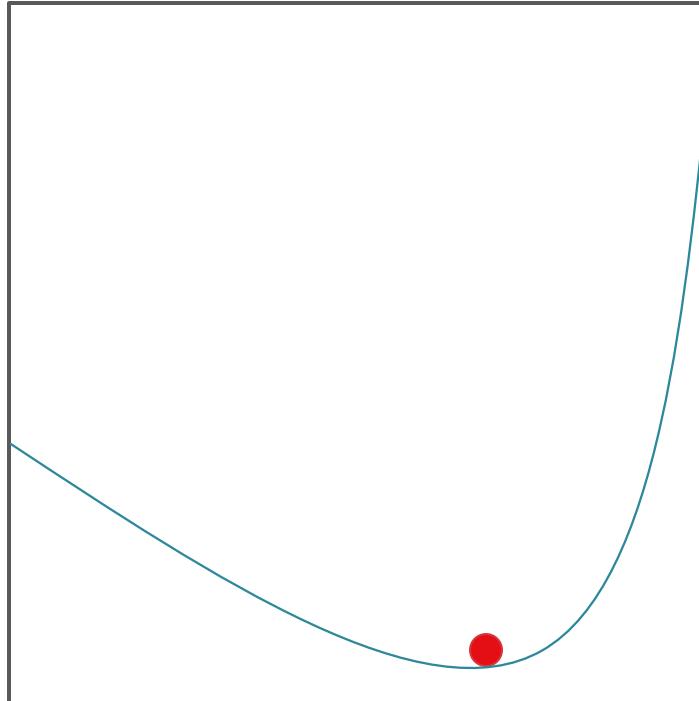
Closed Form Solution

$$\widehat{\boldsymbol{\theta}} = (X^T X)^{-1} X^T \mathbf{y}$$

1. Is $X^T X$ invertible?
 - When $N \gg D + 1$, $X^T X$ is (almost always) full rank and therefore, invertible!
 - If $X^T X$ is not invertible (occurs when one of the features is a linear combination of the others) then there are infinitely many solutions.
2. If so, how computationally expensive is inverting $X^T X$?
 - $X^T X \in \mathbb{R}^{D+1 \times D+1}$ so inverting $X^T X$ takes $O(D^3)$ time...
 - Computing $X^T X$ takes $O(ND^2)$ time
 - Can use gradient descent to (potentially) speed things up when N and D are large!

