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Front Matter

� Announcements: 

� HW3 released 5/31 due 6/7 at 1 PM 

� Only one late day allowed on HW3

� Exam 1 on 6/14, two weeks from yesterday (more 

details to follow)

� All topics up to and including yesterday’s (5/31) 
lecture are in-scope; today’s lecture is out of scope

� Recommended Readings:

� Mitchell, Estimating Probabilities
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http://www.cs.cmu.edu/~tom/mlbook/Joint_MLE_MAP.pdf
http://www.cs.cmu.edu/~tom/mlbook/Joint_MLE_MAP.pdf


Probabilistic 
Learning

� Previously: 
� (Unknown) Target function, 𝑐∗: 𝒳 → 𝒴

� Classifier, ℎ ∶ 𝒳 → 𝒴

� Goal: find a classifier, ℎ, that best approximates 𝑐∗

� Now:

� (Unknown) Target distribution, 𝑦 ∼ 𝑝∗ 𝑌 𝒙

� Distribution, 𝑝 𝑌 𝒙

� Goal: find a distribution, 𝑝, that best approximates 𝑝∗
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Likelihood 

� Given 𝑁 independent, identically distribution (iid) 

samples 𝒟 = 𝑥 " , … , 𝑥 # of a random variable 𝑋

� If 𝑋 is discrete with probability mass function (pmf) 

𝑝 𝑋|𝜃 , then the likelihood of 𝒟 is 

𝐿 𝜃 =7
$%"

#

𝑝 𝑥 $ |𝜃

� If 𝑋 is continuous with probability density function 

(pdf) 𝑓 𝑋|𝜃 , then the likelihood of 𝒟 is 

𝐿 𝜃 =7
$%"

#

𝑓 𝑥 $ |𝜃
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Log-Likelihood 

� Given 𝑁 independent, identically distribution (iid) 

samples 𝒟 = 𝑥 " , … , 𝑥 # of a random variable 𝑋

� If 𝑋 is discrete with probability mass function (pmf) 

𝑝 𝑋|𝜃 , then the log-likelihood of 𝒟 is 

ℓ 𝜃 = log7
$%"

#

𝑝 𝑥 $ |𝜃 = =
$%"

#

log 𝑝 𝑥 $ |𝜃

� If 𝑋 is continuous with probability density function 

(pdf) 𝑓 𝑋|𝜃 , then the log-likelihood of 𝒟 is 

ℓ 𝜃 = log7
$%"

#

𝑓 𝑥 $ |𝜃 = =
$%"

#

log 𝑓 𝑥 $ |𝜃
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Maximum 
Likelihood 
Estimation 
(MLE)

� Insight: every valid probability distribution has a finite 

amount of probability mass as it must sum/integrate to 1

� Idea: set the parameter(s) so that the likelihood of the 
samples is maximized

� Intuition: assign as much of the (finite) probability mass 
to the observed data at the expense of unobserved data

� Example: the 
exponential 
distribution 
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Maximum 
Likelihood 
Estimation 
(MLE)

� Insight: every valid probability distribution has a finite 

amount of probability mass as it must sum/integrate to 1

� Idea: set the parameter(s) so that the likelihood of the 
samples is maximized

� Intuition: assign as much of the (finite) probability mass 
to the observed data at the expense of unobserved data

� Example: the 
exponential 
distribution 
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>
?

𝑥 " = 0.5,
𝑥 & = 1

Source: https://en.wikipedia.org/wiki/Exponential_distribution#/media/File:Exponential_probability_density.svg

https://en.wikipedia.org/wiki/Exponential_distribution


Maximum 
Likelihood 
Estimation 
(MLE)

� Insight: every valid probability distribution has a finite 

amount of probability mass as it must sum/integrate to 1

� Idea: set the parameter(s) so that the likelihood of the 
samples is maximized

� Intuition: assign as much of the (finite) probability mass 
to the observed data at the expense of unobserved data

� Example: the 
exponential 
distribution 
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>
?

