

Introduction to Machine Learning

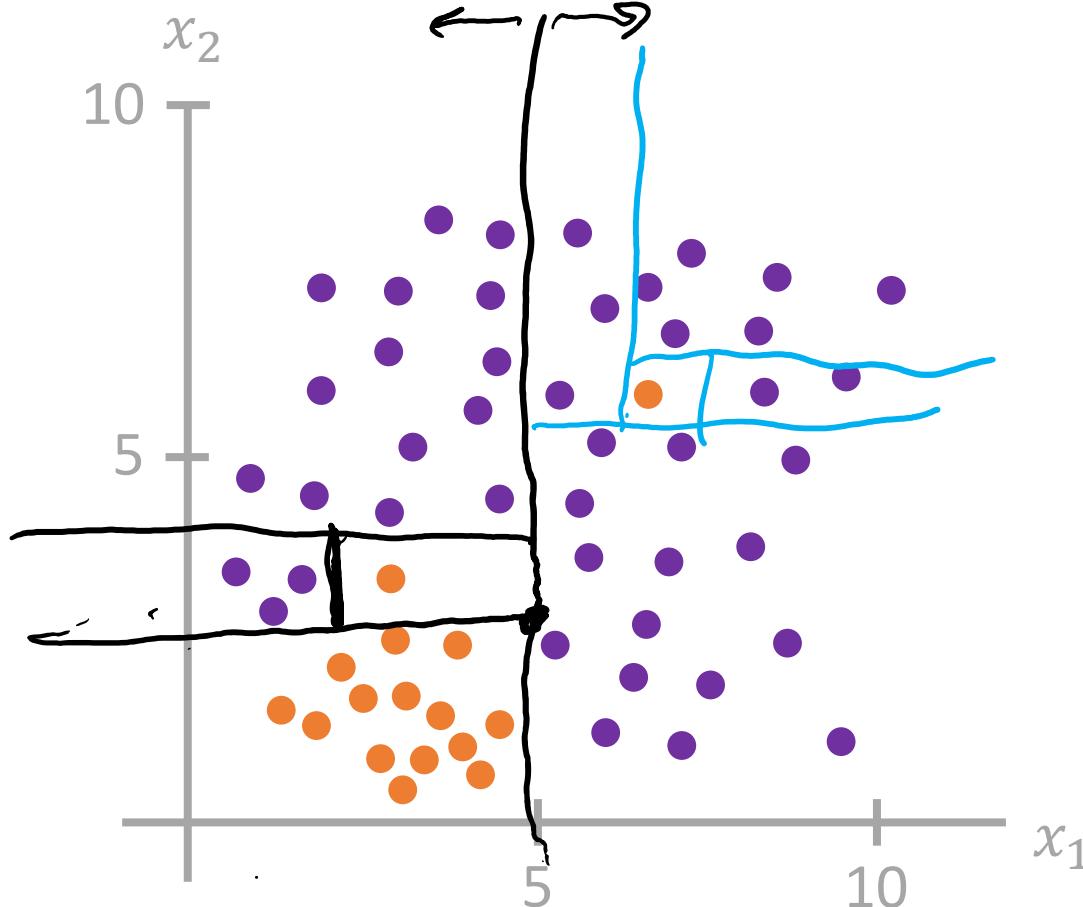
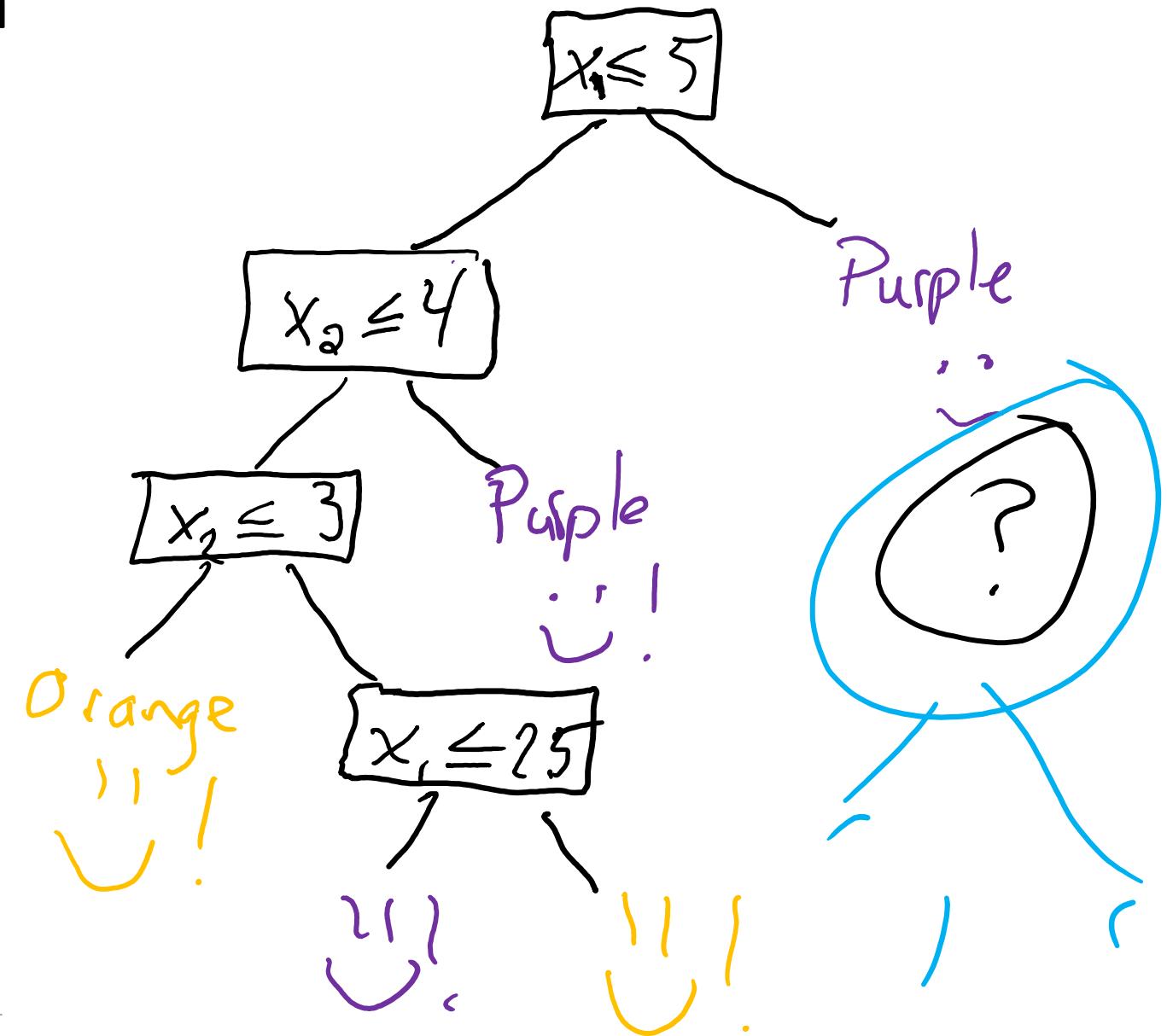
Nearest Neighbor and Model Selection

Instructor: Pat Virtue

Warm-up as you walk in

Consider input features $x \in \mathbb{R}^2$.

Draw a reasonable decision tree.



Poll 1

Decision tree generalization

Which of the following generalize best to unseen examples?

- A. Small tree with low training accuracy
- B. Large tree with low training accuracy
- C. Small tree with high training accuracy
- D. Large tree with high training accuracy

Poll 1

Decision tree generalization

Which of the following generalize best to unseen examples?

