
1 Multiclass Classification

In class, we’ve spent a lot of time discussing binary classification tasks, where our labels
y(n) can take on one of two possible values (e.g., yes or no, good or bad, pass or fail, etc...).
However, many interesting real-world tasks involve more than two possible label values (e.g.,
classifying handwritten digits as one of “0”, “1”, “2”, ..., “9”). This document will walk you
through how we can convert some of the methods we’ve seen in class to handle these kinds
of multiclass classification tasks.

1.1 Multinomial Logistic Regression

Multinomial logistic regression, also known as softmax regression or multiclass logistic re-
gression, is a generalization of binary logistic regression. Suppose we have a dataset D, such
that

D =
{(

x(1), y(1)
)
, . . . ,

(
x(N), y(N)

)}
where x(n) ∈ RD, y(n) ∈ {1, . . . , K} for n = 1, . . . , N

Here, N is the number of training examples, D is the number of features, and K is the
number of possible classes, which in this setting we will assume to be greater than two. In
order to perform multiclass classification, we will manipulate the output of the linear model
such that we obtain the probability that y(n) belongs to each of theK classes. This is possible
through the softmax(·) function,

p
(
Y = y(n) | x(n),Θ

)
=

exp
(
Θy(n)x(n)

)∑K
k=1 exp (Θkx(n))

= softmax(Θx(n))y(n) .

where Θ is a parameter matrix of size K × (D + 1). Each row of Θ corresponds to one of
the K different classes: Θk denotes the kth row of Θ, which is the parameter vector for the
kth class.

Crucially, for each data point, this model outputs a K-length vector. However, the value of
y(n) itself is an integer between 1 and K, inclusive. As such, to define a loss function for this
setting, we need to encode y(n) a way that allows us to calculate the differences between the
predicted probability that y(n) takes a certain value, and the ground truth.

1.1.1 One-hot Encoding

A one-hot encoding is a vector representation of a one dimensional integer defined as such:
a vector c of length K is a one-hot encoding of integer k ⇐⇒ |c| = K and for all j ̸= n,
cj = 0 and ck = 1. For example, if K = 5 and y(n) = 2, then a one-hot encoding of y(n) is:

[0, 1, 0, 0, 0]

In multinomial logistic regression, we form the matrix T where the nth column of T is the
ground truth one-hot encoding of label y(n).

10-601: Introduction to Machine Learning Page 2 of 5

1.1.2 Cross-entropy Loss

So what’s the objective function and how do we optimize it? Like in binary logistic re-
gression, we wish to maximize the conditional log-likelihood of y(n) given some inputs x(n)

and parameters Θ. The difference with multinomial logistic regression is that we wish to
generalize the binary logistic regression conditional log-likelihood formula to the case where
we have multiple labels. This is done with the cross-entropy loss:

J (n)(Θ) = −
K∑
k=1

Tkn log p(Tkn = 1 | x(n),Θ)

where Tkn is the kth element of the nth column of T. This entry corresponds to the whether
or not the nth data point has label k: Tkn = 1 if y(n) = k and Tkn = 0 otherwise.

1.1.3 Connection to Binary Classification

Notice that J (n)(Θ) is a generalization of binary logistic regression’s negative conditional
likelihood objective. To see this, letK = 2 and suppose the labels in binary logistic regression
are one-hot encoded. Then,

J (n)(Θ) = −T0n log p(T0n = 1 | x(n),Θ)−T1n log p(T1n = 1 | x(n),Θ).

More specifically, we know that T0n = 1 when y(n) = 0, and T1n = 1 when y(n) = 1. Thus,
we can make some clever use of notation and express Tkn in this setting as T1n = y(n) and
T0n = 1− y(n). If we plug these expressions into J (n)(Θ) we get,

J (n)(Θ) = −y(n) log p(y(n) = 1 | x(n),Θ)− (1− y(n)) log p((1− y(n)) = 1 | x(n),Θ),

which is the binary logistic regression objective.

1.1.4 Computing Gradients

All that is left now is to take the gradient of J (n)(Θ) (in the general case version) to derive
the stochastic gradient descent update,

Θj = Θj −
∂J (n)(Θ)

∂Θj

.

Note that we are taking a gradient with respect to the jth row of Θ. The reason for this
will become clear with the derivation.

10-601: Introduction to Machine Learning Page 3 of 5

Let’s use the general-case formula for J (n)(Θ) with the softmax equation substituted in for
p(Tkn = 1 | x(n),Θ),

J (n)(Θ) = −
K∑
k=1

Tkn log softmax(Θx(n))k.

Then

∂J (n)(Θ)

∂Θj

= − ∂

∂Θj

K∑
k=1

Tkn log softmax(Θx(n))k

= −
K∑
k=1

Tkn
∂

∂Θj

(
log softmax(Θx(n))k

)
= −

K∑
k=1

Tkn
1

softmax(Θx(n))k

∂

∂Θj

softmax(Θx(n))k.

