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 Learning to diagnose heart disease  

as a (supervised) binary regression task

Recall: 
Regression
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 Learning to diagnose heart disease  

as a (supervised) binary regression task

Decision Tree
Regression
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1-NN
Regression

 Suppose we have real-valued targets 𝑦 ∈ ℝ and               
one-dimensional inputs 𝑥 ∈ ℝ

 Assume 
𝑦 = 𝒘𝑇𝒙 + 𝑤0

 Notation: given training data 𝒟 = 𝒙 𝑖 , 𝑦 𝑖
𝑖=1

𝑁

𝑋 =

1 𝒙 1 𝑇

1 𝒙 2 𝑇

⋮ ⋮

1 𝒙 𝑁 𝑇

=

1 𝑥1
1

⋯ 𝑥𝐷
1

1 𝑥1
2

⋯ 𝑥𝐷
2

⋮ ⋮ ⋱ ⋮

1 𝑥1
𝑁

⋯ 𝑥𝐷
𝑁

∈ ℝ𝑁×𝐷+1

is the design matrix

 𝒚 = 𝑦 1 , … , 𝑦 𝑁 𝑇
∈ ℝ𝑁 is the target vector
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2-NN
Regression?

 Suppose we have real-valued targets 𝑦 ∈ ℝ and               
one-dimensional inputs 𝑥 ∈ ℝ

 Assume 
𝑦 = 𝒘𝑇𝒙 + 𝑤0

 Notation: given training data 𝒟 = 𝒙 𝑖 , 𝑦 𝑖
𝑖=1

𝑁

𝑋 =

1 𝒙 1 𝑇

1 𝒙 2 𝑇

⋮ ⋮

1 𝒙 𝑁 𝑇

=

1 𝑥1
1

⋯ 𝑥𝐷
1

1 𝑥1
2

⋯ 𝑥𝐷
2

⋮ ⋮ ⋱ ⋮

1 𝑥1
𝑁

⋯ 𝑥𝐷
𝑁

∈ ℝ𝑁×𝐷+1

is the design matrix

 𝒚 = 𝑦 1 , … , 𝑦 𝑁 𝑇
∈ ℝ𝑁 is the target vector
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Linear
Regression
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 Suppose we have real-valued targets 𝑦 ∈ ℝ and               

𝐷-dimensional inputs 𝒙 = 1, 𝑥1, … , 𝑥𝐷
𝑇 ∈ ℝ𝐷+1

 Assume 

𝑦 = 𝜽𝑇𝒙 = 𝑤0 𝒘 𝑇 1
𝒙

 Notation: given training data 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁

𝑋 =

1 𝒙 1 𝑇

1 𝒙 2 𝑇

⋮ ⋮

1 𝒙 𝑁 𝑇

=

1 𝑥1
1

⋯ 𝑥𝐷
1

1 𝑥1
2

⋯ 𝑥𝐷
2

⋮ ⋮ ⋱ ⋮

1 𝑥1
𝑁

⋯ 𝑥𝐷
𝑁

∈ ℝ𝑁×𝐷+1

is the design matrix

 𝒚 = 𝑦 1 , … , 𝑦 𝑁 𝑇
∈ ℝ𝑁 is the target vector
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 Define a model and model parameters

  Assume 𝑦 = 𝒘𝑇𝒙

  Parameters: 𝒘 = 𝑤0, 𝑤1, … , 𝑤𝐷

 Write down an objective function

  Minimize the squared error

 Optimize the objective w.r.t. the model parameters

 Solve in closed form: take partial derivatives,           
set to 0 and solve

General 
Recipe 
for 
Machine 
Learning
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 Define a model and model parameters

  Assume 𝑦 = 𝜽𝑇𝒙

  Parameters: 𝜽 = 𝑤0, 𝑤1, … , 𝑤𝐷

 Write down an objective function

  Minimize the mean squared error

 Optimize the objective w.r.t. the model parameters

 Solve in closed form: take gradients,           
set to 0 and solve

Recipe 
for 
Linear
Regression
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ℓ𝒟 𝜽 =
1