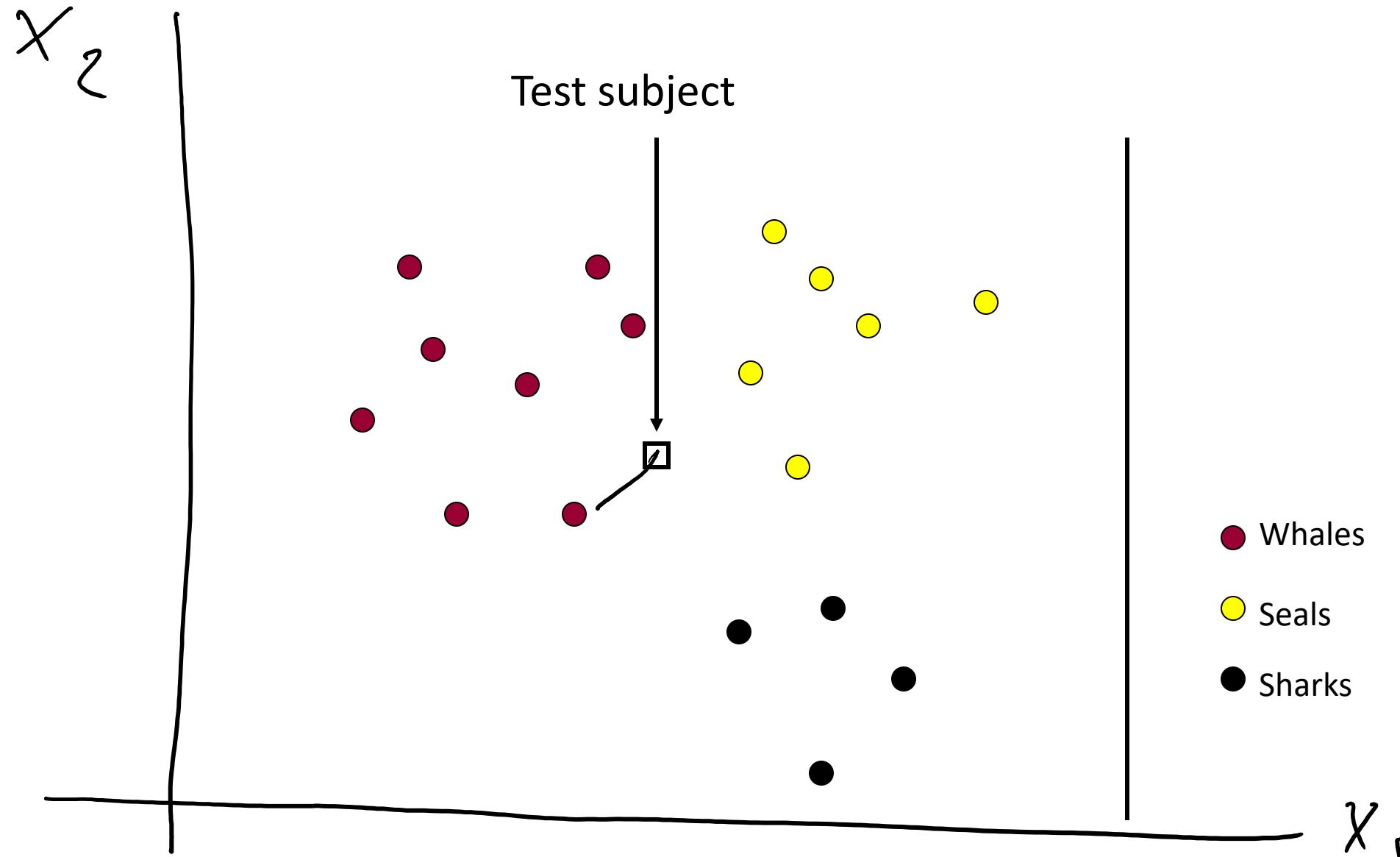
- A. Small tree with low training accuracy
- B. Large tree with low training accuracy
- C. Small tree with high training accuracy
- D. Large tree with high training accuracy

Poll 2

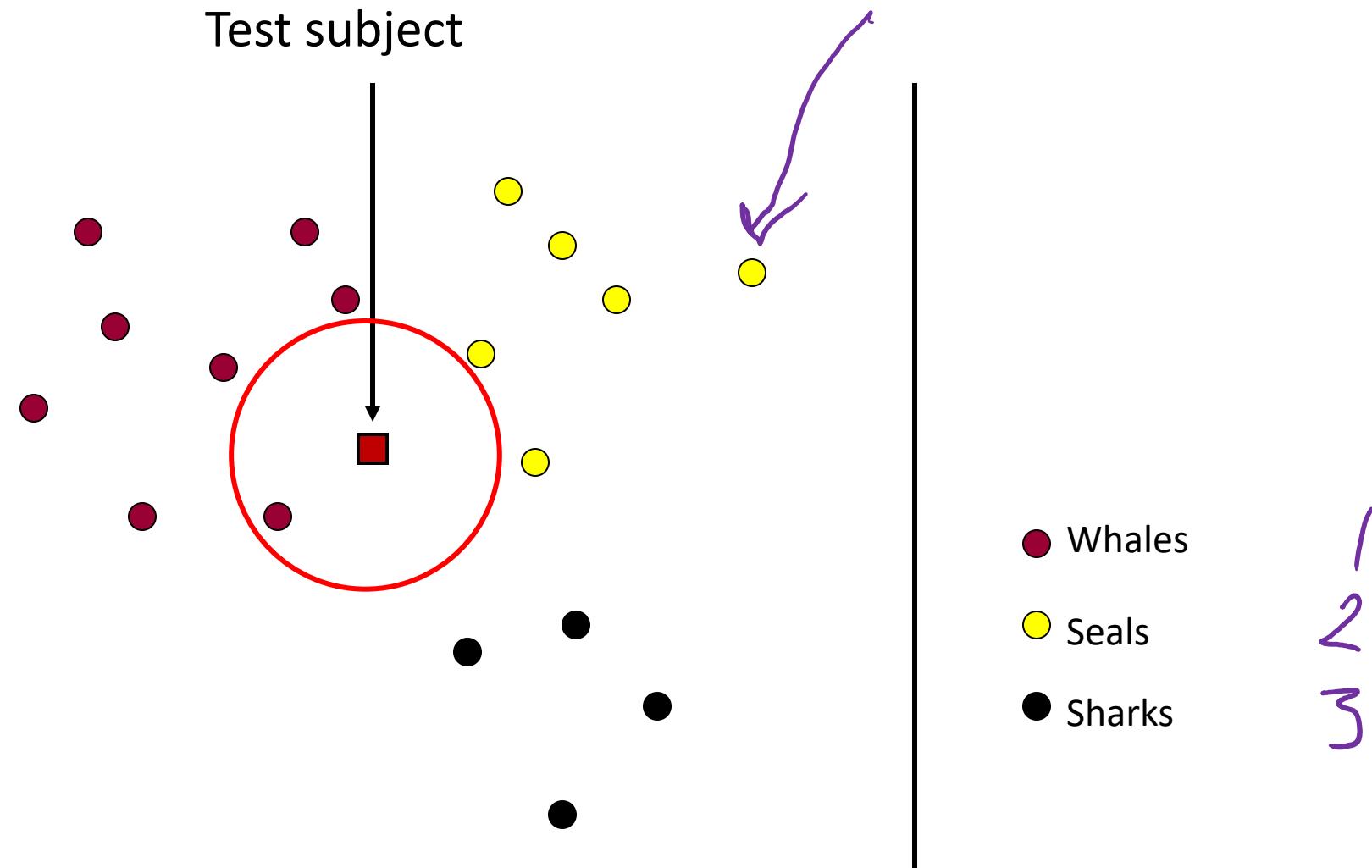
True or False:

For any dataset, you can find a decision tree that can perfectly classify the training data?

Nearest Neighbor Classifier



Nearest Neighbor Classifier



Nearest Neighbor Classification

Given a training dataset $\mathcal{D} = \{y^{(n)}, \mathbf{x}^{(n)}\}_{n=1}^N$, $y \in \{1, \dots, C\}$, $\mathbf{x} \in \mathbb{R}^M$

and a test input \mathbf{x}_{test} , predict the class label, \hat{y}_{test} :

- 1) Find the closest point in the training data to \mathbf{x}_{test}

$$n = \underset{n}{\operatorname{argmin}} \, d(\mathbf{x}_{test}, \mathbf{x}^{(n)})$$

- 2) Return the class label of that closest point

$$\hat{y}_{test} = \underline{y^{(n)}}$$

Need distance function! What should $d(\mathbf{x}, \mathbf{z})$ be?

$$d(\vec{x}, \vec{z}) = \sqrt{\sum_{j=1}^M (x_j - z_j)^2} = \left(\sum_{j=1}^M (x_j - z_j)^2 \right)^{\frac{1}{2}} = \|\vec{x} - \vec{z}\|_2$$

Could also use others, e.g. l_1

Euclidean (l_2) dist

Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers from 3 different species: Iris setosa (0), Iris virginica (1), Iris versicolor (2) collected by Anderson (1936)

Species	Sepal Length	Sepal Width	Petal Length	Petal Width	
$n=1$	0	4.3	3.0	1.1	0.1
$n=2$	0	4.9	3.6	1.4	0.1
$n=3$	0	5.3	3.7	1.5	0.2
$\gamma^{(5)}$	1	4.9	2.4	3.3	1.0
	1	5.7	2.8	4.1	1.3
	1	6.3	3.3	4.7	1.6
	1	6.7	3.0	5.0	1.7

