

10-301/601: Introduction to Machine Learning

Lecture 11 – Linear Regression

Henry Chai

5/20/25

Recall: Regression

- Learning to diagnose heart disease as a **(supervised)** **regression** task

The diagram illustrates a decision tree node. At the top, the word "features" is written in blue, with a blue curly brace above three columns of data. Below these columns, the word "targets" is written in red, with a red curly brace above the final column. The data is presented in a table with five rows. The first four rows represent data points, and the fifth row represents the target. The columns are labeled x_1 (Family History), x_2 (Resting Blood Pressure), x_3 (Cholesterol), and y (Heart Disease?). The "data points" are highlighted with a yellow curly brace on the left side of the first four rows.

features			targets
x_1 Family History	x_2 Resting Blood Pressure	x_3 Cholesterol	y Heart Disease?
Yes	Low	Normal	\$0
No	Medium	Normal	\$20
No	Low	Abnormal	\$30
Yes	Medium	Normal	\$100
Yes	High	Abnormal	\$5000

Decision Tree Regression

- Learning to diagnose heart disease

as a **(supervised)**

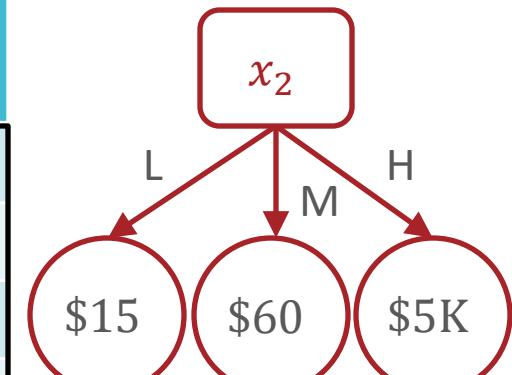
regression task

features

targets

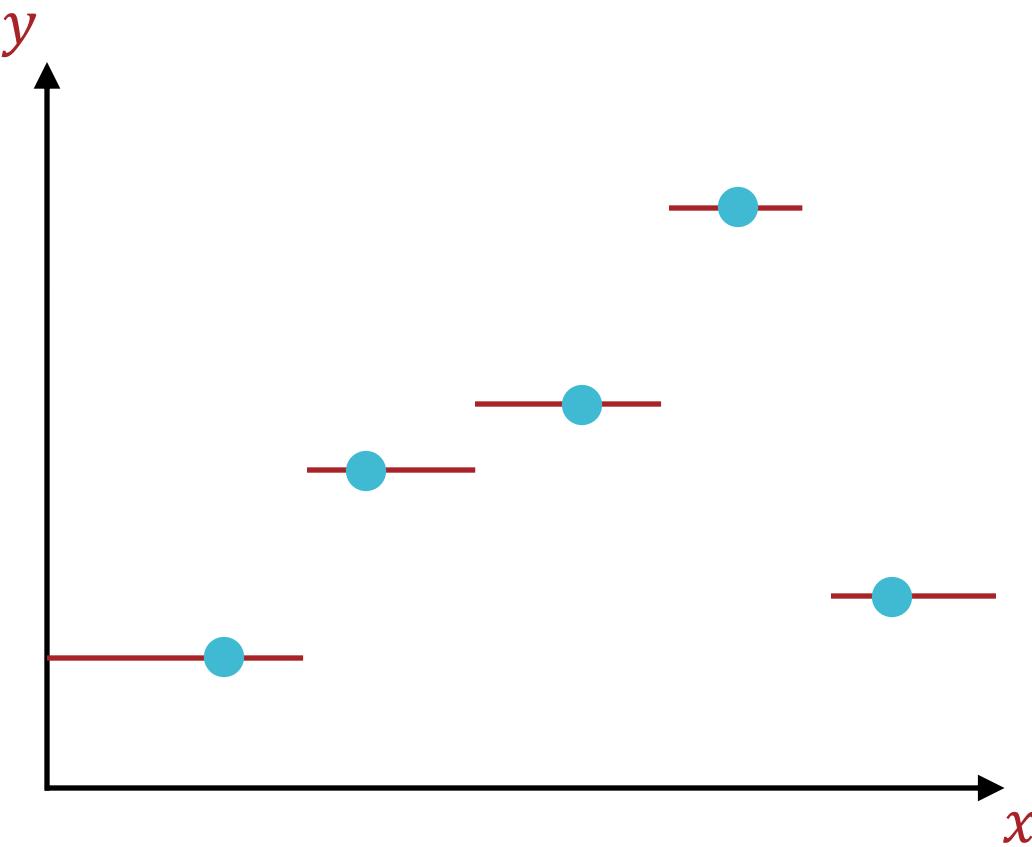
data points

x_1 Family History	x_2 Resting Blood Pressure	x_3 Cholesterol	y Heart Disease?
Yes	Low	Normal	\$0
No	Medium	Normal	\$20
No	Low	Abnormal	\$30
Yes	Medium	Normal	\$100
Yes	High	Abnormal	\$5000