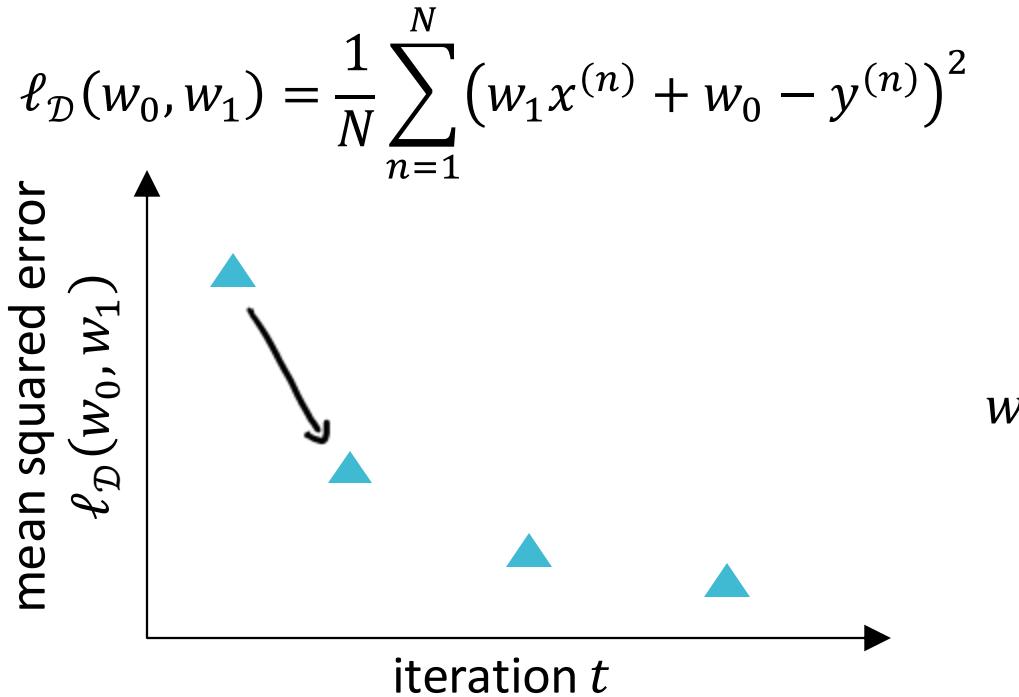
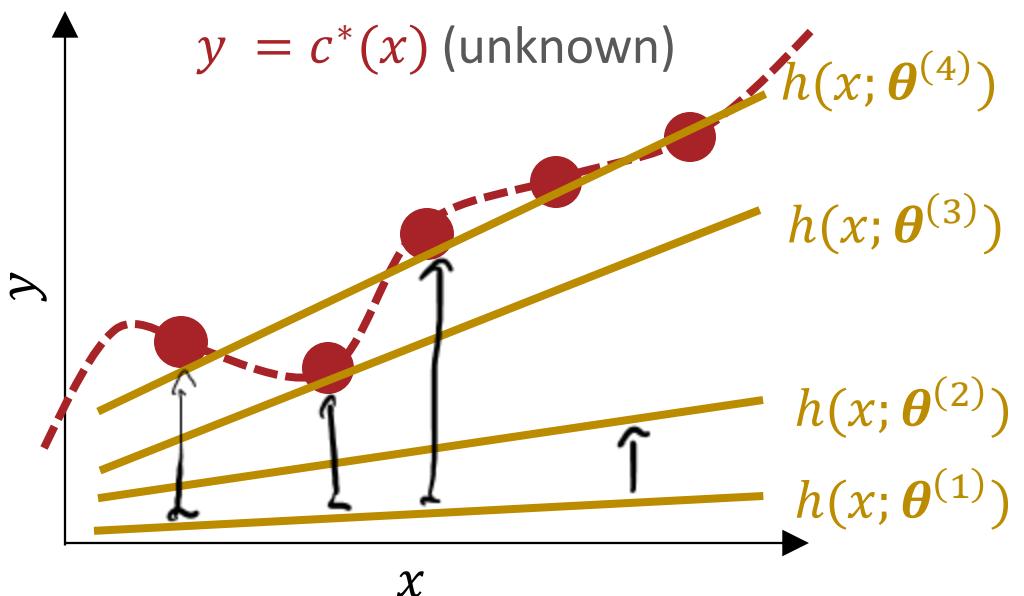
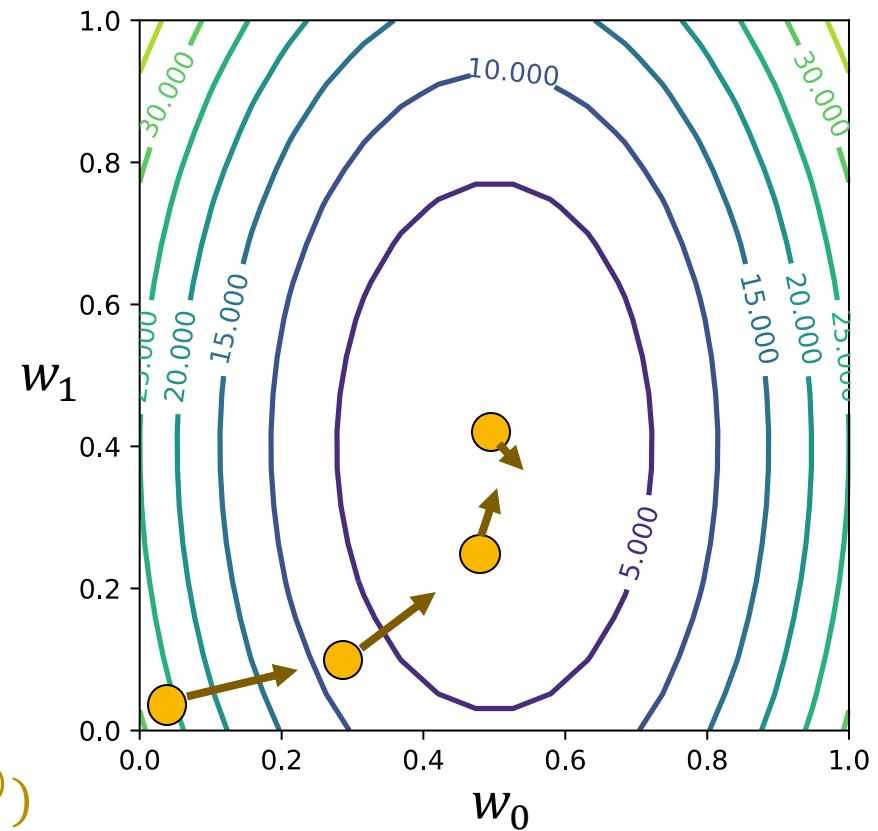
Gradient Descent: Intuition

- An iterative method for minimizing functions
- Requires the gradient to exist everywhere