𝑥 " = 2,
𝑥 & = 3

Source: https://en.wikipedia.org/wiki/Exponential_distribution#/media/File:Exponential_probability_density.svg

https://en.wikipedia.org/wiki/Exponential_distribution


� Define a model and model parameters
� Specify the generative story, i.e., the data generating 

distribution

� Write down an objective function
� Maximize the (log-)likelihood of 𝒟 = 𝑥 " , … , 𝑥 #

� Optimize the objective w.r.t. the model parameters
� Solve in closed form: take partial derivatives,           

set to 0 and solve

General 
Recipe 
for 
Machine 
Learning
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� Define a model and model parameters
� Specify the generative story, i.e., the data generating 

distribution

� Write down an objective function
� Maximize the log-likelihood of 𝒟 = 𝑥 " , … , 𝑥 #

� Optimize the objective w.r.t. the model parameters
� Solve in closed form: take partial derivatives,           

set to 0 and solve

Recipe 
for 
MLE
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ℓ 𝜃 = =
$%"

#

log 𝑝 𝑥 $ |𝜃



� The pdf of the exponential distribution is 
𝑓 𝑥|𝜆 = 𝜆𝑒'()

� Given 𝑁 iid samples 𝑥 " , … , 𝑥 # , the likelihood is

𝐿 𝜆 =7
$%"

#

𝑓 𝑥 $ |𝜆 =7
$%"

#

𝜆𝑒'() !

ℓ 𝜆 = =
$%"

#

log 𝜆 + log 𝑒'() ! = 𝑁 log 𝜆 − 𝜆=
$%"

#

𝑥 $

� Taking the partial derivative and setting it equal to 0 gives

𝜕ℓ
𝜕𝜆

=
𝑁
𝜆
−=
$%"

#

𝑥 $

Exponential 
Distribution
MLE
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� The pdf of the exponential distribution is 
𝑓 𝑥|𝜆 = 𝜆𝑒'()

� Given 𝑁 iid samples 𝑥 " , … , 𝑥 # , the log-likelihood is

ℓ 𝜆 = =
$%"

#

log 𝑓 𝑥 $ |𝜆 = =
$%"

#

log 𝜆𝑒'() !

ℓ 𝜆 = =
$%"

#

log 𝜆 + log 𝑒'() ! = 𝑁 log 𝜆 − 𝜆=
$%"

#

𝑥 $

� Taking the partial derivative and setting it equal to 0 gives

𝜕ℓ
𝜕𝜆

=
𝑁
𝜆
−=
$%"

#

𝑥 $

Exponential 
Distribution
MLE
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� The pdf of the exponential distribution is 
𝑓 𝑥|𝜆 = 𝜆𝑒'()

� Given 𝑁 iid samples 𝑥 " , … , 𝑥 # , the log-likelihood is

ℓ 𝜆 = =
$%"

#

log 𝑓 𝑥 $ |𝜆 = =
$%"

#

log 𝜆𝑒'() !

ℓ 𝜆 = =
$%"

#

log 𝜆 + log 𝑒'() ! = 𝑁 log 𝜆 − 𝜆=
$%"

#

𝑥 $

� Taking the partial derivative and setting it equal to 0 gives

𝜕ℓ
𝜕𝜆

=
𝑁
K𝜆
−=
$%"

#

𝑥 $ = 0 →
𝑁
K𝜆
= =

$%"

#

𝑥 $ → K𝜆 =
𝑁

∑$%"# 𝑥 $

Exponential 
Distribution
MLE
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Bernoulli 
Distribution
MLE
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� A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙) 1 − 𝜙 "')

� Given 𝑁 iid samples 𝑥 " , … , 𝑥 # , the log-likelihood is

𝜕ℓ
𝜕𝜙

=
𝑁"
N𝜙
−

𝑁*
1 − N𝜙

= 0 →
𝑁"
N𝜙
=

𝑁*
1 − N𝜙

𝜕ℓ
𝜕𝜙

→ 𝑁" 1 − N𝜙 = 𝑁* N𝜙 → 𝑁" = N𝜙 𝑁* +𝑁"

𝜕ℓ
𝜕𝜙

→ N𝜙 =
𝑁"

𝑁* +𝑁"
� where 𝑁" is the number of 1’s in 𝑥 " , … , 𝑥 # and 𝑁* is 

the number of 0’s



Coin 
Flipping
MLE
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� A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙) 1 − 𝜙 "')

� Given 𝑁 iid samples 𝑥 " , … , 𝑥 # , the log-likelihood is

ℓ 𝜙 = =
$%"

#

log 𝑝 𝑥 $ |𝜙 = =
$%"

#

log𝜙) ! 1 − 𝜙 "') !