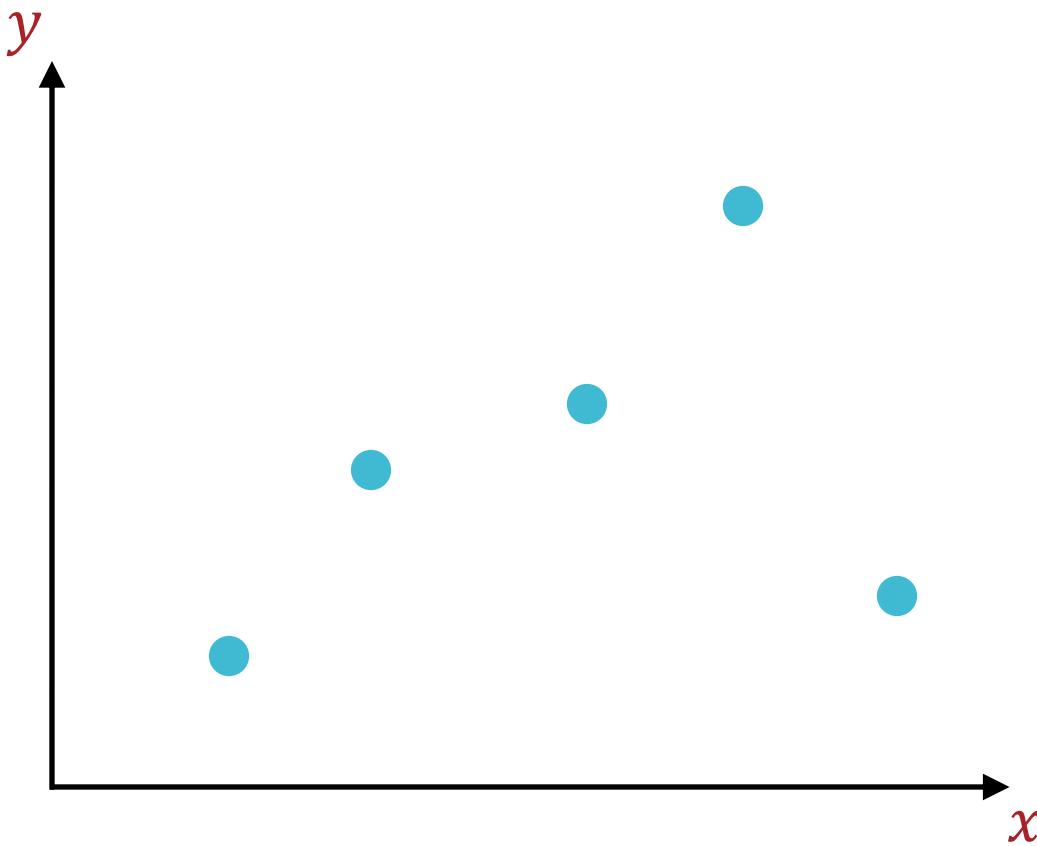
1-NN Regression

- Suppose we have real-valued targets $y \in \mathbb{R}$ and one-dimensional inputs $x \in \mathbb{R}$



2-NN Regression?

- Suppose we have real-valued targets $y \in \mathbb{R}$ and one-dimensional inputs $x \in \mathbb{R}$



Linear Regression

- Suppose we have real-valued targets $y \in \mathbb{R}$ and D -dimensional inputs $\mathbf{x} = [1, x_1, \dots, x_D]^T \in \mathbb{R}^{D+1}$

- Assume

$$y = \boldsymbol{\theta}^T \mathbf{x} = [w_0 \ \mathbf{w}]^T \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix}$$

- Notation: given training data $\mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^N$

$$\cdot \mathbf{X} = \begin{bmatrix} 1 & \mathbf{x}^{(1)T} \\ 1 & \mathbf{x}^{(2)T} \\ \vdots & \vdots \\ 1 & \mathbf{x}^{(N)T} \end{bmatrix} = \begin{bmatrix} 1 & x_1^{(1)} & \dots & x_D^{(1)} \\ 1 & x_1^{(2)} & \dots & x_D^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(N)} & \dots & x_D^{(N)} \end{bmatrix} \in \mathbb{R}^{N \times D+1}$$

is the *design matrix*

- $\mathbf{y} = [y^{(1)}, \dots, y^{(N)}]^T \in \mathbb{R}^N$ is the *target vector*

General Recipe for Machine Learning

- Define a model and model parameters
- Write down an objective function
- Optimize the objective w.r.t. the model parameters

Recipe for Linear Regression

- Define a model and model parameters

- Assume $y = \boldsymbol{\theta}^T \mathbf{x}$
- Parameters: $\boldsymbol{\theta} = [w_0, w_1, \dots, w_D]$

