10-301/601: Introduction
to Machine Learning

Lecture 26: Q-learning
and Deep RL

Henry Chai
7/26/23

Front Matter

Henry Chai - 7/26/22

* Announcements

* PAG6 released 7/20, due 7/27 (tomorrow!) at 11:59 PM

* Please be mindful of your grace day usage

(see the course syllabus for the policy)

* PA7 released 7/27 (tomorrow!), due 8/3 at 11:59 PM
* This is the last programming assignment!
* Final on 8/11, two weeks from Friday

* Practice problems for the Final will be posted to the

course website on Friday, under Recitations

- Wellness day on 7/31 (next Monday): no lecture or OH

- Recommended Readings

* Mitchell, Chapter 13

https://www.cs.cmu.edu/~hchai2/courses/10601/
https://www.cs.cmu.edu/~hchai2/courses/10601/

Two big Q's

What can we do if the reward and/or transition

functions/distributions are unknown?

How can we handle infinite (or just very large)

state/action spaces?

Henry Chai - 7/26/22

* Inputs: R(s,a), p(s’ | s,a),y
- Initialize V(©(s) = 0V s € S (or randomly) and set t = 0

- While not converged, do:
‘Fors €S

‘Fora € A
Recall: Value Q(s,a) =R(s,a) +y z p(s'|s,a)V(s")

: s'es
Iteration *V(s) « max Q(s,a)
aeA

‘Fors €S

n*(s) « argmax R(s,a) + y p(s'|s,a)V(s")

aeA s'esS

* Return t*

Henry Chai - 7/26/22

* Q*(s,a) = E[total discounted reward of taking action a in
state s, assuming all future actions are optimal]

=R(s,a)+y p(s'|s,a)V*(s")

Q" (s,a) w/ e
deterministic —> V(s') = max 0*(s',a") _)

rewards B >
Q"(s,a) ¥ R(s,a) +v Z p(s’|s,a) [Jpé‘ffq Q*(s",a")|

s'eS

n*(s) = argmax Q*(s,a)
aeA

* Insight: if we know Q*, we can compute an optimal policy ™!

Henry Chai - 7/26/22

Q" (s,a) w/
deterministic
rewards and

transitions

Henry Chai - 7/26/22

* Q*(s,a) = E[total discounted reward of taking action a in

state s, assuming all future actions are optimal]

= R(s,a) + yV*(cS(s, a))

. V*(5(S, a)) = max Q*(6(s,a),a’)

Q*(s,a) =R(s,a) +y max Q"(6(s,a),a’)

n*(s) = argmax Q*(s,a)
aeA

* Insight: if we know Q*, we can compute an optimal policy ™!

Learning
Q*(s,a) w/
deterministic
rewards and
transitions

Algorithm 1:
Online learning
(table form)

Henry Chai - 7/26/22

* Inputs: discount factor y, an initial state s

* Initialize Q(s,a) = 0Vs e S,aeA(Qisal|S|x|A| array)
- While TRUE, do <

*7[’& * Take a random action a

* Receive reward@= R(s,a)
* Update the state: s « s’ where@= 6(s,a)

- Update Q(s, a): L 1
Q(s,a) «r+ymaxQ(s',a’)

Learning
Q*(s,a) w/
deterministic
rewards and
transitions

Algorithm 2:
e-greedy online
learning (table
form)

Henry Chai - 7/26/22

* Inputs: discount factor y, an initial state s,

greediness parameter € € [0, 1]

t

* Initialize Q(s,a) = 0Vs €S, a€e A (Qisal|S|x|A| array)
* While TRUE, do

- With probability €, take the greedy action
a = argmax Q(s,a’)
a' e A
Otherwise, with probability 1 — €, take a random action a
* Receive reward r = R(s, a)
* Update the state: s « s’ where s’ = §(s,a)
- Update Q(s, a):

Q(s,a) « r+ymaxQ(s',a’)

Learning

Q*(s,a) w/
deterministic
rewards

Algorithm 3:
e-greedy online
learning (table
form)

Henry Chai - 7/26/22

* Inputs: discount factor y, an initial state s,

greediness parameter € € [0, 1],
learning rate a € [0, 1] (“trust parameter”)