$\vec{x}^{(5)}$

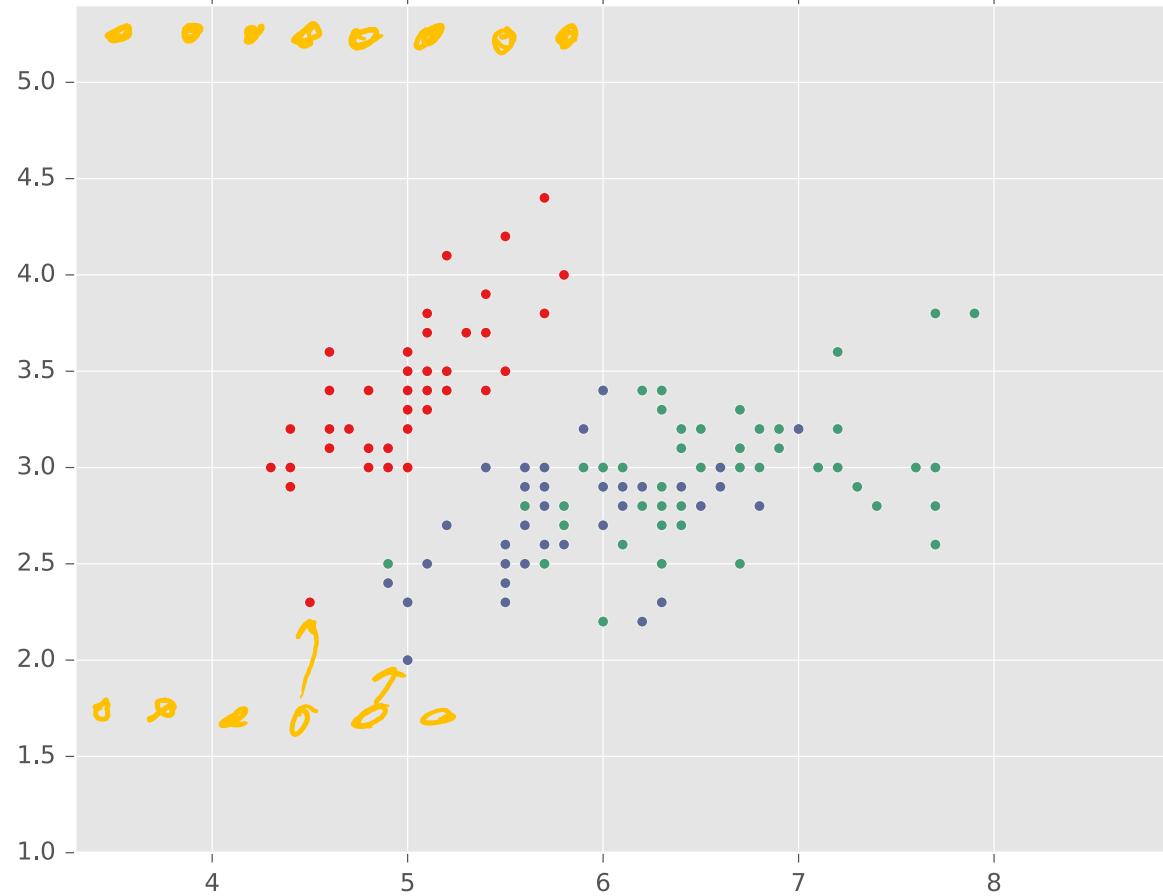
Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers from 3 different species: Iris setosa (0), Iris virginica (1), Iris versicolor (2) collected by Anderson (1936)

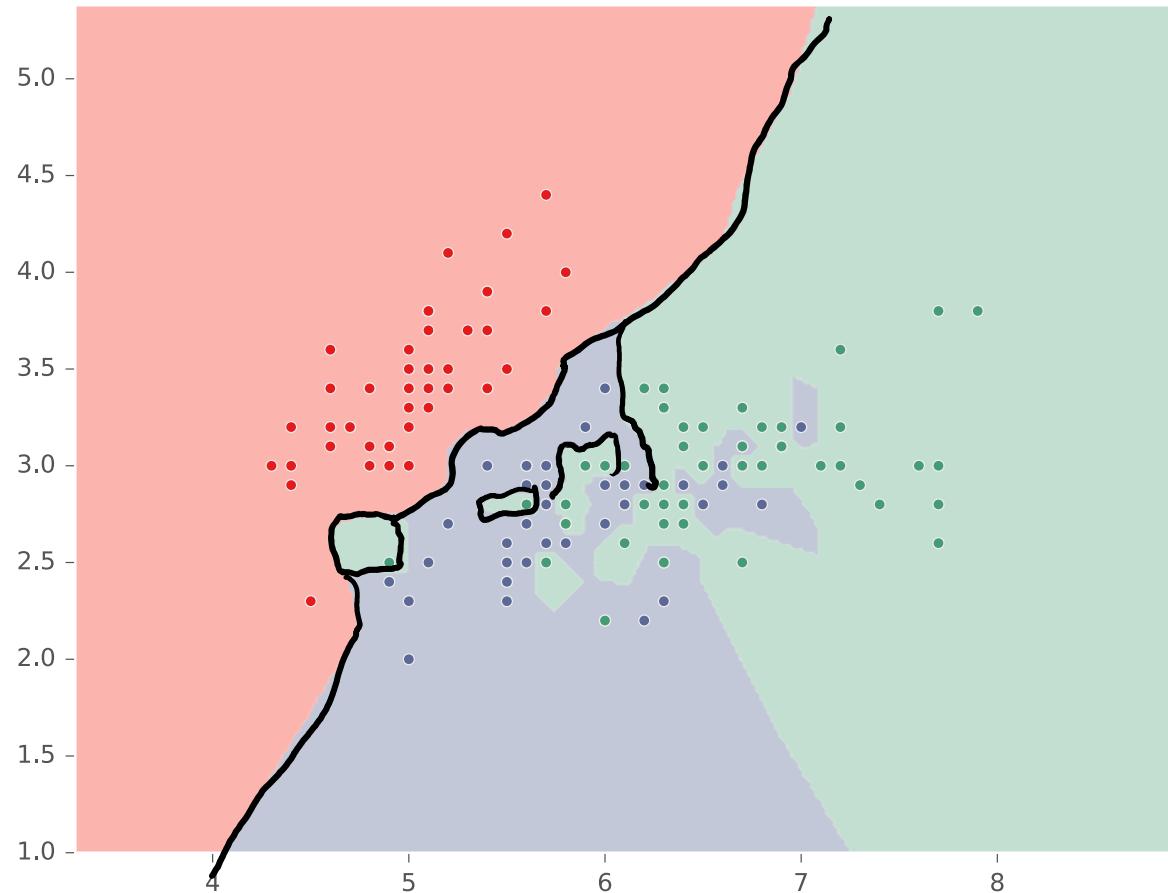
Species	Sepal Length	Sepal Width
0	4.3	3.0
0	4.9	3.6
0	5.3	3.7
1	4.9	2.4
1	5.7	2.8
1	6.3	3.3
1	6.7	3.0

Deleted two of the four features, so that input space is 2D

Nearest Neighbor on Fisher Iris Data



Nearest Neighbor on Fisher Iris Data



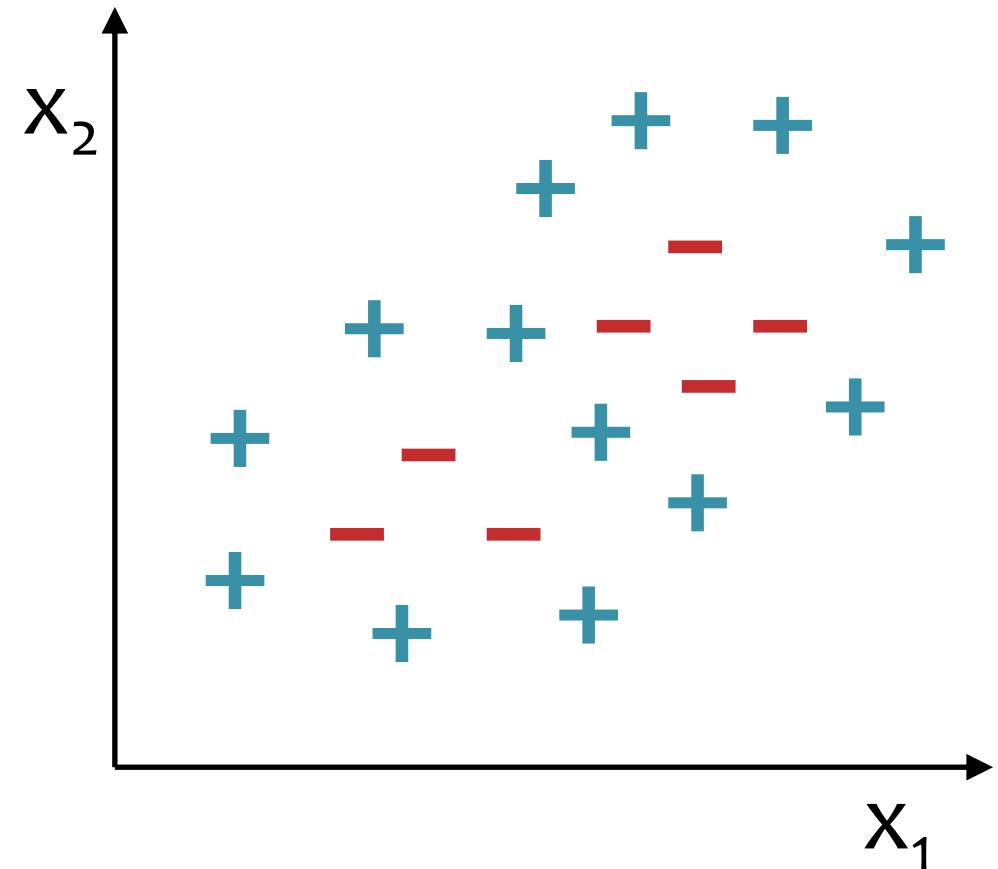
Poll 3

Which methods can achieve zero training error on this dataset?

- A. Decision trees
- B. 1-Nearest Neighbor
- C. Both
- D. Neither

If zero error, draw the decision boundary.

Otherwise, why not?



