

10-301/601: Introduction to Machine Learning Lecture 7 – MLE & MAP

Henry Chai

6/1/22

Front Matter

- Announcements:
 - HW3 released 5/31 due 6/7 at 1 PM
 - Only one late day allowed on HW3
 - Exam 1 on 6/14, two weeks from yesterday (more details to follow)
 - All topics up to and including *yesterday's* (5/31) lecture are in-scope; today's lecture is out of scope
- Recommended Readings:
 - Mitchell, Estimating Probabilities

Probabilistic Learning

- Previously:
 - (Unknown) Target function, $c^* : \mathcal{X} \rightarrow \mathcal{Y}$
 - Classifier, $h : \mathcal{X} \rightarrow \mathcal{Y}$
 - Goal: find a classifier, h , that best approximates c^*
- Now:
 - (Unknown) Target *distribution*, $y \sim p^*(Y|\mathbf{x})$
 - Distribution, $p(Y|\mathbf{x})$
 - Goal: find a distribution, p , that best approximates p^*

Likelihood

- Given N independent, identically distribution (iid) samples $\mathcal{D} = \{x^{(1)}, \dots, x^{(N)}\}$ of a random variable X
 - If X is discrete with probability mass function (pmf) $p(X|\theta)$, then the *likelihood* of \mathcal{D} is

$$L(\theta) = \prod_{n=1}^N p(x^{(n)}|\theta)$$

- If X is continuous with probability density function (pdf) $f(X|\theta)$, then the *likelihood* of \mathcal{D} is

$$L(\theta) = \prod_{n=1}^N f(x^{(n)}|\theta)$$

Log-Likelihood

- Given N independent, identically distribution (iid) samples $\mathcal{D} = \{x^{(1)}, \dots, x^{(N)}\}$ of a random variable X
 - If X is discrete with probability mass function (pmf) $p(X|\theta)$, then the *log-likelihood* of \mathcal{D} is

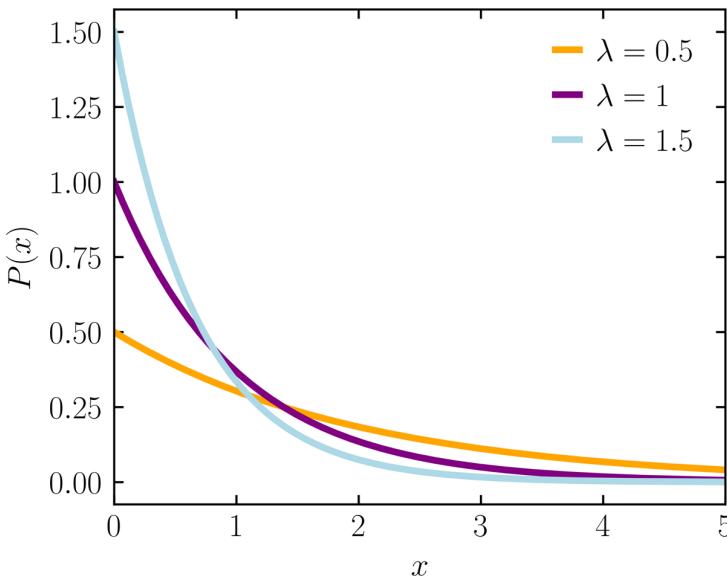
$$\ell(\theta) = \log \prod_{n=1}^N p(x^{(n)}|\theta) = \sum_{n=1}^N \log p(x^{(n)}|\theta)$$

- If X is continuous with probability density function (pdf) $f(X|\theta)$, then the *log-likelihood* of \mathcal{D} is

$$\ell(\theta) = \log \prod_{n=1}^N f(x^{(n)}|\theta) = \sum_{n=1}^N \log f(x^{(n)}|\theta)$$

