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Front Matter

 Announcements: 

 HW2 released on 5/16, due 5/20 (today!) at 11:59 PM

 HW3 to be released on 5/20 (today!), due 5/23 at 

11:59 PM
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Recall:
Gradient 
Descent
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 An iterative method for minimizing functions 

 Requires the gradient to exist everywhere

 Good news: the negative conditional log-likelihood is convex! 



Gradient 
Descent

 Input: 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
, 𝜂 0

1. Initialize the parameters 𝜽 0  and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

∇𝜽ℓ𝒟 𝜽 𝑡 = 2𝑋𝑇𝑋𝒘 − 2𝑋𝑇𝒚

b. Update 𝜽: 𝜽 𝑡+1 ← 𝜽 𝑡 − 𝜂 0 ∇𝜽ℓ𝒟 𝜽 𝑡

c. Increment 𝑡: 𝑡 ← 𝑡 + 1 

 Output: 𝜽 𝑡
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Gradient 
Descent for 
Logistic 
Regression
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 Input: 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
, 𝜂 0

1. Initialize 𝜽 0  to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

∇𝜽ℓ𝒟 𝜽 𝑡 = ෍

𝑛=1

𝑁

𝒙 𝑛 𝑃 𝑌 = 1 𝒙 𝑛 , 𝜽(𝑡) − 𝑦 𝑛

b. Update 𝜽: 𝜽 𝑡+1 ← 𝜽 𝑡 − 𝜂 0 ∇𝜽ℓ𝒟 𝜽 𝑡

c. Increment 𝑡: 𝑡 ← 𝑡 + 1 

 Output: 𝜽 𝑡



Why
Gradient 
Descent for 
Logistic 
Regression?
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 Input: 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
, 𝜂 0

1. Initialize 𝜽 0  to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

∇𝜽ℓ𝒟 𝜽 𝑡 = ෍

𝑛=1

𝑁

𝒙 𝑛 𝑃 𝑌 = 1 𝒙 𝑛 , 𝜽(𝑡) − 𝑦 𝑛

b. Update 𝜽: 𝜽 𝑡+1 ← 𝜽 𝑡 − 𝜂 0 ∇𝜽ℓ𝒟 𝜽 𝑡

c. Increment 𝑡: 𝑡 ← 𝑡 + 1 

 Output: 𝜽 𝑡



 A function 𝑓: ℝ𝐷 → ℝ is strictly convex if 

∀ 𝒙 1 ∈ ℝ𝐷 , 𝒙 2 ∈ ℝ𝐷 and 0 ≤ 𝑐 ≤ 1

𝑓 𝑐𝒙 1 + 1 − 𝑐 𝒙 2 ≤ 𝑐𝑓 𝒙 1 + 1 − 𝑐 𝑓 𝒙 2

𝑓 𝑐𝑥 1 + 1 − 𝑐 𝑥 2

Convexity
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𝑓

𝑥 1 𝑥 2𝑐𝑥 1 + 1 − 𝑐 𝑥 2

𝑐𝑓 𝑥 1 + 1 − 𝑐 𝑓 𝑥 2
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𝑓
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Convexity
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Convex functions

Non-convex functions



Convexity
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Given a function 𝑓: ℝ𝐷 → ℝ 

• 𝒙∗ is a global minimum iff 

𝑓 𝒙∗ ≤ 𝑓 𝒙  ∀ 𝒙 ∈ ℝ𝐷

• 𝒙∗ is a local minimum iff 

∃ 𝜖 s.t. 𝑓 𝒙∗ ≤ 𝑓 𝒙  ∀

𝒙 s.t. 𝒙 − 𝒙∗
2 < 𝜖



Convexity
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Convex functions:

Each local minimum is a 

global minimum!

Non-convex functions:

A local minimum may or may 

not be a global minimum…



Convexity
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Strictly convex functions:

There exists a unique global 

minimum!