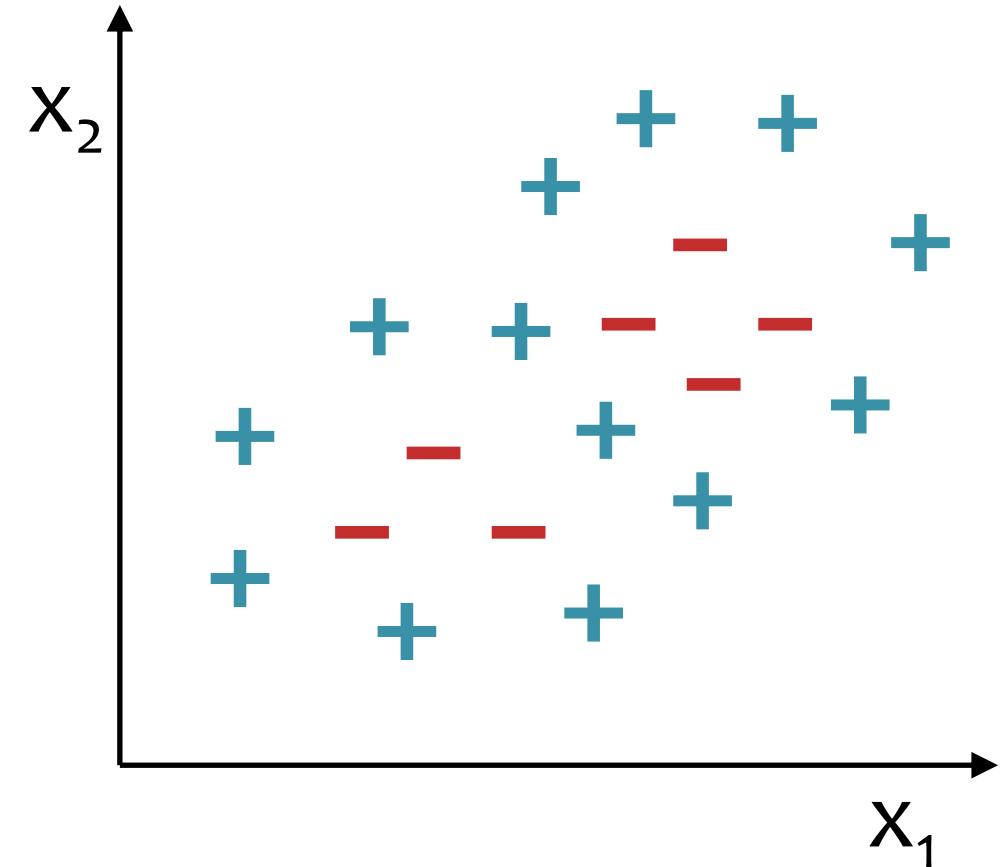
Poll 3

Which methods can achieve zero training error on this dataset?

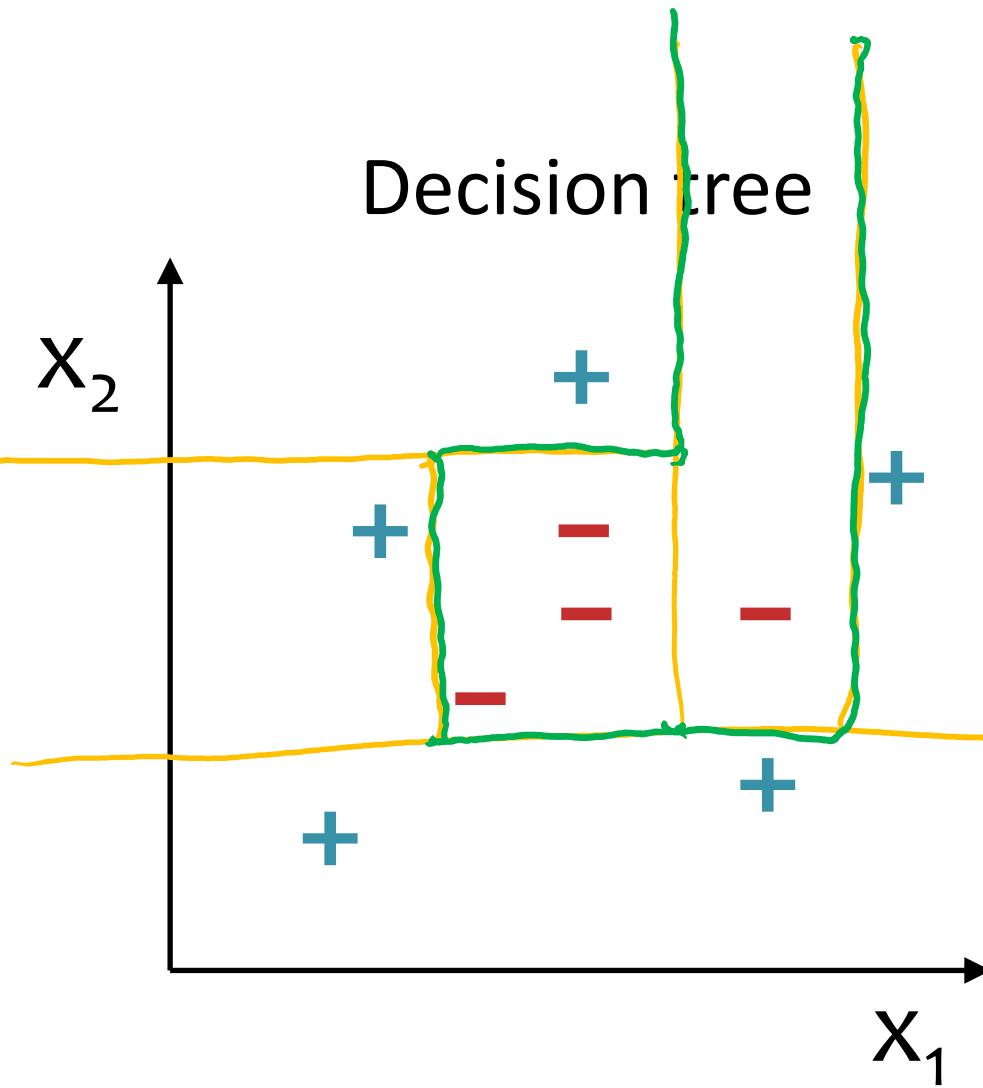
- A. Decision trees
- B. 1-Nearest Neighbor
- C. Both
- D. Neither

If zero error, draw the decision boundary.

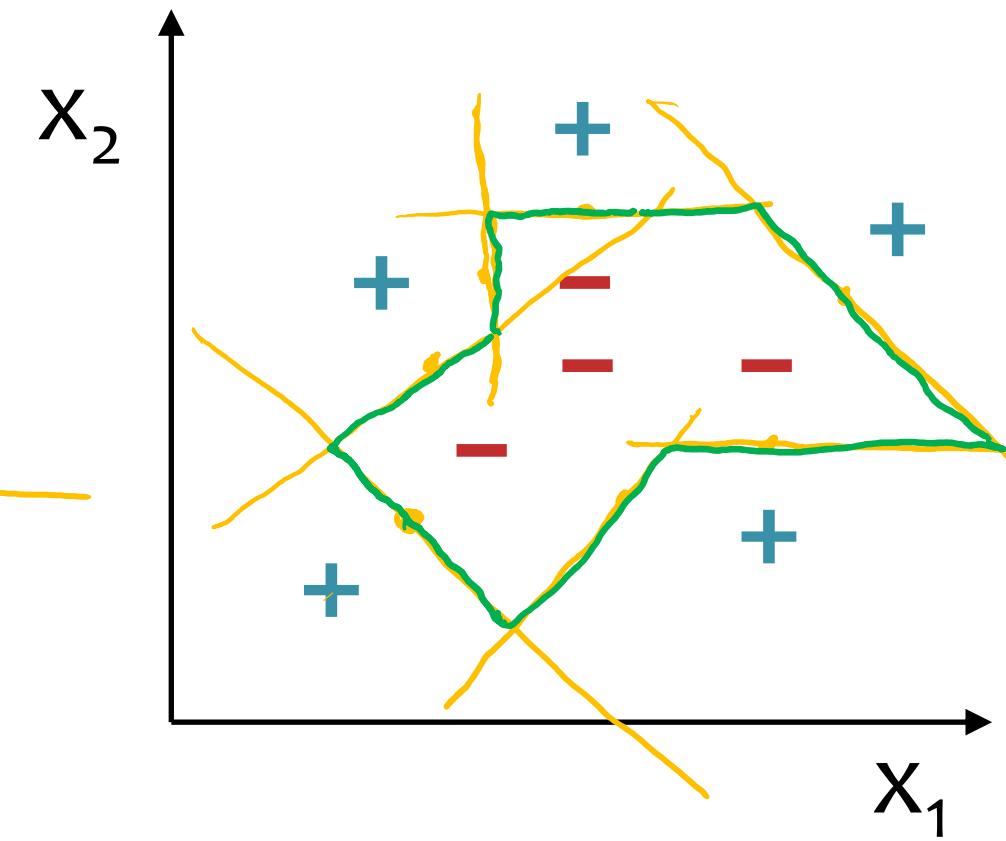
Otherwise, why not?