- Write down an objective function

- Minimize the mean squared error

$$\ell_{\mathcal{D}}(\boldsymbol{\theta}) = \frac{1}{N} \sum_{n=1}^N \ell^{(n)}(\boldsymbol{\theta}) = \frac{1}{N} \sum_{n=1}^N (\boldsymbol{\theta}^T \mathbf{x}^{(n)} - y^{(n)})^2$$

- Optimize the objective w.r.t. the model parameters

- Solve in *closed form*: take **gradients**, set to 0 and solve

Minimizing the Squared Error

$$\begin{aligned}\ell_{\mathcal{D}}(\boldsymbol{\theta}) &= \frac{1}{N} \sum_{n=1}^N (\boldsymbol{\theta}^T \mathbf{x}^{(n)} - y^{(n)})^2 = \frac{1}{N} \sum_{n=1}^N (\mathbf{x}^{(n)T} \boldsymbol{\theta} - y^{(n)})^2 \\ &= \frac{1}{N} \|X\boldsymbol{\theta} - \mathbf{y}\|_2^2 \text{ where } \|\mathbf{z}\|_2 = \sqrt{\sum_{d=1}^D z_d^2} = \sqrt{\mathbf{z}^T \mathbf{z}} \\ &= \frac{1}{N} (X\boldsymbol{\theta} - \mathbf{y})^T (X\boldsymbol{\theta} - \mathbf{y}) \\ &= \frac{1}{N} (\boldsymbol{\theta}^T X^T X \boldsymbol{\theta} - 2\boldsymbol{\theta}^T X^T \mathbf{y} + \mathbf{y}^T \mathbf{y}) \\ \nabla_{\boldsymbol{\theta}} \ell_{\mathcal{D}}(\boldsymbol{\theta}) &= \frac{1}{N} (2X^T X \boldsymbol{\theta} - 2X^T \mathbf{y})\end{aligned}$$

Minimizing the Squared Error

$$\begin{aligned}\ell_{\mathcal{D}}(\boldsymbol{\theta}) &= \frac{1}{N} \sum_{n=1}^N (\boldsymbol{\theta}^T \mathbf{x}^{(n)} - y^{(n)})^2 = \frac{1}{N} \sum_{n=1}^N (\mathbf{x}^{(n)T} \boldsymbol{\theta} - y^{(n)})^2 \\ &= \frac{1}{N} \|X\boldsymbol{\theta} - \mathbf{y}\|_2^2 \text{ where } \|\mathbf{z}\|_2 = \sqrt{\sum_{d=1}^D z_d^2} = \sqrt{\mathbf{z}^T \mathbf{z}} \\ &= \frac{1}{N} (X\boldsymbol{\theta} - \mathbf{y})^T (X\boldsymbol{\theta} - \mathbf{y}) \\ &= \frac{1}{N} (\boldsymbol{\theta}^T X^T X \boldsymbol{\theta} - 2\boldsymbol{\theta}^T X^T \mathbf{y} + \mathbf{y}^T \mathbf{y}) \\ \nabla_{\boldsymbol{\theta}} \ell_{\mathcal{D}}(\widehat{\boldsymbol{\theta}}) &= \frac{1}{N} (2X^T X \widehat{\boldsymbol{\theta}} - 2X^T \mathbf{y}) = 0 \\ &\rightarrow X^T X \widehat{\boldsymbol{\theta}} = X^T \mathbf{y} \\ &\rightarrow \widehat{\boldsymbol{\theta}} = (X^T X)^{-1} X^T \mathbf{y}\end{aligned}$$