In order to proceed, we now need to compute the derivative of softmax(Θx(n))k, which
depends on the values of j and k, because that dictates whether the derivative of the softmax
numerator is nonzero. We’ll consider these two cases separately.

If j ̸= k, then

∂

∂Θj

softmax(Θx(n))k =
∂

∂Θj

exp
(
Θkx

(n)
)∑K

c=1 exp (Θcx(n))

= −
exp

(
Θkx

(n)
)(∑K

c=1 exp (Θcx(n))
)2 ∂

∂Θj

(
K∑
c=1

exp
(
Θcx

(n)
))

= −
exp

(
Θkx

(n)
)
exp

(
Θjx

(n)
)(∑K

c=1 exp (Θcx(n))
)2 ∂

∂Θj

(
Θjx

(n)
)

= −
(
softmax(Θx(n))k

) (
softmax(Θx(n))j

) ∂

∂Θj

(
Θjx

(n)
)

∂J (n)(Θ)

∂Θj

= −
K∑
k=1

Tkn

(
−
(
softmax(Θx(n))k

) (
softmax(Θx(n))j

)
∂

∂Θj

(
Θjx

(n)
))

softmax(Θx(n))k

=
K∑
k=1

Tkn

(
softmax(Θx(n))j

) ∂

∂Θj

(
Θjx

(n)
)

10-601: Introduction to Machine Learning Page 4 of 5

Otherwise, if j = k, then

∂

∂Θk

softmax(Θx(n))k =
∂

∂Θk

exp
(
Θkx

(n)
)∑K

c=1 exp (Θcx(n))

=
exp

(
Θkx

(n)
)∑K

c=1 exp (Θcx(n))

∂

∂Θj

(
Θjx

(n)
)

−
exp

(
Θkx

(n)
)
exp

(
Θkx

(n)
)(∑K

c=1 exp (Θcx(n))
)2 ∂

∂Θj

(
Θjx

(n)
)

=
(
softmax(Θx(n))k − softmax(Θx(n))2k

) ∂

∂Θj

(
Θjx

(n)
)

=
(
softmax(Θx(n))k

) (
1− softmax(Θx(n))k

) ∂

∂Θj

(
Θjx

(n)
)

∂J (n)(Θ)

∂Θj

= −
K∑
k=1

Tkn

((
softmax(Θx(n))k

) (
1− softmax(Θx(n))k

)
∂

∂Θj

(
Θjx

(n)
))

softmax(Θx(n))k

= −
K∑
k=1

Tkn

(
1− softmax(Θx(n))j

) ∂

∂Θj

(
Θjx

(n)
)

We can unify these cases using an indicator variable, I[k = j], which equals 1 if k = j and 0
otherwise:

∂J (n)(Θ)

∂Θj

= −
K∑
k=1

Tkn

(
I[k = j]− softmax(Θx(n))k

) ∂

∂Θj

(
Θjx

(n)
)
.

1.2 Multiclass Classification with Neural Networks

At this point, some of you might be wondering why we’ve left ∂
∂Θj

(
Θjx

(n)
)
unsimplified in

the entirety of the derivation above (as we all know by now, ∂
∂Θj

(
Θjx

(n)
)
is just (x(n))T).

While we could have simplified this expression further, leaving it in this form makes the
transition to multiclass neural networks almost trivial.

At a high level, all we need to do in order to go from multinomial logistic regression to
multiclass classification with neural networks is replace the linear model Θjx

(n) with the
output of a (generally but not necessarily) nonlinear neural network hΘ(1),...,Θ(L)(x(n)), where

Θ(1), . . . ,Θ(L) are the weight matrices in each layer of the neural network.

More formally, if our labels come from one of K classes, then the output layer of our neural
network will consist of K nodes, one for each class. We apply a softmax to these outputs

10-601: Introduction to Machine Learning Page 5 of 5

and once again minimize the cross-entropy loss between this and the one-hot encoding of the
true label:

J (n)(Θ) = −
K∑
k=1

Tkn log softmax(hΘ(1),...,Θ(L)(x(n)))k.

Following the derivation above, we can conclude that the gradient of this cross-entropy loss
w.r.t. Θ(l) is just

∂J (n)(Θ)

∂Θ(l)
= −

K∑
k=1

Tkn

(
I[k = j]− softmax(hΘ(1),...,Θ(L)(x(n)))k

) ∂

∂Θ(l)

(
hΘ(1),...,Θ(L)(x(n))

)
.

The two new quantities in this equation, hΘ(1),...,Θ(L)(x(n)) and ∂
∂Θ(l)

(
hΘ(1),...,Θ(L)(x(n))

)
, can

be computed using forward propagation and backpropagation respectively.

	Multiclass Classification
	Multinomial Logistic Regression
	One-hot Encoding
	Cross-entropy Loss
	Connection to Binary Classification
	Computing Gradients

	Multiclass Classification with Neural Networks