Decision Boundaries

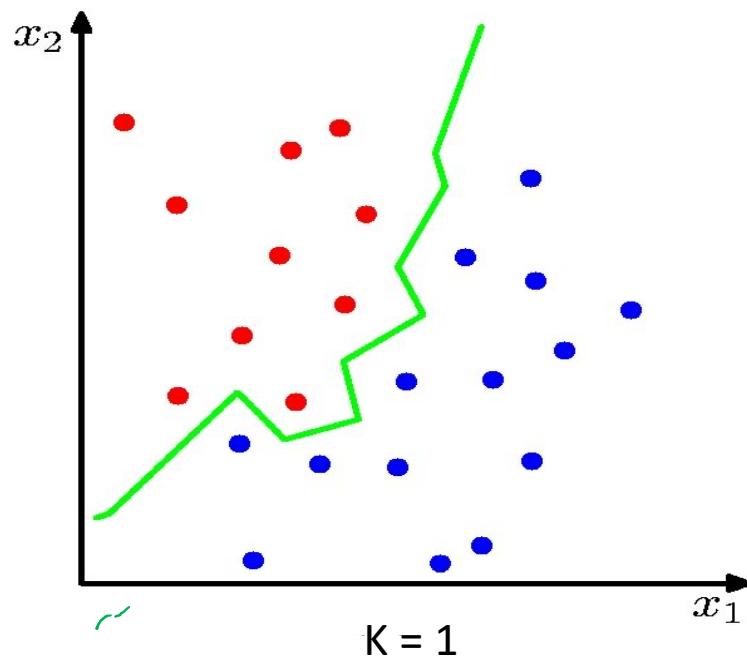


Nearest neighbor

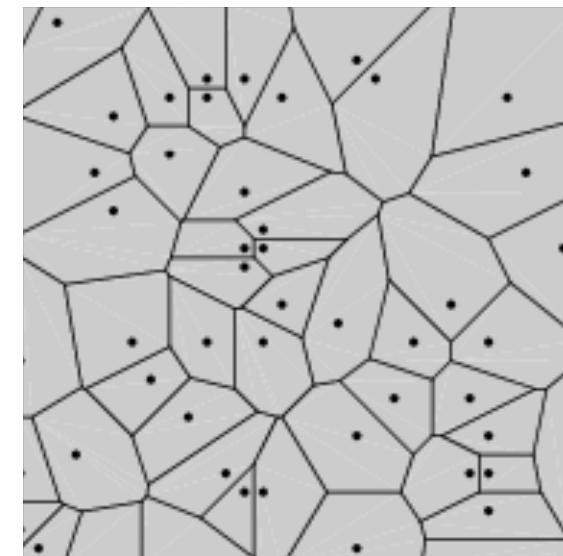


Nearest Neighbor Decision Boundary

1-nearest neighbor classifier decision boundary



Voronoi Diagram



Poll 4

1-nearest neighbor will likely:

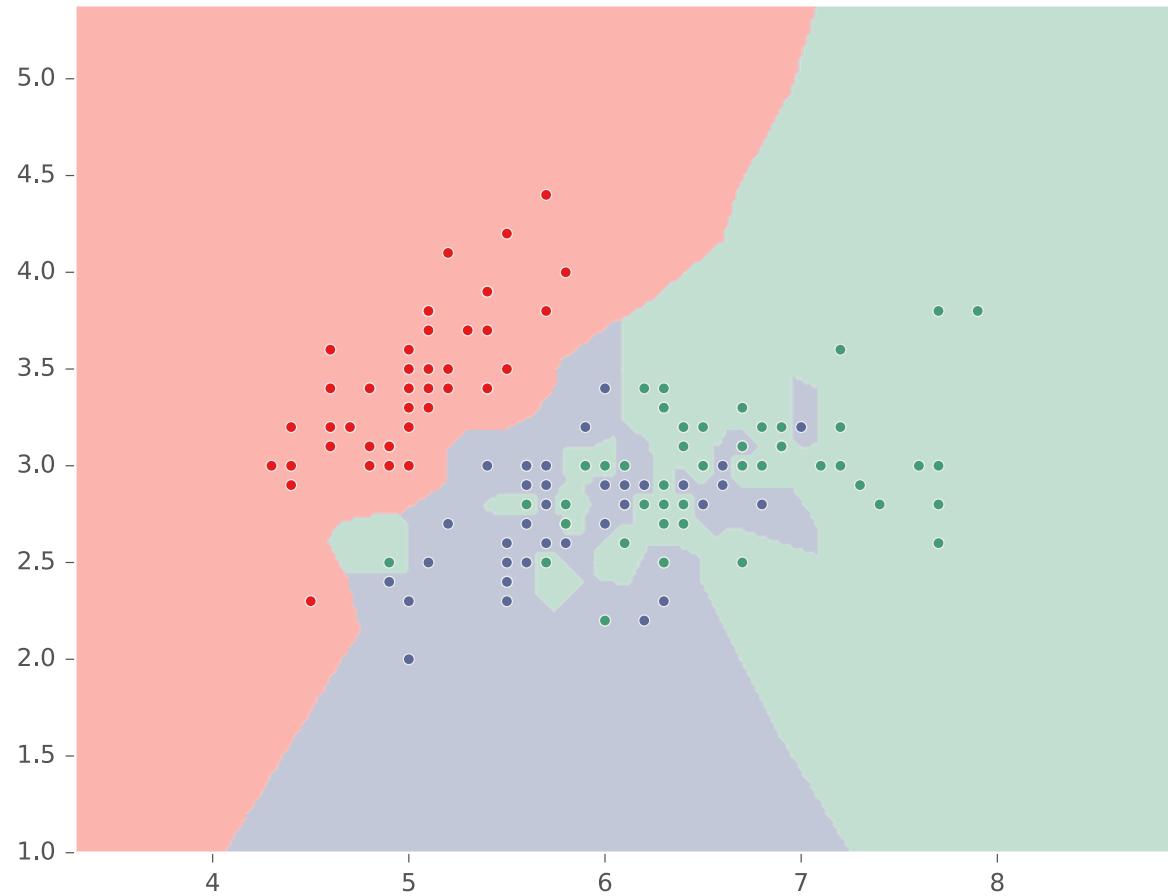
- A. Overfit
- B. Underfit
- C. Neither (it's a great learner!)

Poll 4

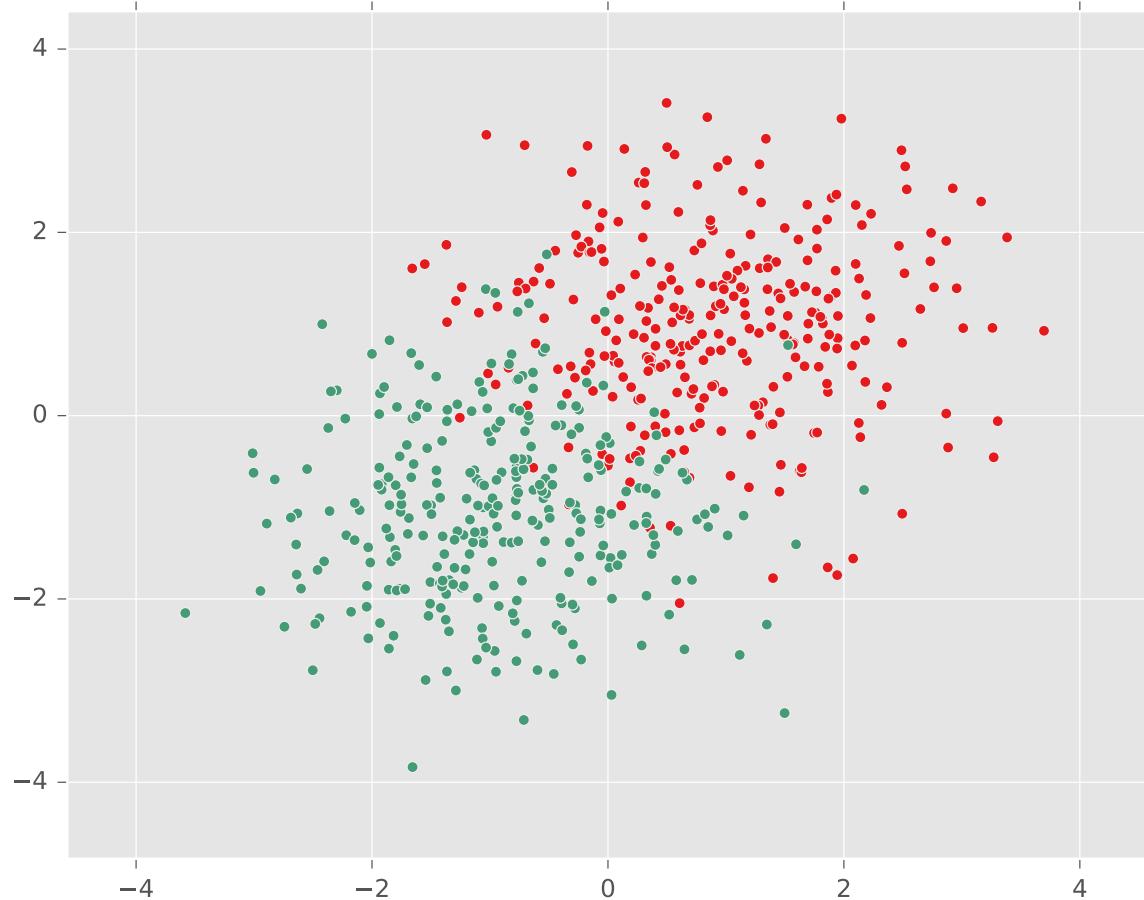
1-Nearest neighbor will likely:

- A. Overfit
- B. Underfit
- C. Neither (it's a great learner!)