ℓ 𝜙 = =
$%"

#

𝑥 log𝜙 + 1 − 𝑥 log 1 − 𝜙

ℓ 𝜙 = 𝑁" log𝜙 + 𝑁* log 1 − 𝜙

� where 𝑁" is the number of 1’s in 𝑥 " , … , 𝑥 # and 𝑁* is 
the number of 0’s



Coin 
Flipping
MLE
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� A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙) 1 − 𝜙 "')

� The partial derivative of the log-likelihood is

𝜕ℓ
𝜕𝜙

=
𝑁"
𝜙
−

𝑁*
1 − 𝜙

= 0 →
𝑁"
N𝜙
=

𝑁*
1 − N𝜙

𝜕ℓ
𝜕𝜙

→ 𝑁" 1 − N𝜙 = 𝑁* N𝜙 → 𝑁" = N𝜙 𝑁* +𝑁"

𝜕ℓ
𝜕𝜙

→ N𝜙 =
𝑁"

𝑁* +𝑁"
� where 𝑁" is the number of 1’s in 𝑥 " , … , 𝑥 # and 𝑁* is 

the number of 0’s



Coin 
Flipping
MLE
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� A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙) 1 − 𝜙 "')

� The partial derivative of the log-likelihood is

𝜕ℓ
𝜕𝜙

=
𝑁"
N𝜙
−

𝑁*
1 − N𝜙

= 0 →
𝑁"
N𝜙
=

𝑁*
1 − N𝜙

𝜕ℓ
𝜕𝜙

→ 𝑁" 1 − N𝜙 = 𝑁* N𝜙 → 𝑁" = N𝜙 𝑁* +𝑁"

𝜕ℓ
𝜕𝜙

→ N𝜙 =
𝑁"

𝑁* +𝑁"
� where 𝑁" is the number of 1’s in 𝑥 " , … , 𝑥 # and 𝑁* is 

the number of 0’s





� Insight: sometimes we have prior information we want 
to incorporate into parameter estimation

� Idea: use Bayes rule to reason about the posterior
distribution over the parameters

� MLE finds N𝜃 = argmax
+

𝑝 𝒟 𝜃

� MAP finds N𝜃 = argmax
+

𝑝 𝜃 𝒟

MAP finds N𝜃 = argmax
+

𝑝 𝒟 𝜃 𝑝 𝜃 /𝑝 𝒟

MAP finds N𝜃 = argmax
+

𝑝 𝒟 𝜃 𝑝 𝜃 /𝑝 𝒟

MAP finds N𝜃. = argmax
+

log 𝑝 𝒟 𝜃 + log 𝑝 𝜃

Maximum a 
Posteriori 
(MAP) 
Estimation
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likelihood prior

log-posterior



� Define a model and model parameters
� Specify the generative story, i.e., the data generating 

distribution, including a prior distribution 

� Write down an objective function
� Maximize the log-posterior of 𝒟 = 𝑥 " , … , 𝑥 #

� Optimize the objective w.r.t. the model parameters
� Solve in closed form: take partial derivatives,           

set to 0 and solve

Recipe 
for 
MAP
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ℓ,-. 𝜃 = log 𝑝 𝜃 +=
$%"

#

log 𝑝 𝑥 $ |𝜃

(how do we pick a prior???)