Closed Form Solution

$$\widehat{\boldsymbol{\theta}} = (X^T X)^{-1} X^T \mathbf{y}$$

1. Is $X^T X$ invertible?
2. If so, how computationally expensive is inverting $X^T X$?

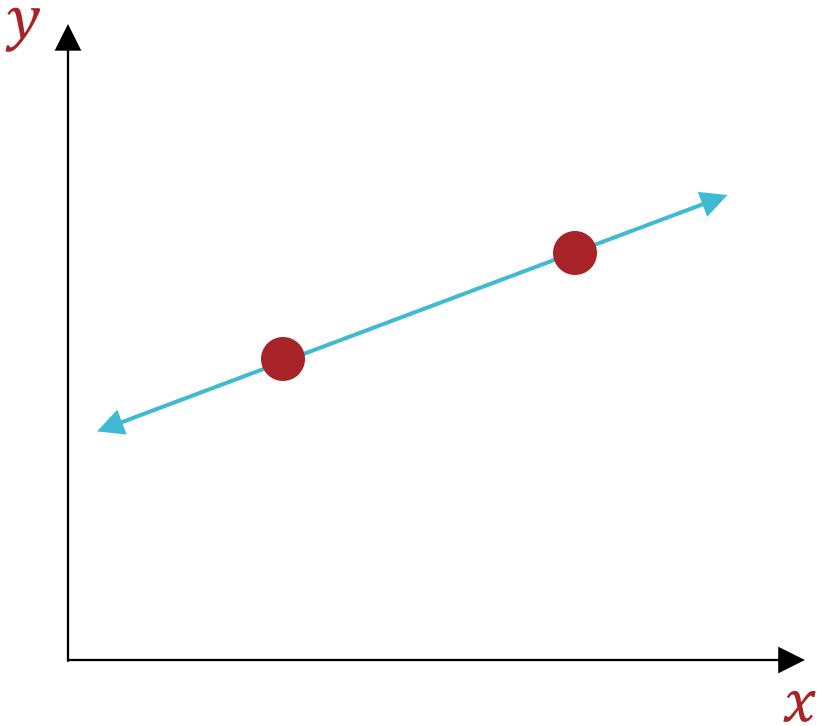
Closed Form Solution

$$\widehat{\boldsymbol{\theta}} = (X^T X)^{-1} X^T \mathbf{y}$$

1. Is $X^T X$ invertible?
 - When $N \gg D + 1$, $X^T X$ is (almost always) full rank and therefore, invertible!
 - If $X^T X$ is not invertible (occurs when one of the features is a linear combination of the others), what does that imply about our problem?
2. If so, how computationally expensive is inverting $X^T X$?
 - $X^T X \in \mathbb{R}^{D+1 \times D+1}$ so inverting $X^T X$ takes $O(D^3)$ time...
 - Computing $X^T X$ takes $O(ND^2)$ time
 - What alternative optimization method(s) can we use to minimize the mean squared error?

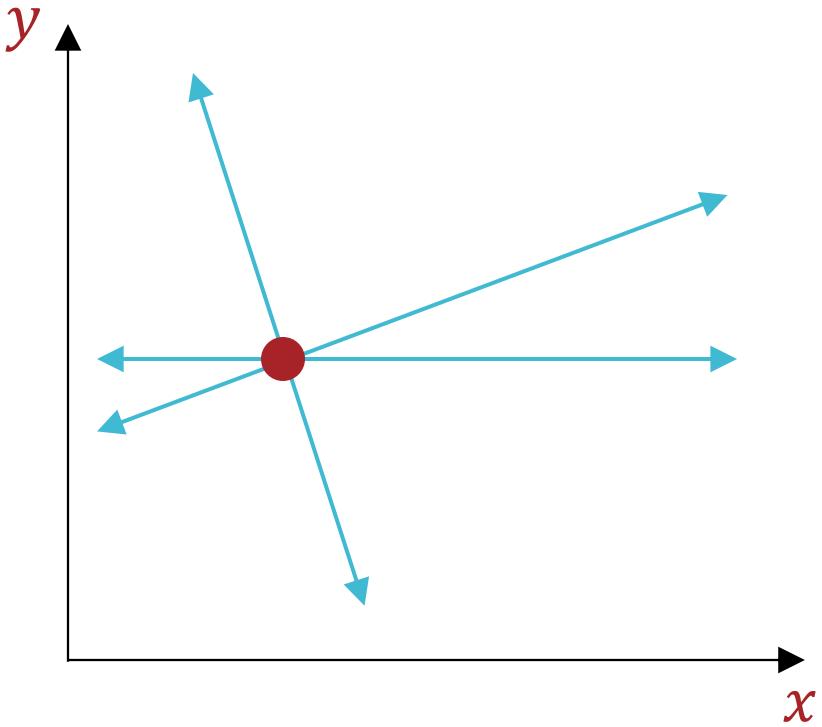
Linear Regression: Uniqueness

- Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?



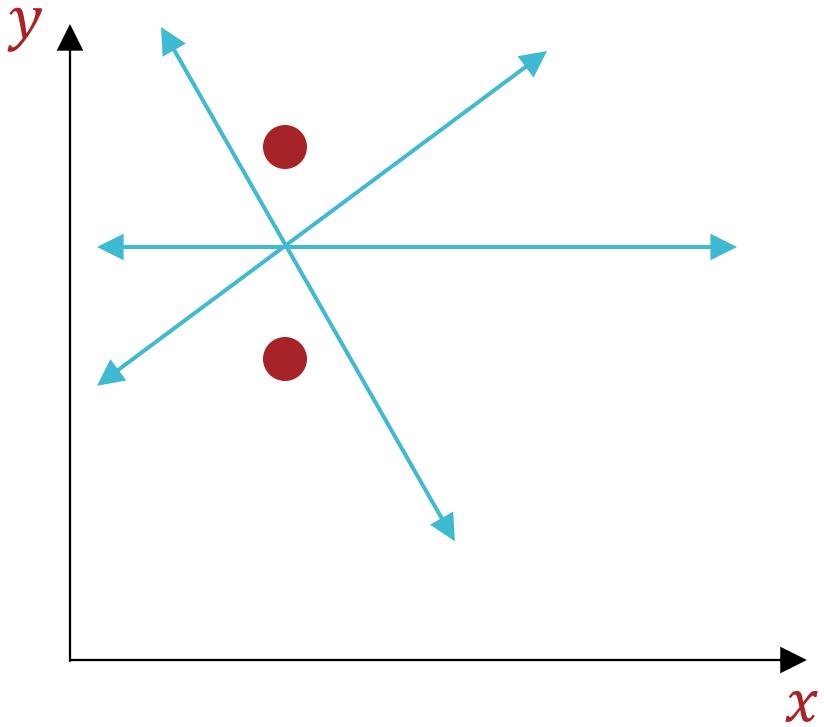
Linear Regression: Uniqueness

- Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?