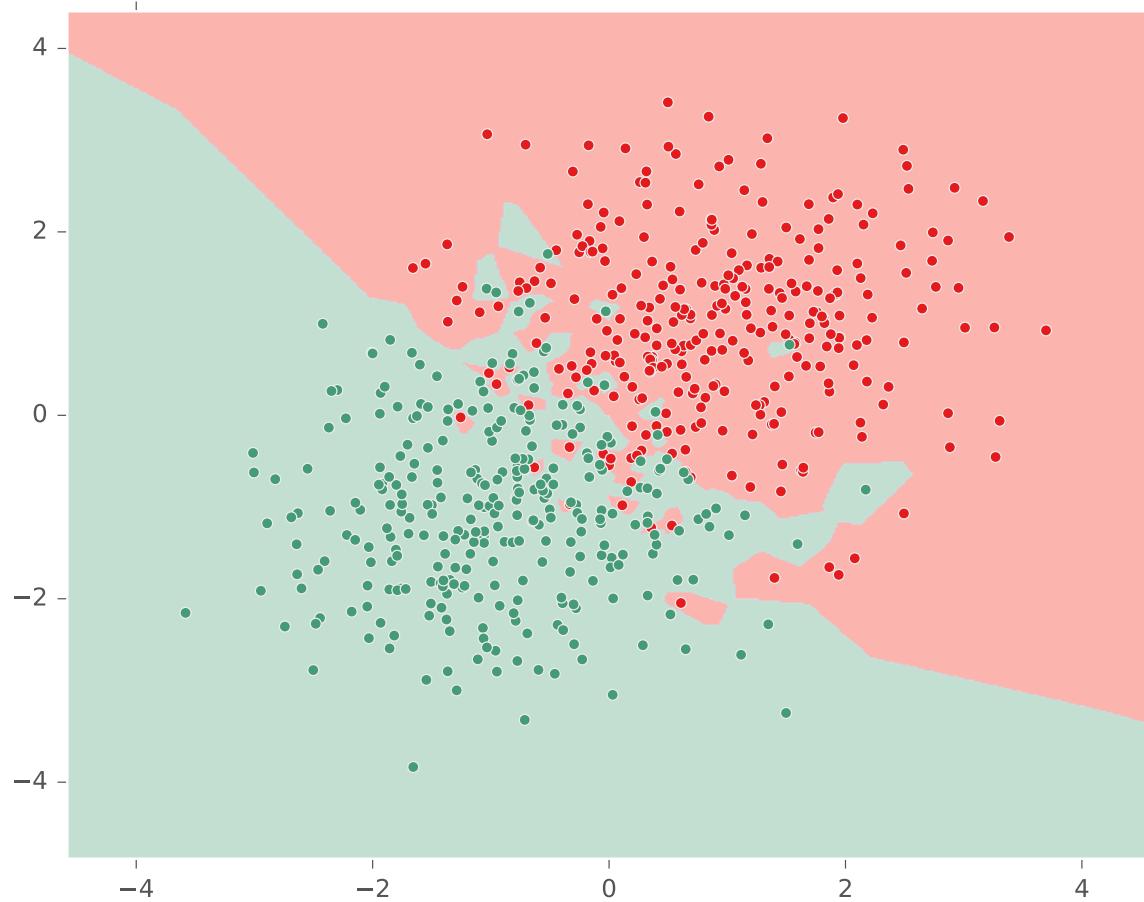
Nearest Neighbor on Fisher Iris Data



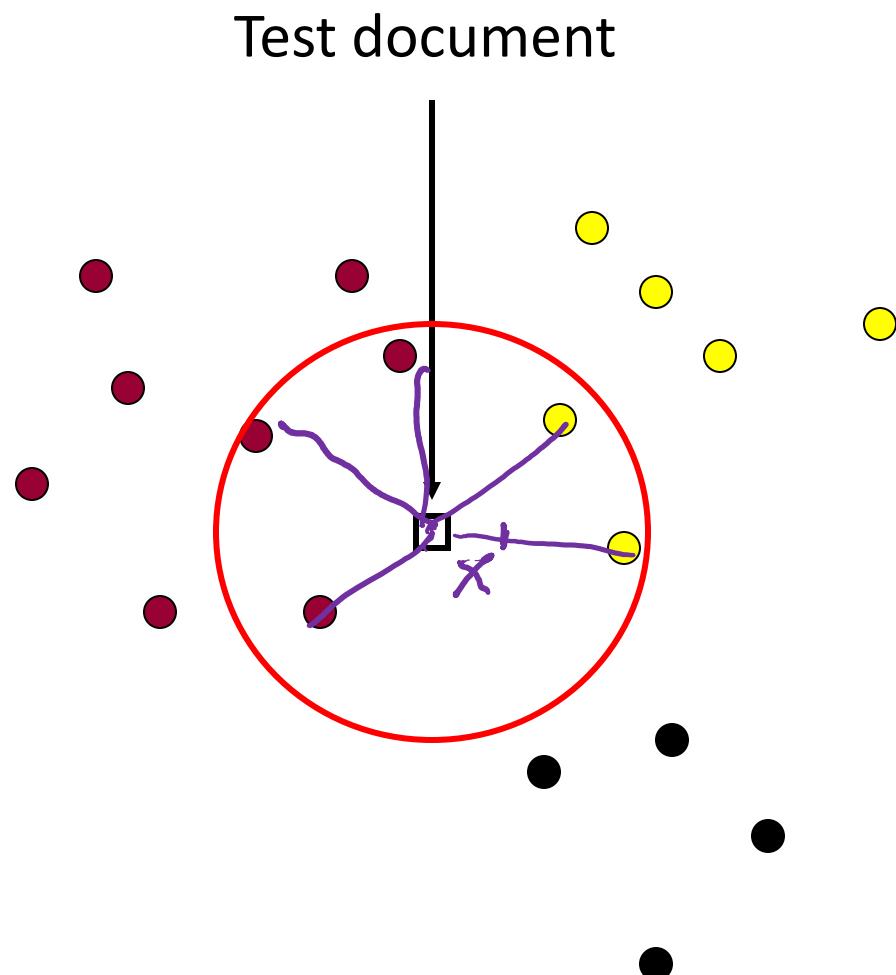
Nearest Neighbor on Gaussian Data



Nearest Neighbor on Gaussian Data



kNN classifier (k=5)



predict (x^*)
return red

0	Whales	3/5
1	Seals	2/5
2	Sharks	0/5

Nearest Neighbor Classification

Given a training dataset $\mathcal{D} = \{y^{(n)}, \mathbf{x}^{(n)}\}_{n=1}^N$, $y \in \{1, \dots, C\}$, $\mathbf{x} \in \mathbb{R}^M$

and a test input \mathbf{x}_{test} , predict the class label, \hat{y}_{test} :

1) Find the closest point in the training data to \mathbf{x}_{test}

$$n = \operatorname{argmin}_n d(\mathbf{x}_{test}, \mathbf{x}^{(n)})$$

2) Return the class label of that closest point

$$\hat{y}_{test} = y^{(n)}$$

def train(D)
data = D

def predict(x')

k -Nearest Neighbor Classification

Given a training dataset $\mathcal{D} = \{y^{(n)}, \mathbf{x}^{(n)}\}_{n=1}^N$, $y \in \{1, \dots, C\}$, $\mathbf{x} \in \mathbb{R}^M$

and a test input \mathbf{x}_{test} , predict the class label, \hat{y}_{test} :