𝑁
෍

𝑛=1

𝑁

ℓ 𝑛 𝜽 =
1

𝑁
෍

𝑛=1

𝑁

𝜽𝑇𝒙 𝑛 − 𝑦 𝑛 2
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ℓ𝒟 𝜽 =
1

𝑁
෍

𝑛=1

𝑁

𝜽𝑇𝒙 𝑛 − 𝑦 𝑛 2
=

1

𝑁
෍

𝑛=1

𝑁

𝒙 𝑛 𝑇
𝜽 − 𝑦 𝑛

2

Minimizing the 
Squared Error

=
1

𝑁
𝑋𝜽 − 𝒚 2

2 where 𝒛 2 = ෍

𝑑=1

𝐷

𝑧𝑑
2 = 𝒛𝑇𝒛

=
1

𝑁
𝑋𝜽 − 𝒚 𝑇 𝑋𝜽 − 𝒚
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∇𝜽ℓ𝒟 𝜽 =
1

𝑁
2𝑋𝑇𝑋𝜽 − 2𝑋𝑇𝒚

=
1

𝑁
𝜽𝑇𝑋𝑇𝑋𝜽 − 2𝜽𝑇𝑋𝑇𝒚 + 𝒚𝑇𝒚
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Minimizing the 
Squared Error
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∇𝜽ℓ𝒟
෡𝜽 =

1

𝑁
2𝑋𝑇𝑋෡𝜽 − 2𝑋𝑇𝒚 = 0

→ 𝑋𝑇𝑋෡𝜽 = 𝑋𝑇𝒚

→ ෡𝜽 = 𝑋𝑇𝑋 −1𝑋𝑇𝒚

ℓ𝒟 𝜽 =
1

𝑁
෍

𝑛=1

𝑁

𝜽𝑇𝒙 𝑛 − 𝑦 𝑛 2
=

1

𝑁
෍

𝑛=1

𝑁

𝒙 𝑛 𝑇
𝜽 − 𝑦 𝑛

2

=
1

𝑁
𝑋𝜽 − 𝒚 2

2 where 𝒛 2 = ෍

𝑑=1

𝐷

𝑧𝑑
2 = 𝒛𝑇𝒛

=
1

𝑁
𝑋𝜽 − 𝒚 𝑇 𝑋𝜽 − 𝒚

=
1

𝑁
𝜽𝑇𝑋𝑇𝑋𝜽 − 2𝜽𝑇𝑋𝑇𝒚 + 𝒚𝑇𝒚
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Closed Form 
Solution
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1. Is 𝑋𝑇𝑋 invertible?

• When 𝑁 ≫ 𝐷 + 1, 𝑋𝑇𝑋 is (almost always) full rank and 

therefore, invertible!

• If 𝑋𝑇𝑋 is not invertible (occurs when one of the 

features is a linear combination of the others), what 

does that imply about our problem?

2. If so, how computationally expensive is inverting 𝑋𝑇𝑋?

• 𝑋𝑇𝑋 ∈ ℝ𝐷+1×𝐷+1 so inverting 𝑋𝑇𝑋 takes 𝑂 𝐷3  time…

• Computing 𝑋𝑇𝑋 takes 𝑂 𝑁𝐷2  time

• What alternative optimization method can we use to 

minimize the mean squared error?

෡𝜽 = 𝑋𝑇𝑋 −1𝑋𝑇𝒚
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Closed Form 
Solution

Henry Chai - 5/20/25

1. Is 𝑋𝑇𝑋 invertible?

• When 𝑁 ≫ 𝐷 + 1, 𝑋𝑇𝑋 is (almost always) full rank and 

therefore, invertible!

• If 𝑋𝑇𝑋 is not invertible (occurs when one of the 

features is a linear combination of the others), what 

does that imply about our problem?

2. If so, how computationally expensive is inverting 𝑋𝑇𝑋?

• 𝑋𝑇𝑋 ∈ ℝ𝐷+1×𝐷+1 so inverting 𝑋𝑇𝑋 takes 𝑂 𝐷3  time…

• Computing 𝑋𝑇𝑋 takes 𝑂 𝑁𝐷2  time

• What alternative optimization method(s) can we use to 

minimize the mean squared error?