* Initialize Q(s,a) =0V s €S,a € A(Qisal|S|x|A| array)
* While TRUE, do

- With probability €, take the greedy action
a = argmax Q(s,a’)
a' €A
Otherwise, with probability 1 — €, take a random action a
* Receive reward r = R(s, a)
- Update the state: s « s’ where s’ ~ p(s’ | s,a)

- Update Q(s, a):

Q(s,a) « (1 —a)Q(s,a) + « (r + yrrzla,lXQ(s’, a’))

—— %
Current Update w/

value deterministic transitions

Learning

Q*(s,a) w/
deterministic
rewards

Algorithm 3:
e-greedy online
learning (table
form)

Henry Chai - 7/26/22

* Inputs: discount factor y, an initial state s,

greediness parameter € € [0, 1],
learning rate a € [0, 1] (“trust parameter”)

* Initialize Q(s,a) =0V s €S,a € A(Qisal|S|x|A| array)
* While TRUE, do

- With probability €, take the greedy action

a = argmax Q(s,a’)
a' €A
Otherwise, with probability 1 — €, take a random action a

* Receive reward r = R(s, a)

* Update the state: s « s" where§’ ~ p(s' | s,@) Temporal

- Update Q(s, a): diffe}r&nce
Q(s,a) <—_Q—£s_‘ia) +a (r +ymaxQ(s’,a") — Q(s, a))

/
- a

——
—_—

—

—
Current Temporal difference
value target

R(s, a) represented by —

—>y =0.9
1

0 0
G Sl

Learning

Q" (s, a):

Example

Henry Chai - 7/26/22

Which set of
blue arrows

(roughly)
corresponds to

Q" (s,a)?

Henry Chai - 7/26/22

Which set of
blue arrows

(roughly)
corresponds to

Q" (s,a)?

Henry Chai - 7/26/22

V*(s) shown in green

@ %

1 510
—5.10 |

2 567
5.67

3 @

5.10 |

Q* (s,a) =R(s,a) +yV*(8(s,a))

5.7_@

5

(=

1 459 |
—5.10 |

2 510
5.67

0

T3

3(5.67 {5
6.3
5.67 | 6.

5.10 |

7 —1>

R(s, a) represented by —

y =0.9
1

0 0_ o
Gl R N K
0

Learning

Q" (s, a):

Example

Henry Chai - 7/26/22

R(s, a) represented by —

y =0.9
1

0 0
@H -

Q(3,—-) <0+ (0.9 max

Learning

0" (5,0);

Example

Henry Chai - 7/26/22

R(s, a) represented by —

y =0.9
1

0 0
G Sl

Learning

Q" (s, a):

Example

Henry Chai - 7/26/22

R(s, a) represented by —

y = 0.9
1

0 0
ey -

Learning Q41 < 3+(09) , max Q(5a) =3

Q0* (s, a):

Example

Henry Chai - 7/26/22

R(s, a) represented by —

y =0.9
1

0 0_ o
Gl R N K
0

Q(3,—-) <0+ (0.9 max

Learning

0" (5,0);

Example

Henry Chai - 7/26/22

R(s, a) represented by —

y =0.9
1

0 0
G Sl

Q(3,—-) <0+ (0.9 max

Learning

0" (5,0);

Example

Henry Chai - 7/26/22

Learning

Q" (s, a):

Convergence

Henry Chai - 7/26/22

* For Algorithms 1 & 2 (deterministic transitions),

Q converges to Q* if

1. Every valid state-action pair is visited infinitely often

* Q-learning is exploration-insensitive: any visitation

strategy that satisfies this property will work!
2. 0<y<1
3. 3Bst. |R(s,a)|<BVseES,aeA

4. Initial Q values are finite

* For Algorithm 3 (temporal difference learning),
Q converges to Q™ if

1. Every valid state-action pair is visited infinitely often

* Q-learning is exploration-insensitive: any visitation

Learni ns strategy that satisfies this property will work!

Q" (s, a):

Convergence

. 0<y<1
. 3ABst |R(s,a)|<BVseES,aeA
. Initial Q values are finite

. Learning rate a; follows some “schedule” s.t.

Yizoar =ooand XiZoaf < we.g, ar =1/

- —

Henry Chai - 7/26/22

Two big Q’s

What can we do if the reward and/or transition

functions/distributions are unknown?

* Use online learning to gather data and learn Q*(s, a)

How can we handle infinite (or just very large)

state/action spaces?