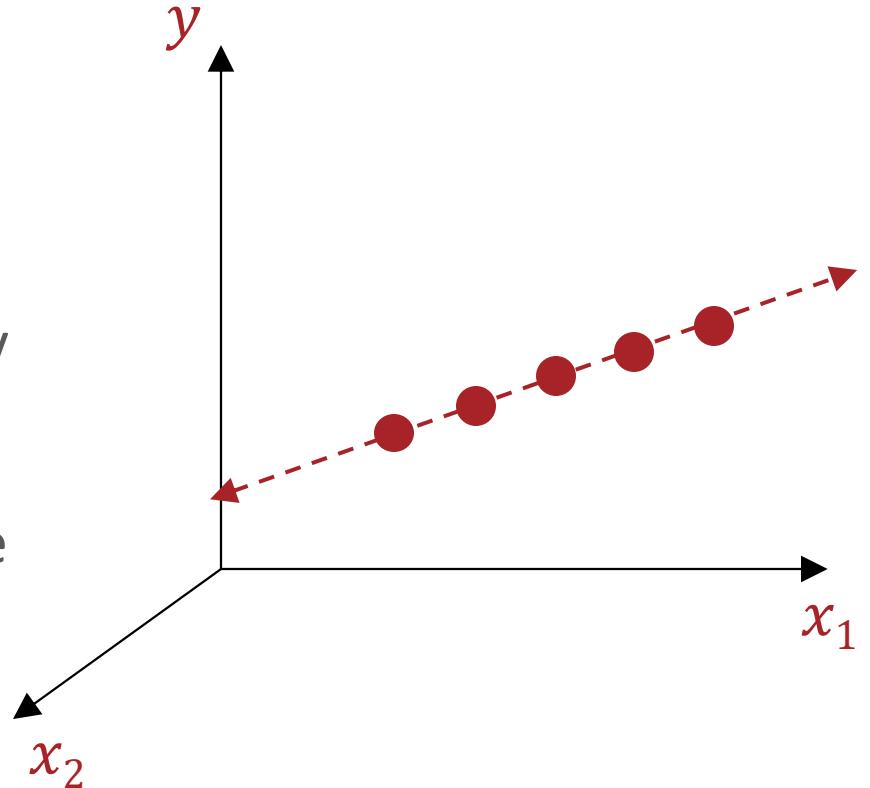
Linear Regression: Uniqueness

- Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?



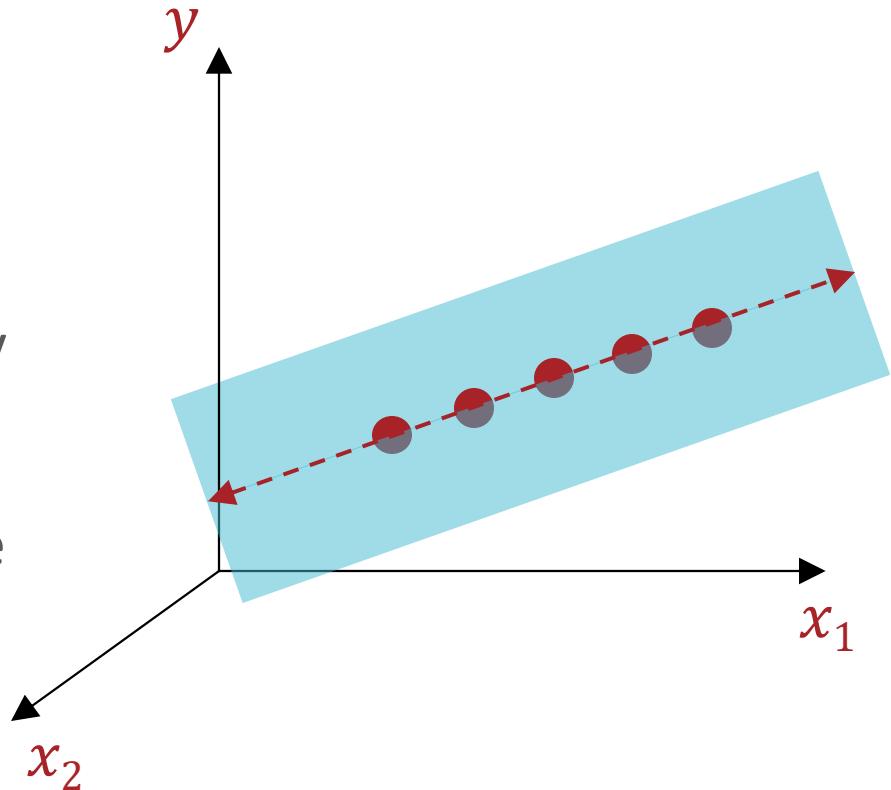
Linear Regression: Uniqueness

- Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?