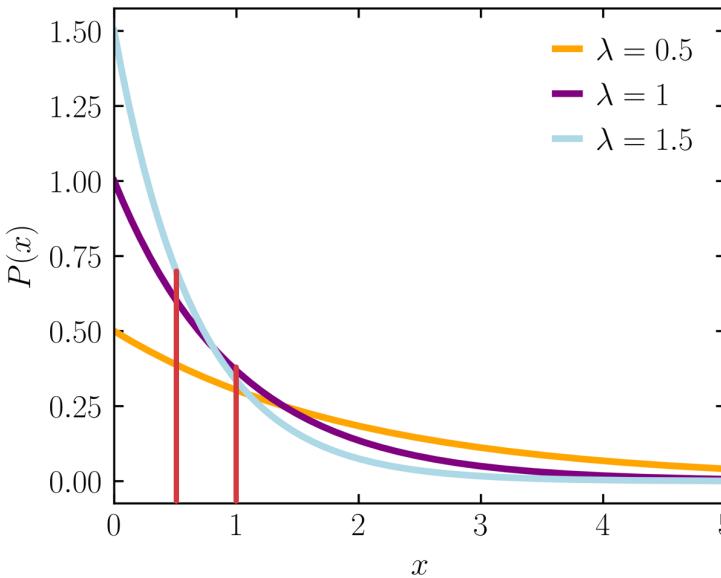
Maximum Likelihood Estimation (MLE)

- Insight: every valid probability distribution has a finite amount of probability mass as it must sum/integrate to 1
- Idea: set the parameter(s) so that the likelihood of the samples is maximized
- Intuition: assign as much of the (finite) probability mass to the observed data *at the expense of unobserved data*
- Example: the exponential distribution



Maximum Likelihood Estimation (MLE)

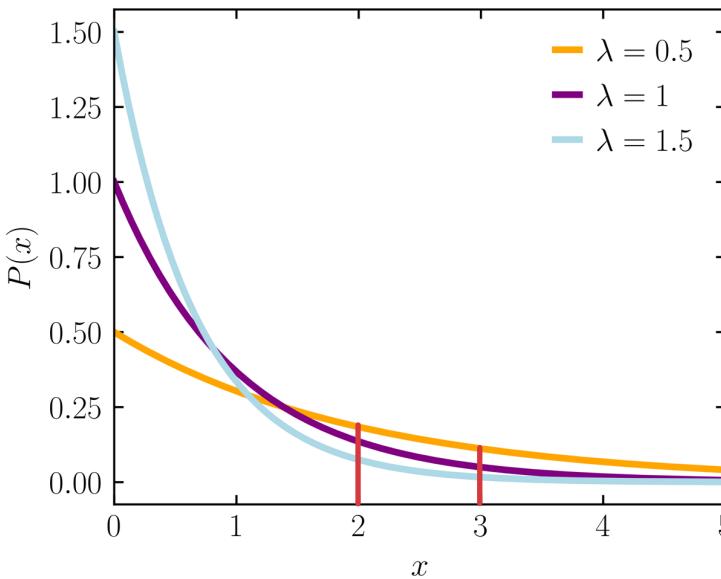
- Insight: every valid probability distribution has a finite amount of probability mass as it must sum/integrate to 1
- Idea: set the parameter(s) so that the likelihood of the samples is maximized
- Intuition: assign as much of the (finite) probability mass to the observed data *at the expense of unobserved data*
- Example: the exponential distribution



$$\{x^{(1)} = 0.5, x^{(2)} = 1\}$$

Maximum Likelihood Estimation (MLE)

- Insight: every valid probability distribution has a finite amount of probability mass as it must sum/integrate to 1
- Idea: set the parameter(s) so that the likelihood of the samples is maximized
- Intuition: assign as much of the (finite) probability mass to the observed data *at the expense of unobserved data*
- Example: the exponential distribution



$$\{x^{(1)} = 2, x^{(2)} = 3\}$$

General Recipe for Machine Learning

- Define a model and model parameters
- Write down an objective function
- Optimize the objective w.r.t. the model parameters

Recipe for MLE

- Define a model and model parameters
 - Specify the *generative story*, i.e., the data generating distribution
- Write down an objective function
 - Maximize the log-likelihood of $\mathcal{D} = \{x^{(1)}, \dots, x^{(N)}\}$
$$\ell(\theta) = \sum_{n=1}^N \log p(x^{(n)}|\theta)$$
- Optimize the objective w.r.t. the model parameters
 - Solve in *closed form*: take partial derivatives, set to 0 and solve

Exponential Distribution MLE

- The pdf of the exponential distribution is

$$f(x|\lambda) = \lambda e^{-\lambda x}$$

- Given N iid samples $\{x^{(1)}, \dots, x^{(N)}\}$, the likelihood is

$$L(\lambda) = \prod_{n=1}^N f(x^{(n)}|\lambda) = \prod_{n=1}^N \lambda e^{-\lambda x^{(n)}}$$