- 1) Find the closest k points in the training data to \mathbf{x}_{test}

$$\mathcal{N}_k(\mathbf{x}_{test}, \mathcal{D}) \quad \leftarrow$$

- 2) Return the class label of that closest point

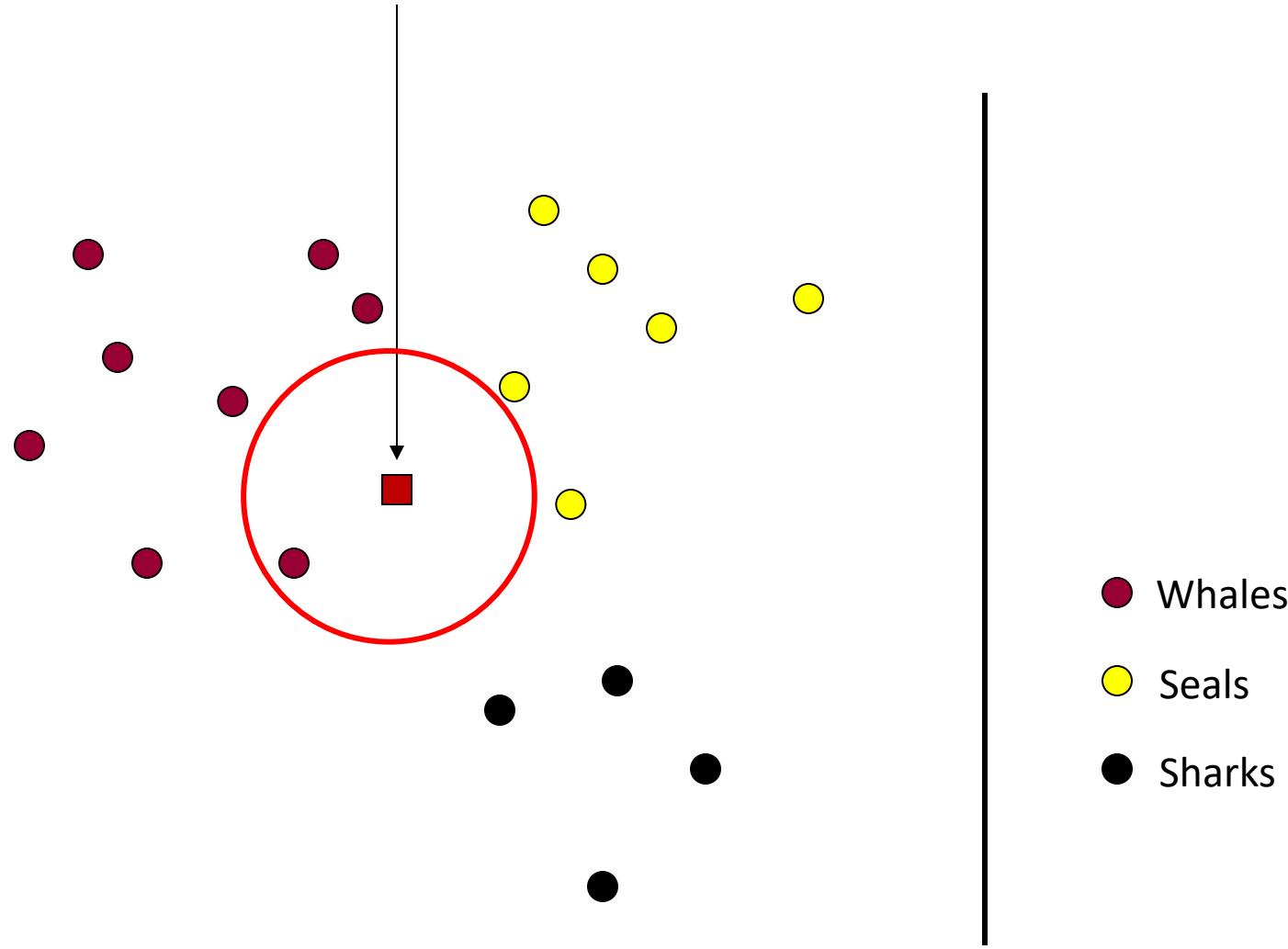
$$\hat{y}_{test} = \operatorname{argmax}_c p(Y = c \mid \mathbf{x}_{test}, \mathcal{D}, k) \quad \leftarrow$$

$$= \operatorname{argmax}_c \frac{1}{k} \sum_{i \in \mathcal{N}_k(\mathbf{x}_{test}, \mathcal{D})} \mathbb{1}(y^{(i)} = c)$$

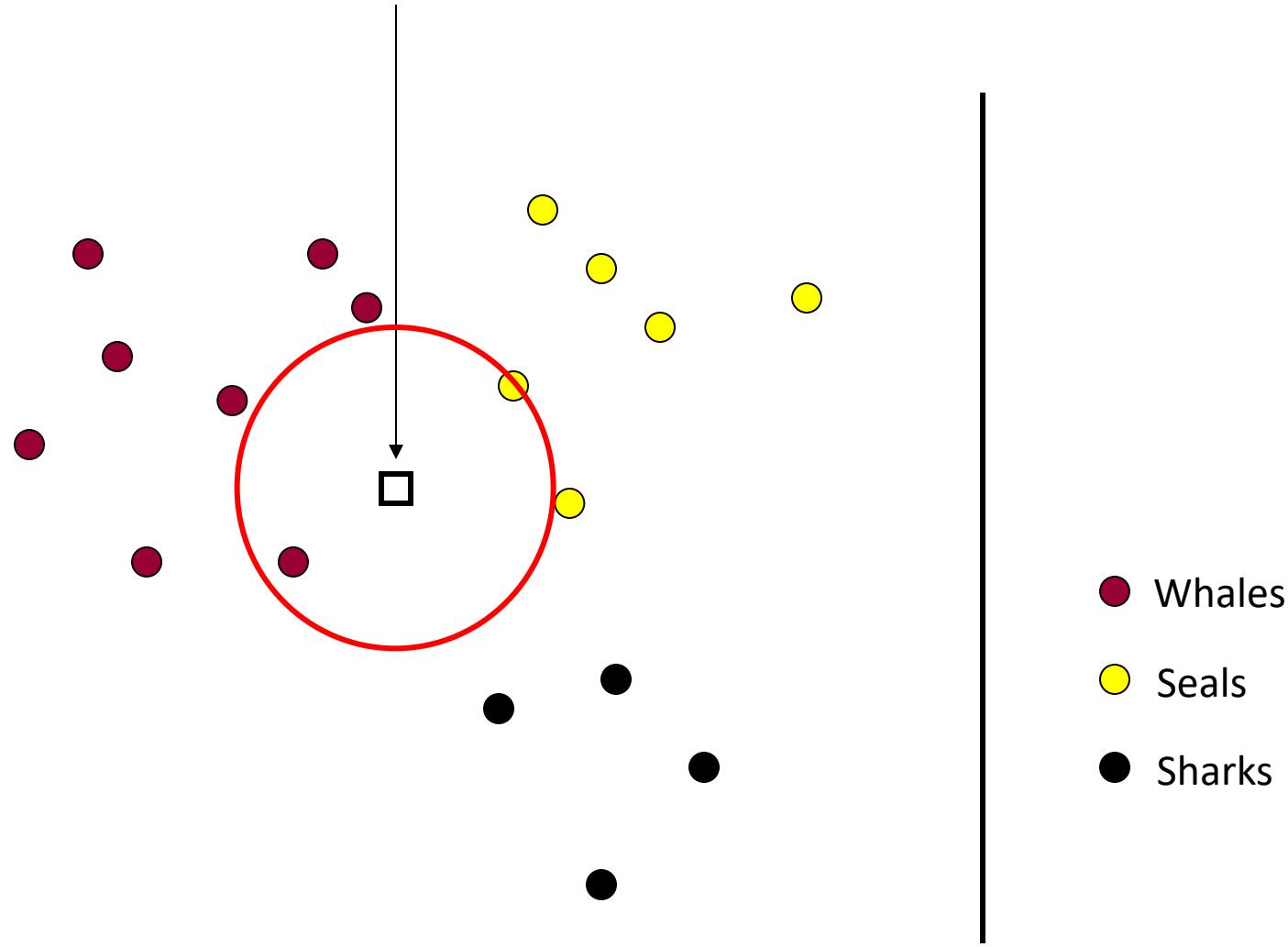
$$= \operatorname{argmax}_c \frac{k_c}{k},$$

