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* Learning to diagnose heart disease

as a (supervised) regression task

features targets

Recall:

Regression Pressure
" ~ Yes Low Normal $0
i)
= No Medium Normal $20
@)
Q—'< No Low Abnormal $30
(0
o Yes Medium Normal $100
©

. Yes High Abnormal $5000
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* Learning to diagnose heart disease

as a (supervised) regression task

features targets

Decision Tree

Regression p Pressure
" Yes Low Normal $0
% No Medium Normal $20
- '< No Low Abnormal $30
% Yes Medium Normal $100
© . Yes High Abnormal $5000
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* Suppose we have real-valued targets y € R and
one-dimensional inputs x € R

y

A

1-NN

Regression
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* Suppose we have real-valued targets y € R and
one-dimensional inputs x € R

y

A

2-NN

Regression?
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* Suppose we have real-valued targets y € R and

D-dimensional inputs x = [1, x4, ..., xp]’ € RP*1

* Assume
y =0"x=[wow]" [i]
Linear .
Regression * Notation: given training data D = {(x("),y("))}nzl
1 @71 1K D
- X = 1 x@" — 1 xiz) xl(?z) c RNXD+1
1 x(N)T_ 1 xiN) xl()N)-

is the design matrix

T
cy =y, ..,y € RN is the target vector
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General
Recipe

for
Machine
Learning
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* Define a model and model parameters

- Write down an objective function

- Optimize the objective w.r.t. the model parameters



Recipe

for
Linear
Regression
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* Define a model and model parameters

- Assumey = 07 x
* Parameters: @ = [wy, Wy, ..., Wp ]

- Write down an objective function

* Minimize the mean squared error

N N
1 1
£5(8) =1 > £0(8) =1 ) (674 — y™)’
n=1 n=1

- Optimize the objective w.r.t. the model parameters

* Solve in closed form: take gradients,
set to 0 and solve



N N
1 1 5
tp(0) =+ E (6T x™ — y("))z = E (x(n)Tg _ y(n))
n=1

n=1

D
1
— N”XH o J’”% where ”Z”2 = 2 Zczi = ZTZ

d=1

N
1
Minimizing the = - (X6 —y)'(X6 —y)

Squared Error

1
=~ (67X"X8 — 267Xy + y"y)

1 )
Volp(0) =~ (2X"X60 — 2XTy)
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N N
1
£5(0) = N Z(HTx(n) _ y(n))z — %z (x(n)Te _ y(n))z
n=1

n=1

D
1
= S I1X0 —yIZ where |zll, = | ) 23 =27z

d=1

N
1
Minimizing the =5 (X0 =1 (X6 —y)

Squared Error

1
= (07XTX0 —20"XTy + yTy)

1 _
Volp(0) = ~ (2XTX0 — 2XTy) =0
- XTX0 =XTy
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Closed Form

Solution
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1.

2.

0=X"X)"xTy

Is XT X invertible?

If so, how computationally expensive is inverting X7 X?
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Closed Form

Solution
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0=X"X)"xTy

Is XT X invertible?

* When N >» D + 1, XX is (almost always) full rank and
therefore, invertible!

* If XT X is not invertible (occurs when one of the
features is a linear combination of the others), what

does that imply about our problem?

If so, how computationally expensive is inverting X7 X?

« XTX € RP+1XP+1 5 inverting XT X takes O(D3) time...

* Computing XT X takes O(ND?) time
* What alternative optimization method(s) can we use to

minimize the mean squared error?
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Linear

Regression:
Uniqueness
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* Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?

=V
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Linear

Regression:
Uniqueness
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* Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?

=V
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Linear

Regression:
Uniqueness
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* Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?

=V
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Linear

Regression:
Uniqueness
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* Consider a 2D linear yA

regression model trained
to minimize the mean .
squared error: how many ",'
: : : ',0’
optimal solutions (i.e., .-
L -
sets of parameters 0) are >
X1

there for the given

dataset? X,
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Linear

Regression:
Uniqueness
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* Consider a 2D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset? X,
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Linear

Regression:
Uniqueness
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* Consider a 2D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset? X,
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Closed Form

Solution
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0=X"X)"xTy

Is XT X invertible?

* When N >» D + 1, XX is (almost always) full rank and
therefore, invertible!

* If XT X is not invertible (occurs when one of the
features is a linear combination of the others) then

there are infinitely many solutions.

If so, how computationally expensive is inverting X7 X?

« XTX € RP+1XP+1 5 inverting XT X takes O(D3) time...

* Computing XT X takes O(ND?) time
* Can use gradient descent to (potentially) speed things

up when N and D are large!
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Gradient

Descent:
Intuition
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* An iterative method for minimizing functions

* Requires the gradient to exist everywhere

* Good news: the squared error is also convex!
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Gradient

Descent for
Linear
Regression
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N
1 2
Lo (Wo, W) = N z(WﬂC(n) +wy — y(n))

mean squared error
’BD (WOr Wl)

A n=1
A
Wi
A
a A
>
iteration t
y = c*(x) (unknown) 'i;(x; 6
h(x; 9(3))
— h(X; 0(2))
h(x; 0Y)
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A L\
0 = (XTX)"1xTy 08?/// \\\
®
Closed Form \ O /

Optimization

0.2

1 0.59 043
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* Decision tree and kNN regression

* Closed form solution for linear regression
- Setting partial derivative/gradients to 0 and solving

for critical points

* Potential issues with the closed form solution:

invertibility and computational costs
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