Exponential Distribution

MLE

- The pdf of the exponential distribution is

$$f(x|\lambda) = \lambda e^{-\lambda x}$$

- Given N iid samples $\{x^{(1)}, \dots, x^{(N)}\}$, the log-likelihood is

$$\ell(\lambda) = \sum_{n=1}^N \log f(x^{(n)}|\lambda) = \sum_{n=1}^N \log \lambda e^{-\lambda x^{(n)}}$$

$$= \sum_{n=1}^N \log \lambda + \log e^{-\lambda x^{(n)}} = N \log \lambda - \lambda \sum_{n=1}^N x^{(n)}$$

- Taking the partial derivative and setting it equal to 0 gives

$$\frac{\partial \ell}{\partial \lambda} = \frac{N}{\lambda} - \sum_{n=1}^N x^{(n)}$$

Exponential Distribution

MLE

- The pdf of the exponential distribution is

$$f(x|\lambda) = \lambda e^{-\lambda x}$$

- Given N iid samples $\{x^{(1)}, \dots, x^{(N)}\}$, the log-likelihood is

$$\ell(\lambda) = \sum_{n=1}^N \log f(x^{(n)}|\lambda) = \sum_{n=1}^N \log \lambda e^{-\lambda x^{(n)}}$$

$$= \sum_{n=1}^N \log \lambda + \log e^{-\lambda x^{(n)}} = N \log \lambda - \lambda \sum_{n=1}^N x^{(n)}$$

- Taking the partial derivative and setting it equal to 0 gives

$$\frac{N}{\hat{\lambda}} - \sum_{n=1}^N x^{(n)} = 0 \rightarrow \frac{N}{\hat{\lambda}} = \sum_{n=1}^N x^{(n)} \rightarrow \hat{\lambda} = \frac{N}{\sum_{n=1}^N x^{(n)}}$$

Bernoulli Distribution MLE

- A Bernoulli random variable takes value 1 with probability ϕ and value 0 with probability $1 - \phi$
- The pmf of the Bernoulli distribution is

$$p(x|\phi) = \phi^x(1 - \phi)^{1-x}$$

Coin Flipping MLE

- A Bernoulli random variable takes value **1** (or heads) with probability ϕ and value **0** (or tails) with probability $1 - \phi$
- The pmf of the Bernoulli distribution is

$$p(x|\phi) = \phi^x (1 - \phi)^{1-x}$$

- Given N iid samples $\{x^{(1)}, \dots, x^{(N)}\}$, the log-likelihood is

$$\ell(\phi) = \sum_{n=1}^N \log p(x^{(n)}|\phi) = \sum_{n=1}^N \log \phi^{x^{(n)}} (1 - \phi)^{1-x^{(n)}}$$

$$\begin{aligned} &= \sum_{n=1}^N x \log \phi + (1 - x) \log(1 - \phi) \\ &= N_1 \log \phi + N_0 \log(1 - \phi) \end{aligned}$$

- where N_1 is the number of **1**'s in $\{x^{(1)}, \dots, x^{(N)}\}$ and N_0 is the number of **0**'s

Coin Flipping MLE

- A Bernoulli random variable takes value **1** (or heads) with probability ϕ and value **0** (or tails) with probability $1 - \phi$
- The pmf of the Bernoulli distribution is

$$p(x|\phi) = \phi^x(1 - \phi)^{1-x}$$

- The partial derivative of the log-likelihood is

$$\frac{\partial \ell}{\partial \phi} = \frac{N_1}{\phi} - \frac{N_0}{1 - \phi}$$

- where N_1 is the number of **1**'s in $\{x^{(1)}, \dots, x^{(N)}\}$ and N_0 is the number of **0**'s

Coin Flipping MLE

- A Bernoulli random variable takes value **1** (or heads) with probability ϕ and value **0** (or tails) with probability $1 - \phi$
- The pmf of the Bernoulli distribution is
$$p(x|\phi) = \phi^x(1 - \phi)^{1-x}$$
- The partial derivative of the log-likelihood is

$$\frac{N_1}{\hat{\phi}} - \frac{N_0}{1 - \hat{\phi}} = 0 \rightarrow \frac{N_1}{\hat{\phi}} = \frac{N_0}{1 - \hat{\phi}}$$

$$\rightarrow N_1(1 - \hat{\phi}) = N_0\hat{\phi} \rightarrow N_1 = \hat{\phi}(N_0 + N_1)$$