Coin 
Flipping
MAP
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� A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙) 1 − 𝜙 "')

� Assume a Beta prior over the parameter 𝜙, which has pdf

𝑓 𝜙 𝛼, 𝛽 =
𝜙/'" 1 − 𝜙 0'"

Β 𝛼, 𝛽

� where Β 𝛼, 𝛽 = ∫*
"𝜙/'" 1 − 𝜙 0'"𝑑𝜙 is a normalizing 

constant to ensure the distribution integrates to 1



Beta 
Distribution
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Beta 
Distribution
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Beta 
Distribution
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Beta 
Distribution

Henry Chai - 6/1/22 25



Beta 
Distribution
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Coin 
Flipping
MAP
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� Given 𝑁 iid samples 𝑥 " , … , 𝑥 # , the log-posterior is

ℓ 𝜙 = log 𝑓 𝜙 𝛼, 𝛽 +=
$%"

#

log 𝑝 𝑥 $ 𝜙

ℓ 𝜙 = log
𝜙/'" 1 − 𝜙 0'"

Β 𝛼, 𝛽
+=
$%"

#

log𝜙) ! 1 − 𝜙 "') !

ℓ 𝜙 = 𝛼 − 1 log𝜙 + 𝛽 − 1 log 1 − 𝜙 − log Β 𝛼, 𝛽

ℓ 𝜙 = +=
$%"

#

𝑥 $ log𝜙 + 1 − 𝑥 $ log 1 − 𝜙

ℓ 𝜙 = 𝛼 − 1 + 𝑁" log𝜙 + 𝛽 − 1 + 𝑁* log 1 − 𝜙
ℓ 𝜙 = − log Β 𝛼, 𝛽



Coin 
Flipping
MAP

Henry Chai - 6/1/22 28

� Given 𝑁 iid samples 𝑥 " , … , 𝑥 # , the partial derivative of 
the log-posterior is
𝜕ℓ
𝜕𝜙

=
𝛼 − 1 + 𝑁"

𝜙
−

𝛽 − 1 + 𝑁*
1 − 𝜙

⋮

→ N𝜙,-. =
𝛼 − 1 + 𝑁"

𝛽 − 1 + 𝑁* + 𝛼 − 1 + 𝑁"
�𝛼 − 1 is a “pseudocount” of the number of 1’s (or heads) 

you’ve “observed” 

�𝛽 − 1 is a “pseudocount” of the number of 0’s (or tails) 
you’ve “observed”



Coin 
Flipping
MAP:
Example
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� Suppose 𝒟 consists of ten 1’s or heads (𝑁" = 10) and     

two 0’s or tails (𝑁* = 2):

𝜙,12 =
10

10 + 2 =
10
12

� Using a Beta prior with 𝛼 = 2 and 𝛽 = 5, then

𝜙,-. =
(2 − 1 + 10)

(2 − 1 + 10) + (5 − 1 + 2)
=
11
17

<
10
12



Coin 
Flipping
MAP:
Example
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� Suppose 𝒟 consists of ten 1’s or heads (𝑁" = 10) and     

two 0’s or tails (𝑁* = 2):

𝜙,12 =
10

10 + 2 =
10
12

� Using a Beta prior with 𝛼 = 101 and 𝛽 = 101, then

𝜙,-. =
(101 − 1 + 10)

(101 − 1 + 10) + (101 − 1 + 2)
=
110
212

≈
1
2



Coin 
Flipping
MAP:
Example
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� Suppose 𝒟 consists of ten 1’s or heads (𝑁" = 10) and     

two 0’s or tails (𝑁* = 2):

𝜙,12 =
10

10 + 2 =
10
12

� Using a Beta prior with 𝛼 = 1 and 𝛽 = 1, then

𝜙,-. =
(1 − 1 + 10)

(1 − 1 + 10) + (1 − 1 + 2)
=
10
12

= 𝜙,12



Key Takeaways

� Probabilistic learning tries to learn a probability 

distribution as opposed to a classifier

� Two ways of estimating the parameters of a probability 
distribution given samples of a random variable:

� Maximum likelihood estimation – maximize the 
(log-)likelihood of the observations

� Maximum a posteriori estimation – maximize the 
(log-)posterior of the parameters conditioned on the 

observations

� Requires a prior distribution, drawn from
background knowledge or domain expertise
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