෡𝜽 = 𝑋𝑇𝑋 −1𝑋𝑇𝒚
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Linear 
Regression: 
Uniqueness

𝑦

𝑥

 Consider a 1D linear 

regression model trained 

to minimize the mean 

squared error: how many 

optimal solutions (i.e., 

sets of parameters 𝜽) are 

there for the given 

dataset?
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Linear 
Regression: 
Uniqueness

𝑦

𝑥

 Consider a 1D linear 

regression model trained 

to minimize the mean 

squared error: how many 

optimal solutions (i.e., 

sets of parameters 𝜽) are 

there for the given 

dataset?
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Linear 
Regression: 
Uniqueness

𝑦

𝑥

 Consider a 1D linear 

regression model trained 

to minimize the mean 

squared error: how many 

optimal solutions (i.e., 

sets of parameters 𝜽) are 

there for the given 

dataset?
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Linear 
Regression: 
Uniqueness

 Consider a 2D linear 

regression model trained 

to minimize the mean 

squared error: how many 

optimal solutions (i.e., 

sets of parameters 𝜽) are 

there for the given 

dataset? 

𝑦

𝑥1

𝑥2
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Linear 
Regression: 
Uniqueness

 Consider a 2D linear 

regression model trained 

to minimize the mean 

squared error: how many 

optimal solutions (i.e., 

sets of parameters 𝜽) are 

there for the given 

dataset? 

𝑦

𝑥1

𝑥2
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Linear 
Regression: 
Uniqueness

 Consider a 2D linear 

regression model trained 

to minimize the mean 

squared error: how many 

optimal solutions (i.e., 

sets of parameters 𝜽) are 

there for the given 

dataset? 

𝑦

𝑥1

𝑥2

Henry Chai - 5/20/25 18



Closed Form 
Solution
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1. Is 𝑋𝑇𝑋 invertible?

• When 𝑁 ≫ 𝐷 + 1, 𝑋𝑇𝑋 is (almost always) full rank and 

therefore, invertible!

• If 𝑋𝑇𝑋 is not invertible (occurs when one of the 

features is a linear combination of the others) then 

there are infinitely many solutions.

2. If so, how computationally expensive is inverting 𝑋𝑇𝑋?

• 𝑋𝑇𝑋 ∈ ℝ𝐷+1×𝐷+1 so inverting 𝑋𝑇𝑋 takes 𝑂 𝐷3  time…

• Computing 𝑋𝑇𝑋 takes 𝑂 𝑁𝐷2  time

• Can use gradient descent to (potentially) speed things 

up when 𝑁 and 𝐷 are large!

෡𝜽 = 𝑋𝑇𝑋 −1𝑋𝑇𝒚
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Gradient 
Descent:
Intuition

Henry Chai - 5/20/25

 An iterative method for minimizing functions 

 Requires the gradient to exist everywhere

 Good news: the squared error is also convex! 
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Gradient 
Descent for 
Linear 
Regression
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𝑤0

𝑥

𝑦

𝑦 = 𝑐∗(𝑥) (unknown)

ℎ(𝑥; 𝜽 1 )

ℎ(𝑥; 𝜽 2 )

ℎ(𝑥; 𝜽 3 )

ℎ(𝑥; 𝜽 4 )

iteration 𝑡
m

e
an

 s
q

u
ar

ed
 e

rr
o

r
ℓ

𝒟
𝑤

0
,𝑤

1

ℓ𝒟 𝑤0, 𝑤1 =
1

𝑁
෍

𝑛=1

𝑁

𝑤1𝑥 𝑛 + 𝑤0 − 𝑦 𝑛 2

𝑡 𝑤0 𝑤1 ℓ𝒟 𝑤0, 𝑤1

1 0.01 0.02 25.2

2 0.30 0.12 8.7

3 0.51 0.30 1.5

4 0.59 0.43 0.2

𝑤1
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Closed Form 
Optimization
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𝑥

𝑦

𝑦 = 𝑐∗(𝑥) (unknown)
ℎ(𝑥; ෡𝜽)

෡𝜽 = 𝑋𝑇𝑋 −1𝑋𝑇𝒚

𝑡 𝑤0 𝑤1 ℓ𝒟 𝑤0, 𝑤1

1 0.59 0.43 0.2

𝑤0

𝑤1
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Key Takeaways

 Decision tree and 𝑘NN regression

 Closed form solution for linear regression

 Setting partial derivative/gradients to 0 and solving 

for critical points

 Potential issues with the closed form solution: 

invertibility and computational costs
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