$$\rightarrow \hat{\phi} = \frac{N_1}{N_0 + N_1}$$

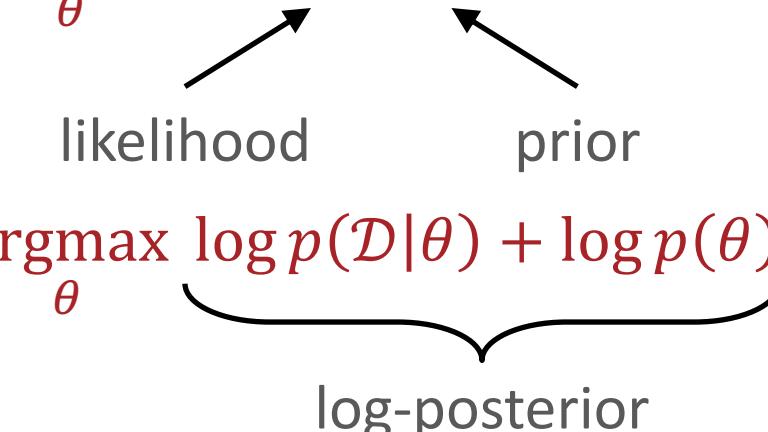
- where N_1 is the number of **1**'s in $\{x^{(1)}, \dots, x^{(N)}\}$ and N_0 is the number of **0**'s

**Given the result of your 4 coin flips, what is the MLE of ϕ for
your coin?**

0/4
1/4
2/4
3/4
4/4

Maximum a Posteriori (MAP) Estimation

- Insight: sometimes we have *prior* information we want to incorporate into parameter estimation
- Idea: use Bayes rule to reason about the *posterior* distribution over the parameters

- MLE finds $\hat{\theta} = \operatorname{argmax}_{\theta} p(\mathcal{D}|\theta)$
- MAP finds
$$\begin{aligned}\hat{\theta} &= \operatorname{argmax}_{\theta} p(\theta|\mathcal{D}) \\ &= \operatorname{argmax}_{\theta} p(\mathcal{D}|\theta)p(\theta)/p(\mathcal{D}) \\ &= \operatorname{argmax}_{\theta} p(\mathcal{D}|\theta)p(\theta)\end{aligned}$$

$$= \operatorname{argmax}_{\theta} \underbrace{\log p(\mathcal{D}|\theta) + \log p(\theta)}_{\text{log-posterior}}$$

Recipe for MAP

- Define a model and model parameters
 - Specify the *generative story*, i.e., the data generating distribution, including a *prior distribution*
(how do we pick a prior???)
- Write down an objective function
 - Maximize the log-posterior of $\mathcal{D} = \{x^{(1)}, \dots, x^{(N)}\}$
$$\ell_{MAP}(\theta) = \log p(\theta) + \sum_{n=1}^N \log p(x^{(n)}|\theta)$$
- Optimize the objective w.r.t. the model parameters
 - Solve in *closed form*: take partial derivatives, set to 0 and solve

Coin Flipping MAP

- A Bernoulli random variable takes value **1** (or heads) with probability ϕ and value **0** (or tails) with probability $1 - \phi$