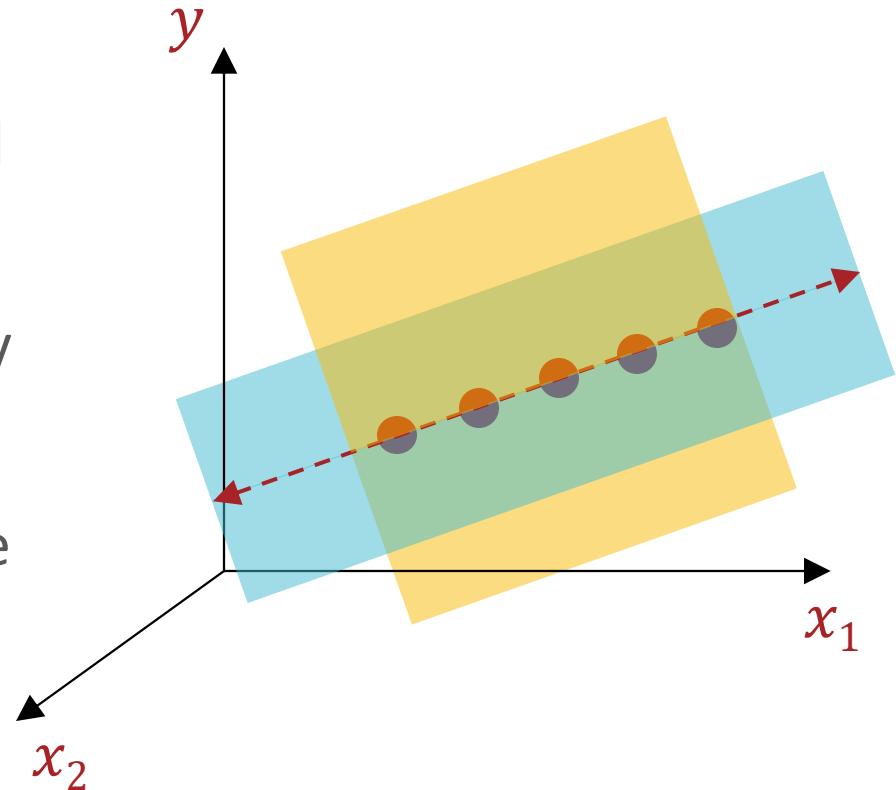
Linear Regression: Uniqueness

- Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?



Linear Regression: Uniqueness

- Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?



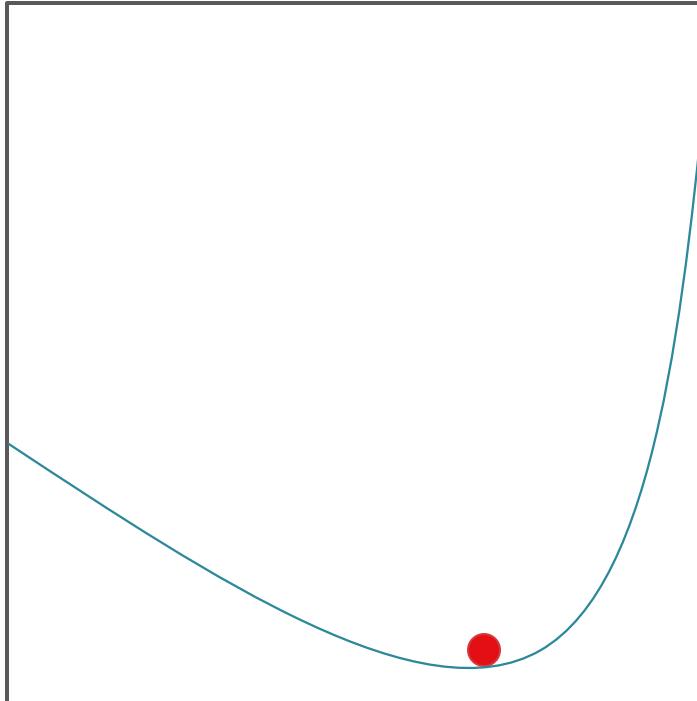
Closed Form Solution

$$\widehat{\boldsymbol{\theta}} = (X^T X)^{-1} X^T \mathbf{y}$$

1. Is $X^T X$ invertible?
 - When $N \gg D + 1$, $X^T X$ is (almost always) full rank and therefore, invertible!
 - If $X^T X$ is not invertible (occurs when one of the features is a linear combination of the others) then there are infinitely many solutions.
2. If so, how computationally expensive is inverting $X^T X$?
 - $X^T X \in \mathbb{R}^{D+1 \times D+1}$ so inverting $X^T X$ takes $O(D^3)$ time...
 - Computing $X^T X$ takes $O(ND^2)$ time
 - Can use gradient descent to (potentially) speed things up when N and D are large!