Non-convex functions:

A local minimum may or may 

not be a global minimum…



Gradient 
Descent & 
Convexity

 Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

 Works great if the objective function is convex! 
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Gradient 
Descent & 
Convexity
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 Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

 Not ideal if the objective function is non-convex…
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Gradient 
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will converge to a local minimum (if it converges)

 Not ideal if the objective function is non-convex…
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Gradient 
Descent for 
Logistic
Regression
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 Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

 The negative conditional log-likelihood is convex!

But not strictly convex…



Gradient 
Descent for 
Logistic 
Regression
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 Input: 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
, 𝜂 0

1. Initialize 𝜽 0  to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

∇𝜽ℓ𝒟 𝜽 𝑡 = ෍

𝑛=1

𝑁

𝒙 𝑛 𝑃 𝑌 = 1 𝒙 𝑛 , 𝜽(𝑡) − 𝑦 𝑛

b. Update 𝜽: 𝜽 𝑡+1 ← 𝜽 𝑡 − 𝜂 0 ∇𝜽ℓ𝒟 𝜽 𝑡

c. Increment 𝑡: 𝑡 ← 𝑡 + 1 

 Output: 𝜽 𝑡



Stochastic
Gradient 
Descent for 
Logistic 
Regression
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 Input: 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
, 𝜂𝑆𝐺𝐷

0

1. Initialize 𝜽 0  to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample a data point from 𝒟, 𝒙 𝑛 , 𝑦 𝑛

b. Compute the pointwise gradient:

∇𝜽ℓ 𝑛 𝜽 𝑡 = 𝒙 𝑛 𝑃 𝑌 = 1 𝒙 𝑛 , 𝜽 𝑡 − 𝑦 𝑛

c. Update 𝜽: 𝜽 𝑡+1 ← 𝜽 𝑡 − 𝜂𝑆𝐺𝐷
0

∇𝜽ℓ 𝑛 𝜽 𝑡

d. Increment 𝑡: 𝑡 ← 𝑡 + 1 

 Output: 𝜽 𝑡



Stochastic
Gradient 
Descent

 If the data point is sampled uniformly at random, then 

the expected value of the pointwise gradient is 

proportional to the full gradient:

𝐸 ∇𝜽ℓ𝒙 𝑛 ,𝑦 𝑛 𝜽 𝑡 =
1

𝑁
෍

𝑛=1

𝑁

∇𝜽ℓ 𝑛 𝜽 𝑡

𝐸 =
1

𝑁
෍

𝑛=1

𝑁

𝒙 𝑛 𝑃 𝑌 = 1 𝒙 𝑛 , 𝜽 𝑡 − 𝑦 𝑛

𝐸 =
1

𝑁
∇𝜽ℓ𝒟 𝜽 𝑡

 In practice, the data set is randomly shuffled then looped 

through so that each data point is used equally often
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Stochastic
Gradient 
Descent vs. 
Gradient 
Descent
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Gradient Descent Stochastic Gradient Descent



Mini-batch
Stochastic
Gradient 
Descent
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 Input: 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
, 𝜂𝑀𝐵

0
, 𝐵

1. Initialize 𝜽 0  to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟:

𝒟𝑏𝑎𝑡𝑐ℎ 𝒙 𝑏 , 𝑦 𝑏
𝑏=1

𝐵

b. Compute the gradient w.r.t. the sampled batch:

∇𝜽ℓ𝒟𝑏𝑎𝑡𝑐ℎ
𝜽 𝑡 = ෍

𝑏=1

𝐵

𝒙 𝑏 𝑃 𝑌 = 1 𝒙 𝑏 , 𝜽 𝑡 − 𝑦 𝑏

c. Update 𝜽: 𝜽 𝑡+1 ← 𝜽 𝑡 − 𝜂𝑀𝐵
0

∇𝜽ℓ𝒟𝑏𝑎𝑡𝑐ℎ
𝜽 𝑡

d. Increment 𝑡: 𝑡 ← 𝑡 + 1 

 Output: 𝜽 𝑡
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Key Takeaways

 Convexity vs. non-convexity 

 Strong vs. weak convexity 

 Implications for local, global and unique optima

 Gradient descent

 Effect of step size

 Termination criteria

 Stochastic gradient descent vs. gradient descent
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