- The pmf of the Bernoulli distribution is

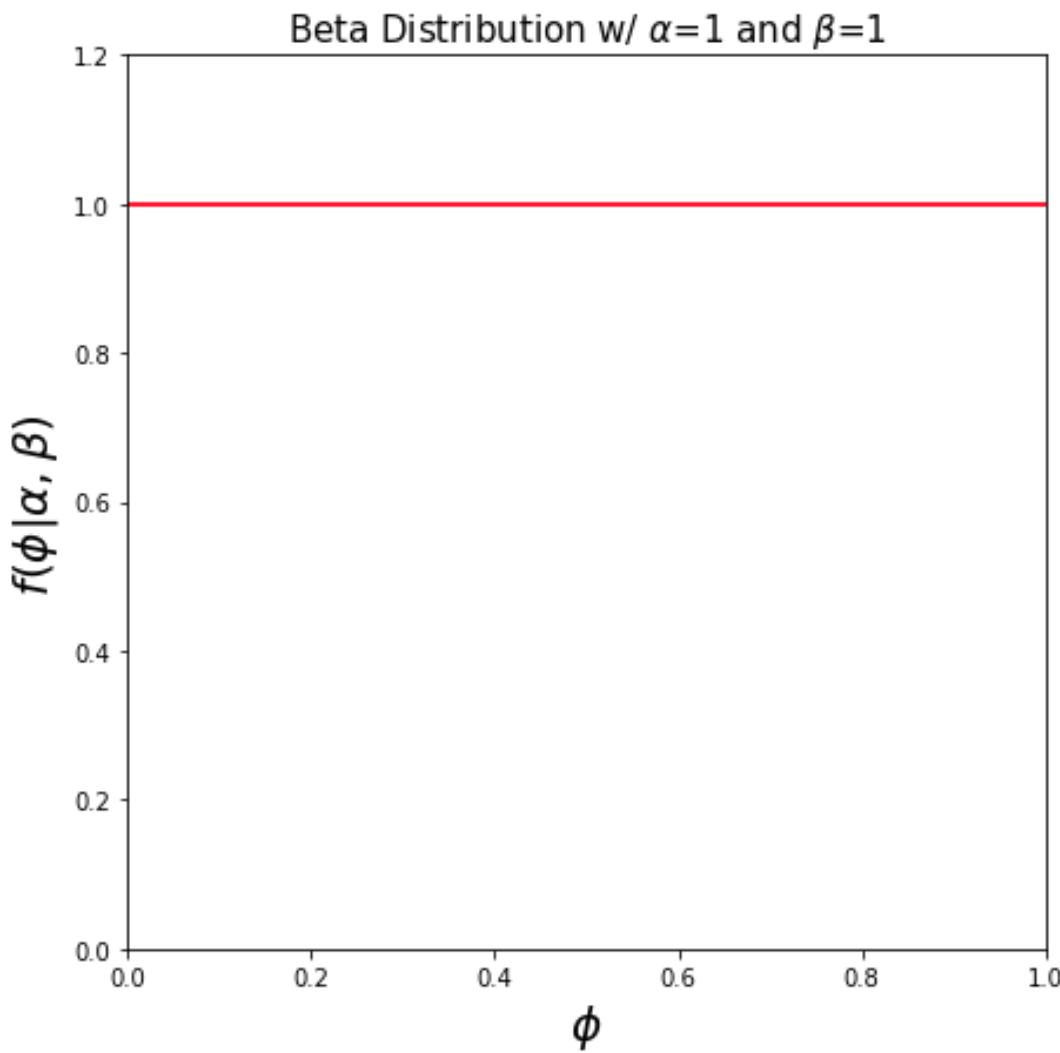
$$p(x|\phi) = \phi^x(1 - \phi)^{1-x}$$

- Assume a Beta prior over the parameter ϕ , which has pdf

$$f(\phi|\alpha, \beta) = \frac{\phi^{\alpha-1}(1 - \phi)^{\beta-1}}{B(\alpha, \beta)}$$

- where $B(\alpha, \beta) = \int_0^1 \phi^{\alpha-1}(1 - \phi)^{\beta-1} d\phi$ is a normalizing constant to ensure the distribution integrates to **1**

