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* Announcements:

* HW?2 released on 5/16, due 5/20 (today!) at 11:59 PM

Front Matter

- HW3 to be released on 5/20 (today!), due 5/23 at
11:59 PM
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* An iterative method for minimizing functions

* Requires the gradient to exist everywhere

Recall:
Gradient

Descent

- Good news: the negative conditional log-likelihood is convex!
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* Input: D = {(x("),y("))}zzl,n(m

1. Initialize the parameters 0 andsett =0

2. While TERMINATION CRITERION is not satisfied

Gradient a. Compute the gradient:
Volp (6)

b. Update 8: 81*D « () — nOy p (g))

Descent

c. Incrementt:t<t+1

- Qutput: O
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1. Initialize the parameters 09 andsett =0
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* Input: D = {(x("),y("))}zzl,n(m

1. Initialize the parameters 0 andsett =0

2. Whilet<T

Gradient a. Compute the gradient:
Volp (6)

Descent

b. Update 8: 81*D « () — nOy p (g))

c. Incrementt:t<t+1

- Qutput: O
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* Input: D = {(x("),y("))}zzl,n(o)

1. Initialize 8 to all zeros and set t = 0

Gradient 2. While TERMINATION CRITERION is not satisfied
Descent for a. Compute the gradient:

Logistic
Regression

N
Voto (g(t)) - z x(n)(p(y — 1|x(n), e(t)) _ y(n))

n=1

b. Update 8: 81*D « () — nOy p (9))

c. Incrementt:t<t+1

- Qutput: 6
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‘ Input: D = {(x("),y("))}zzl,n(o)

1. Initialize 8 to all zeros and set t = 0

Why
Gradient 2. While TERMINATION CRITERION is not satisfied
Descent for a. Compute the gradient:
Logistic N

: Votp (g(t)) - z x(n)(p(y — 1|x(n), e(t)) _ y(n))
Regression? L

b. Update 8: 81*D « () — nOy p (9))

c. Incrementt:t<t+1

- Qutput: 6
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- A function f: RP? - Ris convex if
Vil eRP,x2 eRPand0<c <1

flex® + (1 - 0)x@) < cf(x) + (1 - o) f(x?)

A f

Convexity

cf (x™) + (1 - o) f(x?)

flex® + (1 - c)x?)

XD oxD (1-c)x® %@
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Convexity
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Convexity
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- A function f: RP? — Ris strictly convex if
Vv eRP xP eRPand0<c< 1
flex® + (1 - 0)x@) < cf(x) + (1 - o) f(x?)

A f

cf (x™) + (1 - o) f(x?)

flex® + (1 - c)x?)

XD oxD (1-c)x® %@
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Convexity
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_---¥  Convex functions

Non-convex functions
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Convexity
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4"
-
-

/.~-¥  Given afunction f: R - R

* x* is a global minimum iff
fx) < fx)Vx€eRP

* x* is a local minimum iff

Jest. f(x) < f(x)V

xs.t|lx—x"||, <e
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Convexity
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Convex functions:
Each local minimum is a

global minimum!

Non-convex functions:
A local minimum may or may

not be a global minimum...
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Convexity
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Strictly convex functions:
There exists a unique global

minimum!

Non-convex functions:
A local minimum may or may

not be a global minimum...
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* Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!

\\

Gradient
Descent & 4

Convexity
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* Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!
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Gradient
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* Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!

N\

Gradient
Descent & 4

Convexity
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* Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!

Gradient
Descent & 4

Convexity
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* Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent & 4

Convexity
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* Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent & 4

Convexity
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* Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent & 4

Convexity
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* Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent & 4

Convexity
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Gradient
Descent for

Logistic
Regression
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 Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* The negative conditional log-likelihood is convex!

But not strictly convex...

N\
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Gradient

Descent for
Logistic
Regression
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‘ Input: D = {(x("),y("))}:zl,n(o)

1. Initialize 8 to all zeros and sett = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

N
Voto (g(t)) - z x(n)(p(y — 1|x(n), H(t)) _ y(n))

n=1

b. Update 8: 81*D « () — nOy p (g®))

c. Incrementt:t<t+1

- Qutput: 6
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Stochastic
Gradient

Descent for
Logistic
Regression
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* Input: D = {(x(n)»y(n))}:ﬂ'ng%)D

1. Initialize 8 to all zeros and sett = 0
2. While TERMINATION CRITERION is not satisfied

a. Randomly sample a data point from D, (x("),y("))

b. Compute the pointwise gradient:
Vot™ (g(t)) — x(n)(p(y — 1|x(n), g(t)) _ y(n))

c Update 0: 0(t+1) — e(t) _ Tlg%)Dvef(‘n)(e(t))
d. Incrementt:t < t+1
- Output: )
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Stochastic
Gradient

Descent
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* If the data point is sampled uniformly at random, then

the expected value of the pointwise gradient is

proportional to the full gradient:

N
1
E lvegx(n)’y(n)(g(t))] =~ z Veg(n)(g(t))
n=1

N
1

—— (n) — m) ) _ ,(n)
NEx (P(Y 1|x ,0 ) y )

n=1

1
— N VH'BD (H(t))

* In practice, the data set is randomly shuffled then looped

through so that each data point is used equally often
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Stochastic

Gradient
Descent vs.
Gradient
Descent
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Gradient Descent

Stochastic Gradient Descent
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Mini-batch
Stochastic
Gradient

Descent
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“input: D = {(x™,y™)}"_ 7). B

1. Initialize 8‘® to all zeros and sett = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample B data points from D:

Z)batch{(x(b): y(b))}fj:l

b. Compute the gradient w.r.t. the sampled batch:

B
vebeatch(e(t)) — z x(b) (P(Y - 1|x(b)' H(t)) T y(b))
b=1

c. Update 8: 0D < 0 — @y p,  (g®)
d. Incrementt:t<t+1

- Qutput: 6
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* Convexity vs. nhon-convexity

* Strong vs. weak convexity

* Implications for local, global and unique optima

* Gradient descent

* Effect of step size

* Termination criteria

* Stochastic gradient descent vs. gradient descent
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