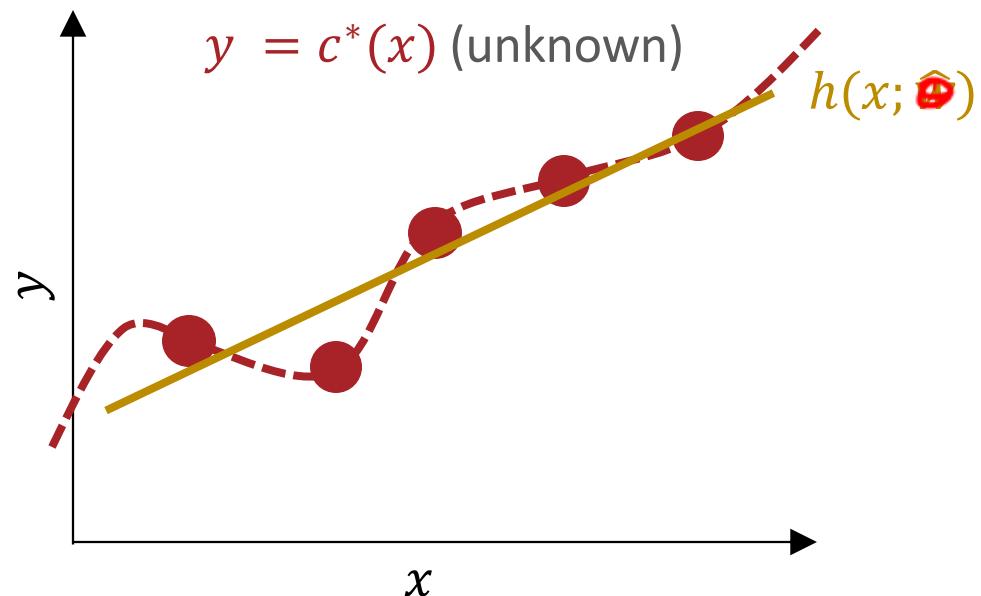
- Good news: the squared error is also convex!

Gradient Descent for Linear Regression

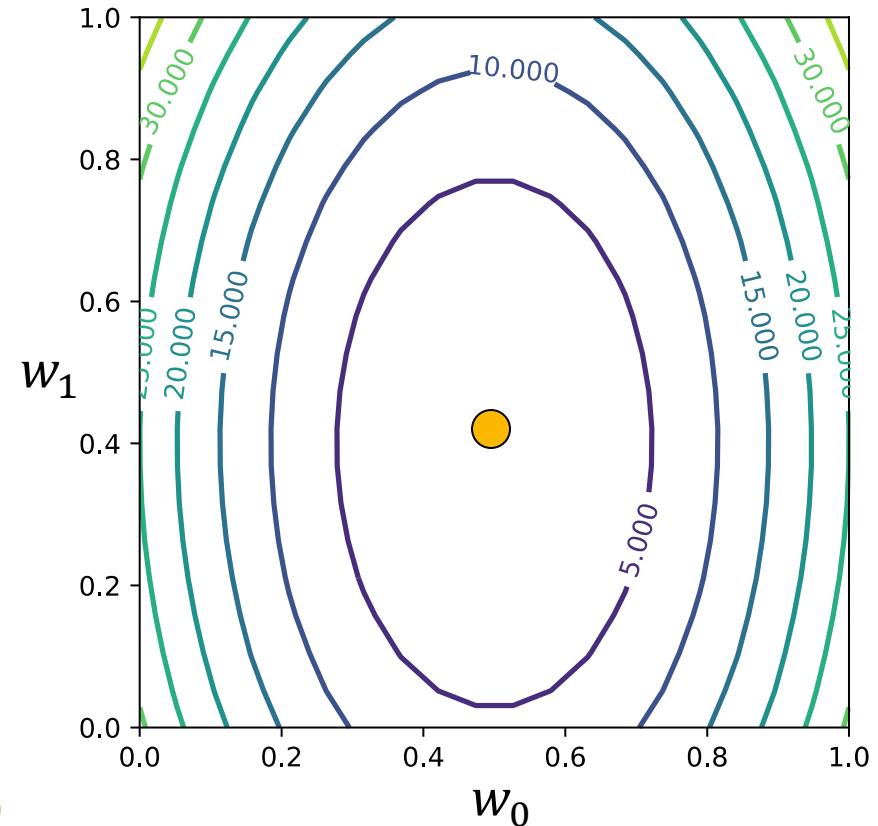


t	w_0	w_1	$\ell_{\mathcal{D}}(w_0, w_1)$
1	0.05	0.05	25.000
2	0.15	0.10	20.000
3	0.25	0.15	15.000
4	0.35	0.20	10.000
5	0.45	0.25	5.000

Closed Form Optimization



$$\hat{\theta} = (X^T X)^{-1} X^T y$$



t	w_0	w_1	$\ell_D(w_0, w_1)$
1	0.59	0.43	0.2

Key Takeaways

- Decision tree and k NN regression
- Closed form solution for linear regression
 - Setting partial derivative/gradients to 0 and solving for critical points
 - Potential issues with the closed form solution: invertibility and computational costs