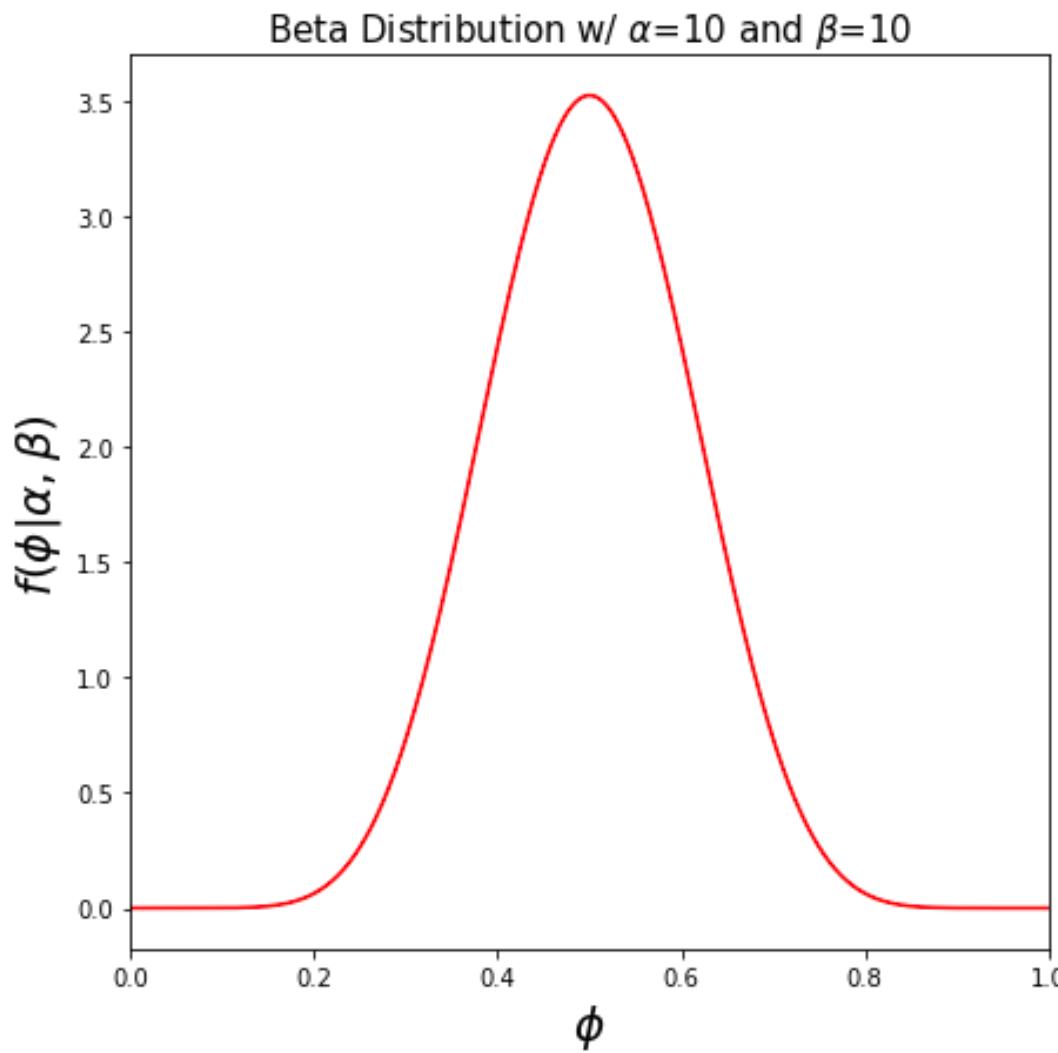
Beta Distribution



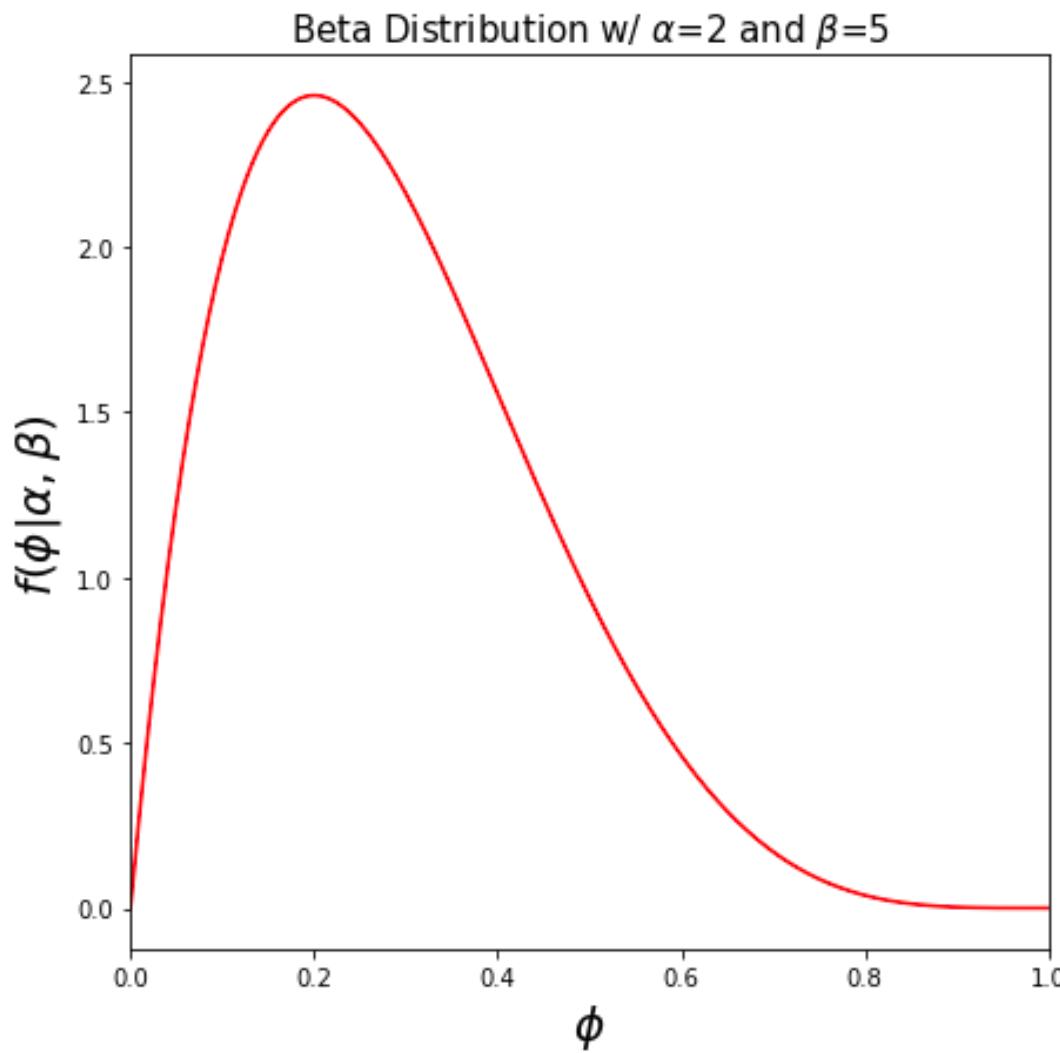
Beta Distribution



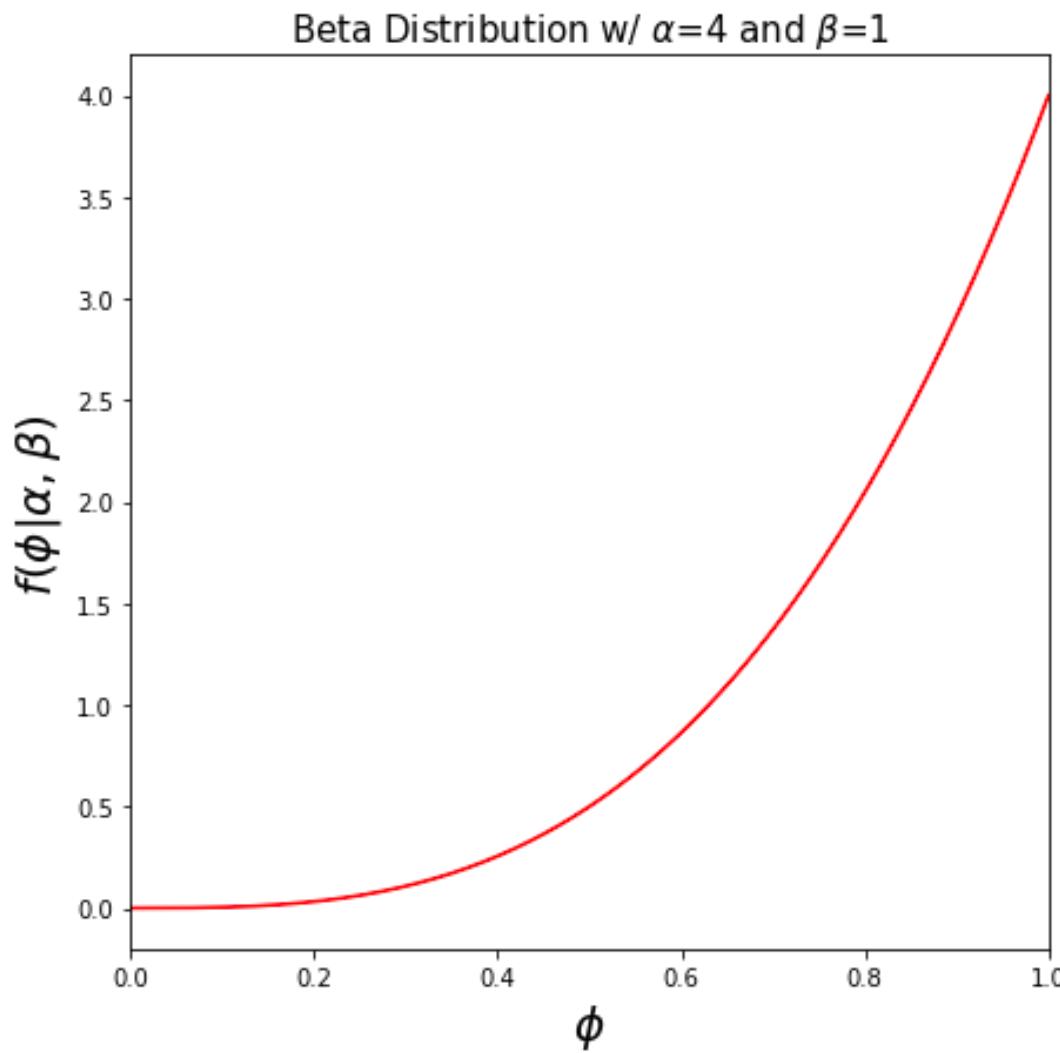
Beta Distribution



Beta Distribution



Beta Distribution



Coin Flipping MAP

- Given N iid samples $\{x^{(1)}, \dots, x^{(N)}\}$, the log-posterior is

$$\begin{aligned}\ell(\phi) &= \log f(\phi|\alpha, \beta) + \sum_{n=1}^N \log p(x^{(n)}|\phi) \\ &= \log \frac{\phi^{\alpha-1}(1-\phi)^{\beta-1}}{\text{B}(\alpha, \beta)} + \sum_{n=1}^N \log \phi^{x^{(n)}}(1-\phi)^{1-x^{(n)}} \\ &= (\alpha-1)\log\phi + (\beta-1)\log(1-\phi) - \log\text{B}(\alpha, \beta) \\ &\quad + \sum_{n=1}^N x^{(n)}\log\phi + (1-x^{(n)})\log(1-\phi) \\ &= (\alpha-1+N_1)\log\phi + (\beta-1+N_0)\log(1-\phi) \\ &\quad - \log\text{B}(\alpha, \beta)\end{aligned}$$

Coin Flipping MAP

- Given N iid samples $\{x^{(1)}, \dots, x^{(N)}\}$, the partial derivative of the log-posterior is