Henry Chai - 7/26/22

AlphaGo (Black) vs. Lee Sedol (White) _
Game 2 final position (AlphaGo wins) Playing Go

* 19-by-19 board

* Players alternate
placing black and

white stones

* The goal is claim
9200 ° more territory

.‘. than the opponent

900 9
® 900000
29 9 9 ()
200 99
9)) oy
D@ >

Source: https://en.wikipedia.org/wiki/AlphaGo versus Lee Sedol

Henry Chai - 7/26/22

& When poll is active, respond at pollev.com/301601polls

Which of the following is the closest approximation to the
number of legal board states in a game of Go?

The number of stars in the universe ~ 10%*
The number of atoms in the universe ~ 10%°

A googol = 10"

The number of possible games< /em> of chess ~ 1012

googol

A googolplex = 10

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

AlphaGo (Black) vs. Lee Sedol (White)
Game 2 final position (AlphaGo wins)

900
®
9,. 9
900
o
28 9
o0
®
05

04

o
900000
® o0
o)
DL
o

Source: https://en.wikipedia.org/wiki/AlphaGo versus Lee Se

Henry Chai - 7/26/22

Source: https://en.wikipedia.org/wiki/Go and mathematics

Playing Go
* 19-by-19 board

* Players alternate
placing black and
white stones

* The goal is claim
more territory
than the opponent

* There are ~10170
legal Go board
states!

Two big Q’s

What can we do if the reward and/or transition

functions/distributions are unknown?

* Use online learning to gather data and learn Q*(s, a)

How can we handle infinite (or just very large)

state/action spaces?

e Throw a neural network at it!

Henry Chai - 7/26/22

* Use a parametric function, Q(s, a; ©), to approximate

Deep Q*(s,a)

Q-lea rning * Learn the parameters using SGD

* Training data (¢, a;, 13, S¢4+1) gathered online by

the agent/learning algorithm

Henry Chai - 7/26/22

- Represent states using some feature vector s; € RM
e.g. for Go, sy = [1,0,—1, ..., 1]"

* Define a neural network

Deep
Q-learning: — Q(s¢,ar; ©)
Model

— Q(st,a1;0)

- Q(St) aZ; ®)
Model 2: s, — .

— Q(s¢ aj41; 0)

Henry Chai - 7/26/22

* “True” loss 2. Don’t know Q~

6@ =) > (0'(0) - 0,5:0)°

SESa€EeA

1. S too big to compute this sum

1. Use stochastic gradient descent: just consider one
state-action pair in each iteration

Deep
Q-learning:
Loss Function

Use temporal difference learning:

* Given current parameters OO the temporal
difference target is

S
Q*(s,a) = r +y max ?(s', a’; 00) ;=@
a — 9

\/
* Set the paereters in the next iteration @1 sych
that Q(s,a; 0*Y) = y

2(0®,9t+D) = (y —Q(s,a; 0D)2

Henry Chai - 7/26/22

Deep
Q-learning

Algorithm 4:
Online learning
(parametric
form)

Henry Chai - 7/26/22

* Inputs: discount factor y, an initial state s,

learning rate

- Initialize parameters (0

‘Fort=20,1,2, ..

* Gather training sample (s¢, @, 15, Sp1)
- Update oW by taking a step opposite the gradient

®(t+1) «— (")(t) — av(_)(t+1)‘€(®(t), ®(t+1))

where
V@(t+1) {(@(t), @(t+1D

=2y = 0(5,%0%*Y)) V01,05, 0; 0¢+D)

Deep
Q-learning:

Experience
Replay

Henry Chai - 7/26/22

* SGD assumes i.i.d. training samples but in RL, samples are
—2 highly correlated

* Idea: keep a “replay memory” D = {eq, €, ... ,ey} of the N
most recent experiences e, = (s,, at, 1%, St+1) (Lin, 1992)
* Also keeps the agent from “forgetting” about recent
experiences

* Alternate between:
1. Sampling some e; uniformly at random from D and
applying a Q-learning update (repeat T times)

2. Adding a new experience to D

* Can also sample experiences from D according to some
distribution that prioritizes experiences with high error
(Schaul et al., 2016)

- We can use (deep) Q-learning when the reward/transition

functions are unknown and/or when the state/action

Key Ta keaways spaces are too large to be modelled directly

* Also guaranteed to converge under certain assumptions

 Experience replay can help address non-i.i.d. samples

Henry Chai - 7/26/22