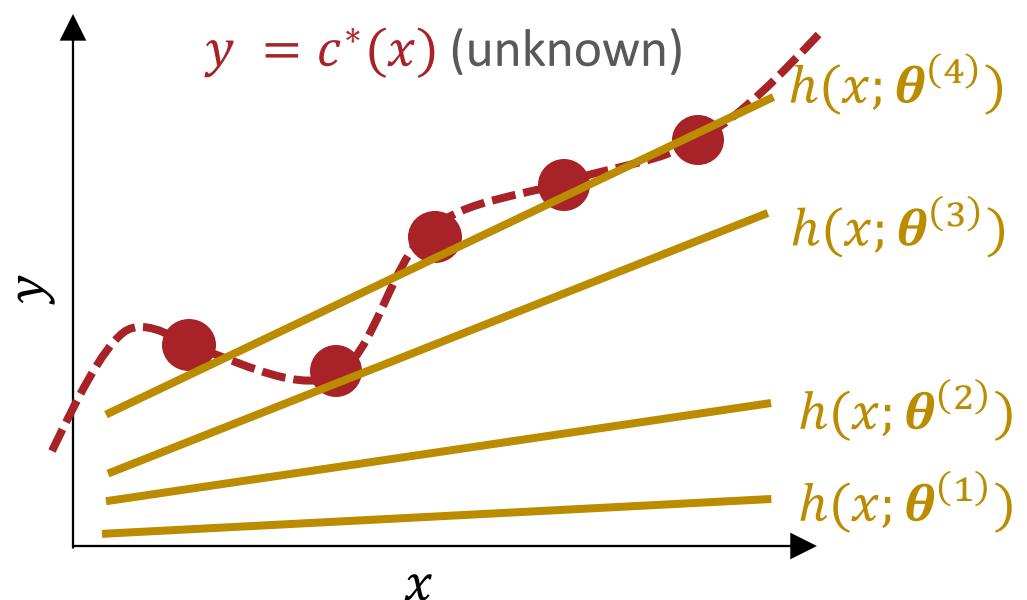
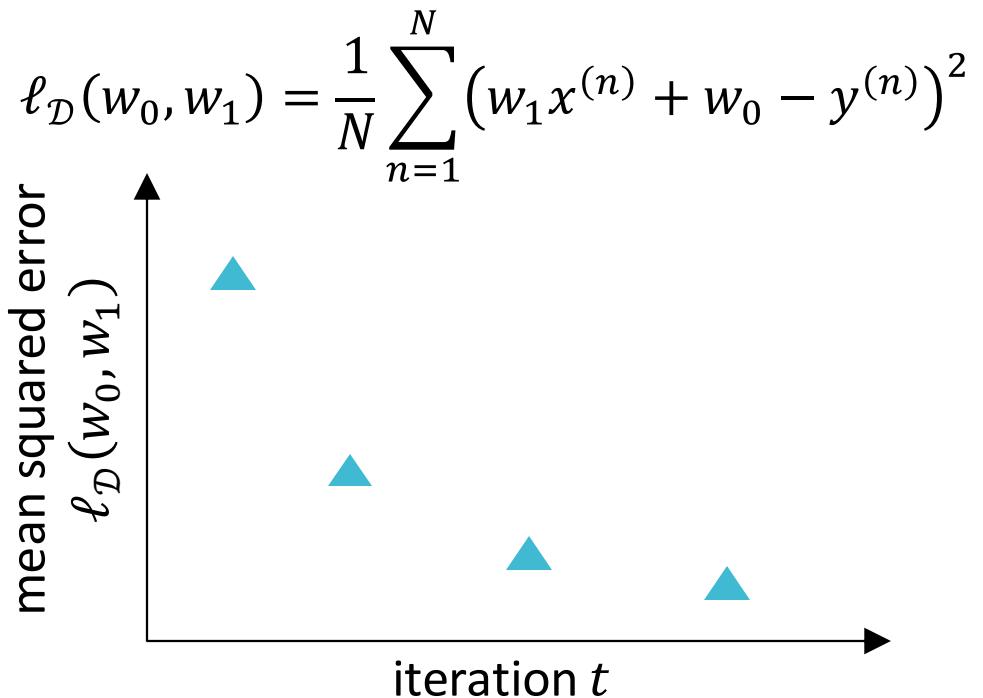
Gradient Descent: Intuition

- An iterative method for minimizing functions
- Requires the gradient to exist everywhere