$$\frac{\partial \ell}{\partial \phi} = \frac{(\alpha - 1 + N_1)}{\phi} - \frac{(\beta - 1 + N_0)}{1 - \phi}$$

⋮

$$\rightarrow \hat{\phi}_{MAP} = \frac{(\alpha - 1 + N_1)}{(\beta - 1 + N_0) + (\alpha - 1 + N_1)}$$

- $\alpha - 1$ is a “pseudocount” of the number of **1**’s (or heads) you’ve “observed”
- $\beta - 1$ is a “pseudocount” of the number of **0**’s (or tails) you’ve “observed”

Coin Flipping MAP: Example

- Suppose \mathcal{D} consists of ten 1's or heads ($N_1 = 10$) and two 0's or tails ($N_0 = 2$):

$$\phi_{MLE} = \frac{10}{10 + 2} = \frac{10}{12}$$

- Using a Beta prior with $\alpha = 2$ and $\beta = 5$, then

$$\phi_{MAP} = \frac{(2 - 1 + 10)}{(2 - 1 + 10) + (5 - 1 + 2)} = \frac{11}{17} < \frac{10}{12}$$

Coin Flipping MAP: Example

- Suppose \mathcal{D} consists of ten 1's or heads ($N_1 = 10$) and two 0's or tails ($N_0 = 2$):

$$\phi_{MLE} = \frac{10}{10 + 2} = \frac{10}{12}$$

- Using a Beta prior with $\alpha = 101$ and $\beta = 101$, then

$$\phi_{MAP} = \frac{(101 - 1 + 10)}{(101 - 1 + 10) + (101 - 1 + 2)} = \frac{110}{212} \approx \frac{1}{2}$$

Coin Flipping MAP: Example

- Suppose \mathcal{D} consists of ten 1's or heads ($N_1 = 10$) and two 0's or tails ($N_0 = 2$):

$$\phi_{MLE} = \frac{10}{10 + 2} = \frac{10}{12}$$

- Using a Beta prior with $\alpha = 1$ and $\beta = 1$, then

$$\phi_{MAP} = \frac{(1 - 1 + 10)}{(1 - 1 + 10) + (1 - 1 + 2)} = \frac{10}{12} = \phi_{MLE}$$

Key Takeaways

- Probabilistic learning tries to learn a probability distribution as opposed to a classifier
- Two ways of estimating the parameters of a probability distribution given samples of a random variable:
 - Maximum likelihood estimation – maximize the (log-)likelihood of the observations
 - Maximum a posteriori estimation – maximize the (log-)posterior of the parameters conditioned on the observations
 - Requires a prior distribution, drawn from background knowledge or domain expertise