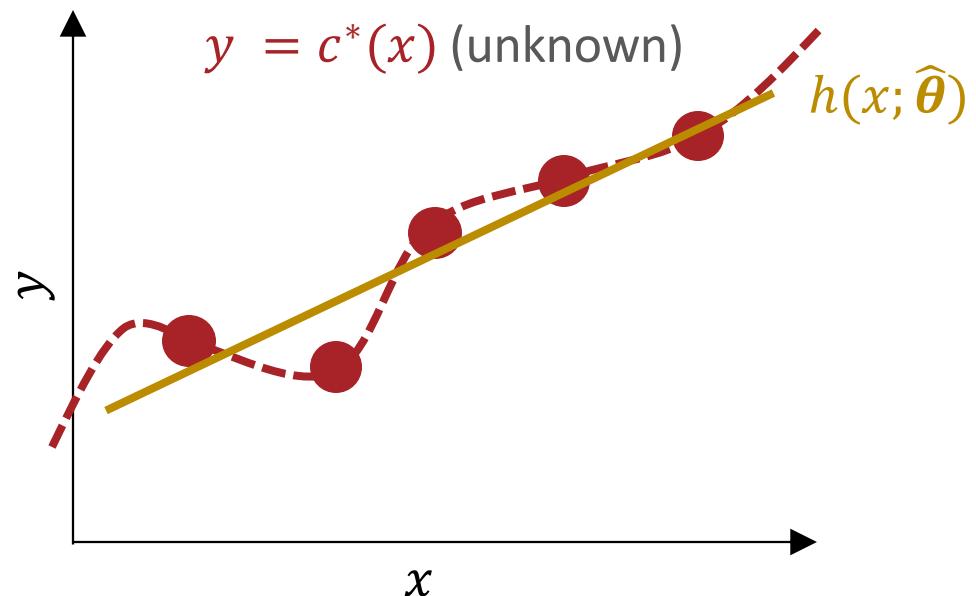
- Good news: the squared error is also convex!

Gradient Descent for Linear Regression

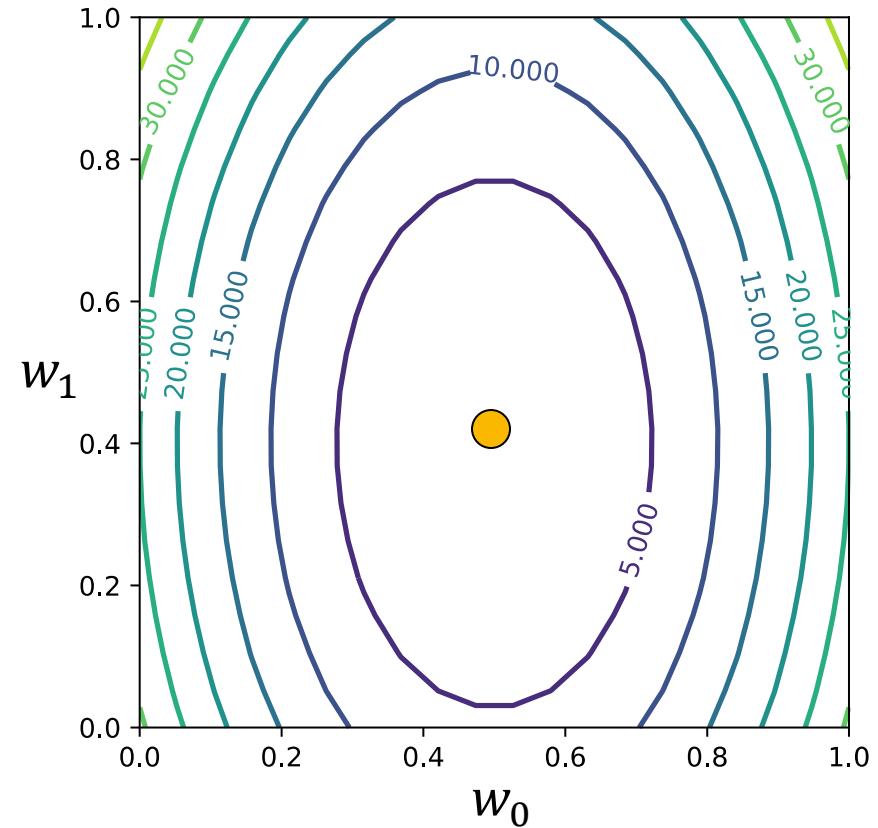


t	w_0	w_1	$\ell_{\mathcal{D}}(w_0, w_1)$
1	0.01	0.02	25.2
2	0.30	0.12	8.7
3	0.51	0.30	1.5
4	0.59	0.43	0.2

Closed Form Optimization



$$\hat{\theta} = (X^T X)^{-1} X^T y$$



t	w_0	w_1	$\ell_D(w_0, w_1)$
1	0.59	0.43	0.2

Key Takeaways

- Decision tree and k NN regression
- Closed form solution for linear regression
 - Setting partial derivative/gradients to 0 and solving for critical points
 - Potential issues with the closed form solution: invertibility and computational costs