where k_c is the number of the k -neighbors with class label c

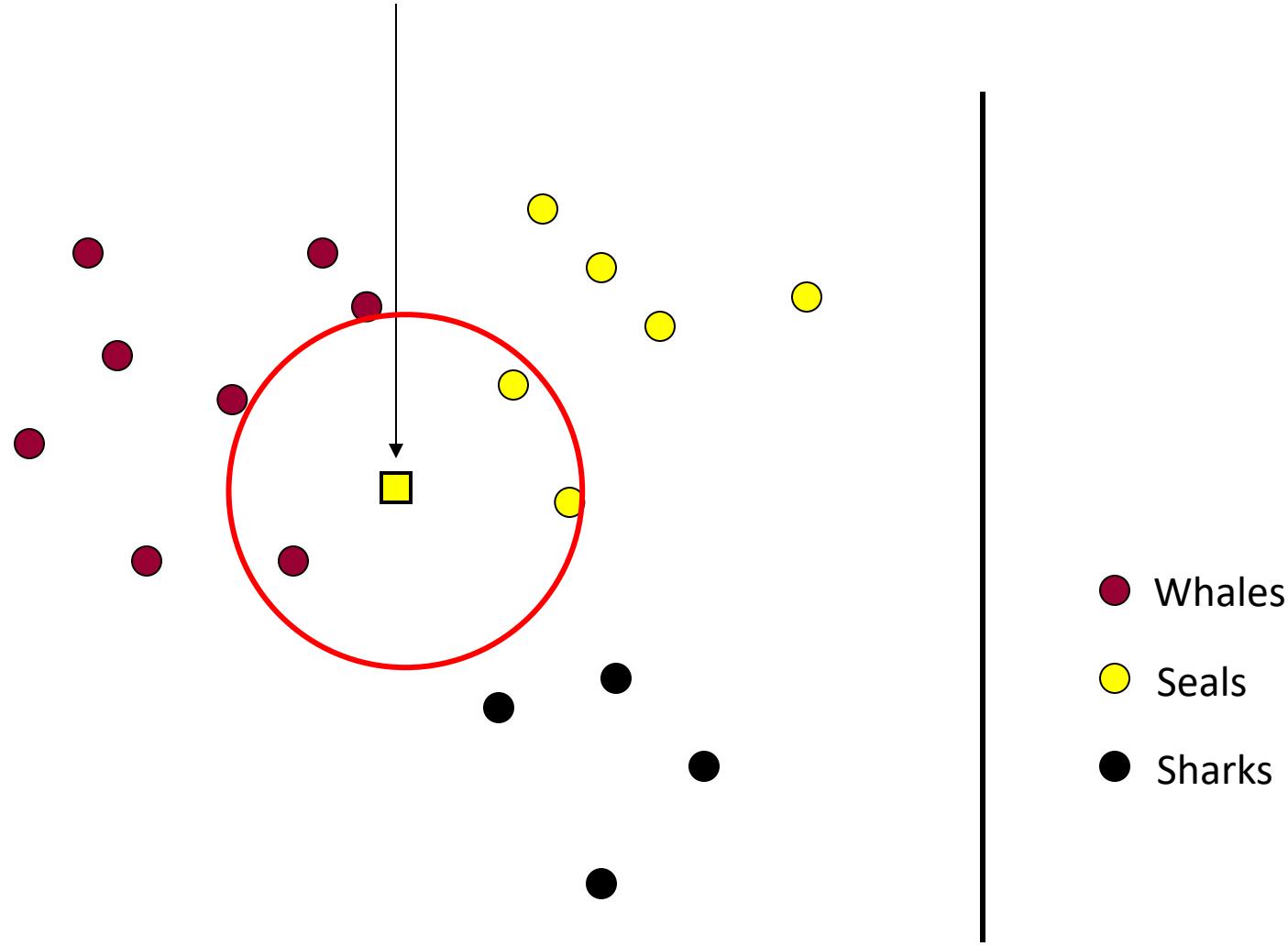
1-Nearest Neighbor (kNN) classifier



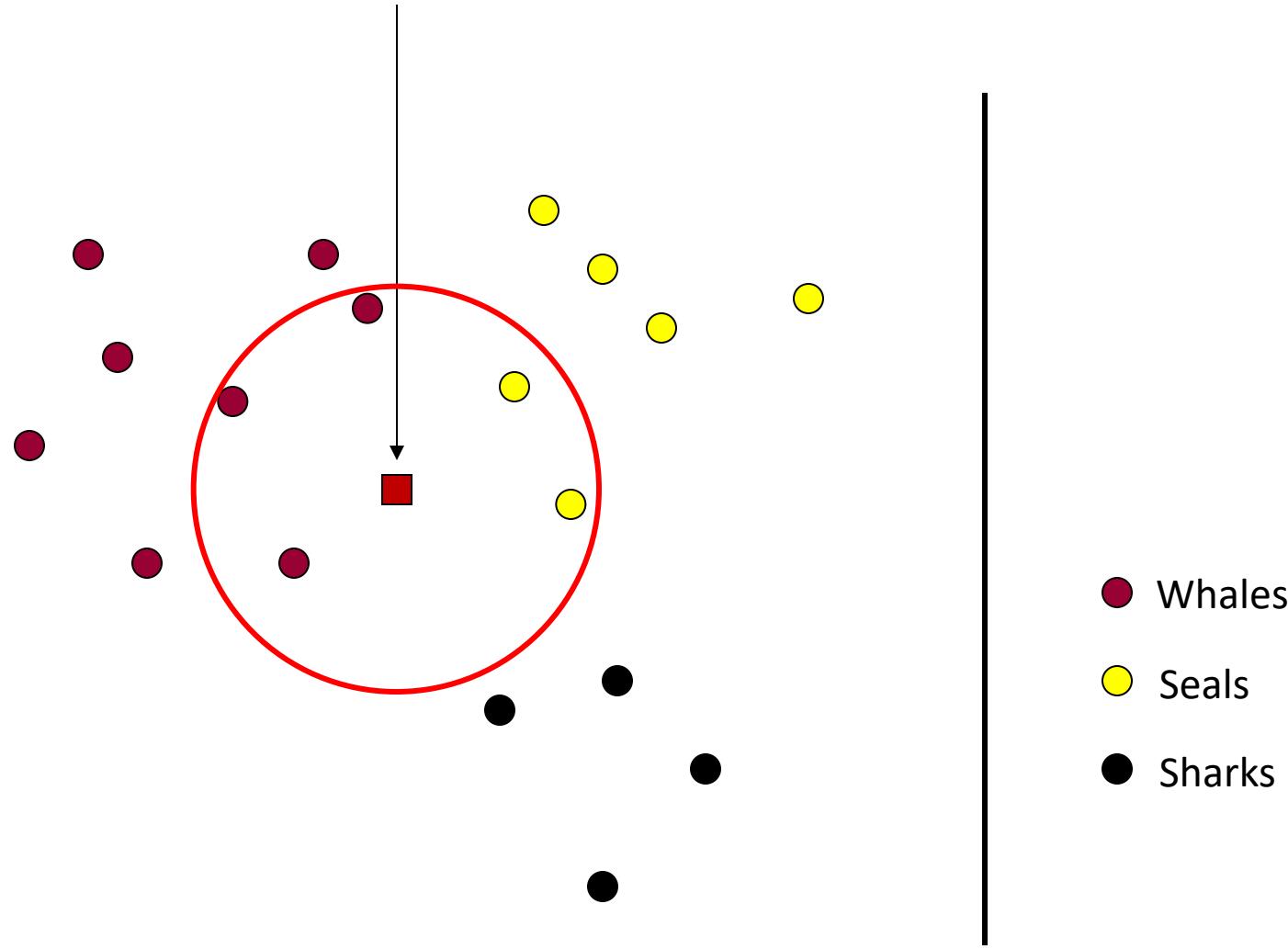
2-Nearest Neighbor (kNN) classifier



3-Nearest Neighbor (kNN) classifier



5-Nearest Neighbor (kNN) classifier



What is the best k ?

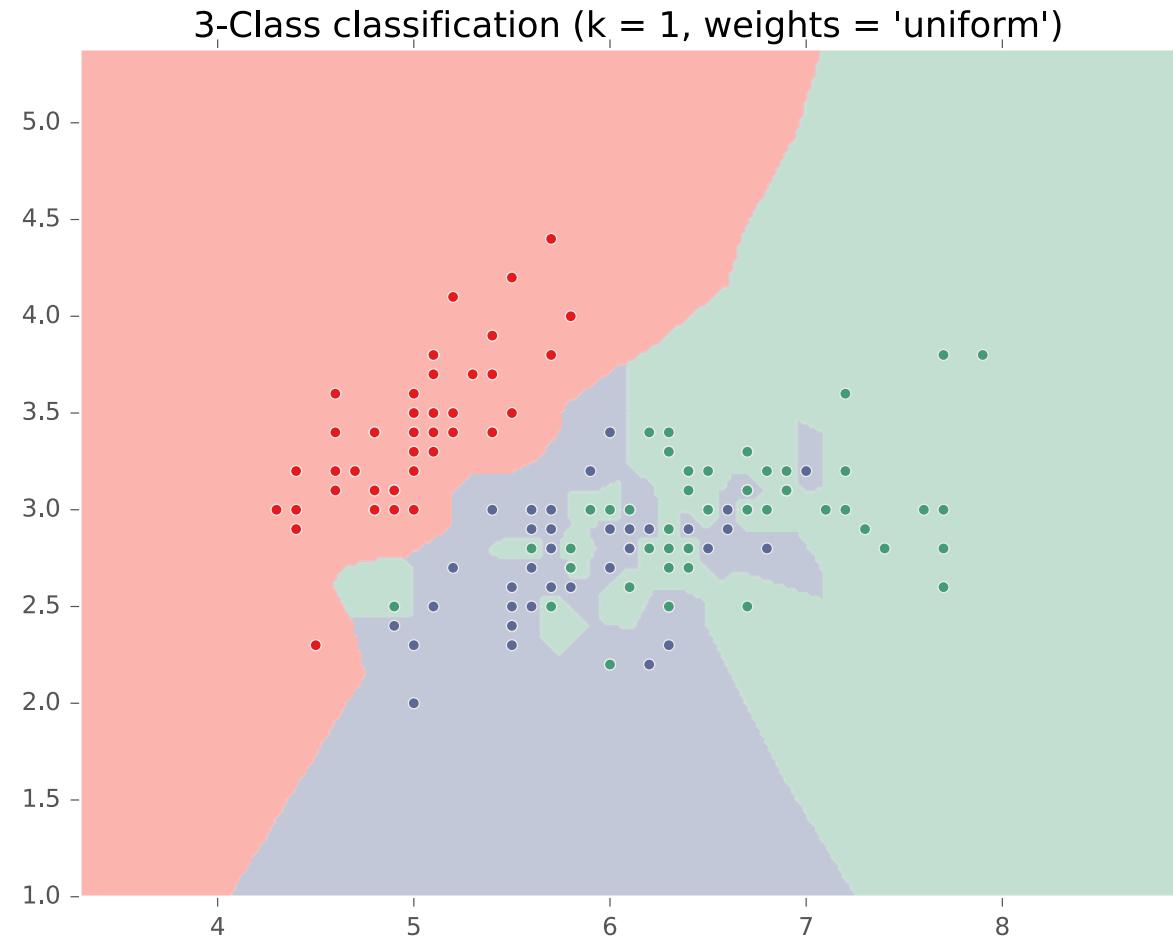
How do we choose a learner that is accurate and also generalizes to unseen data?

- Larger $k \rightarrow$ predicted label is more stable
- Smaller $k \rightarrow$ predicted label is more affected by individual training points

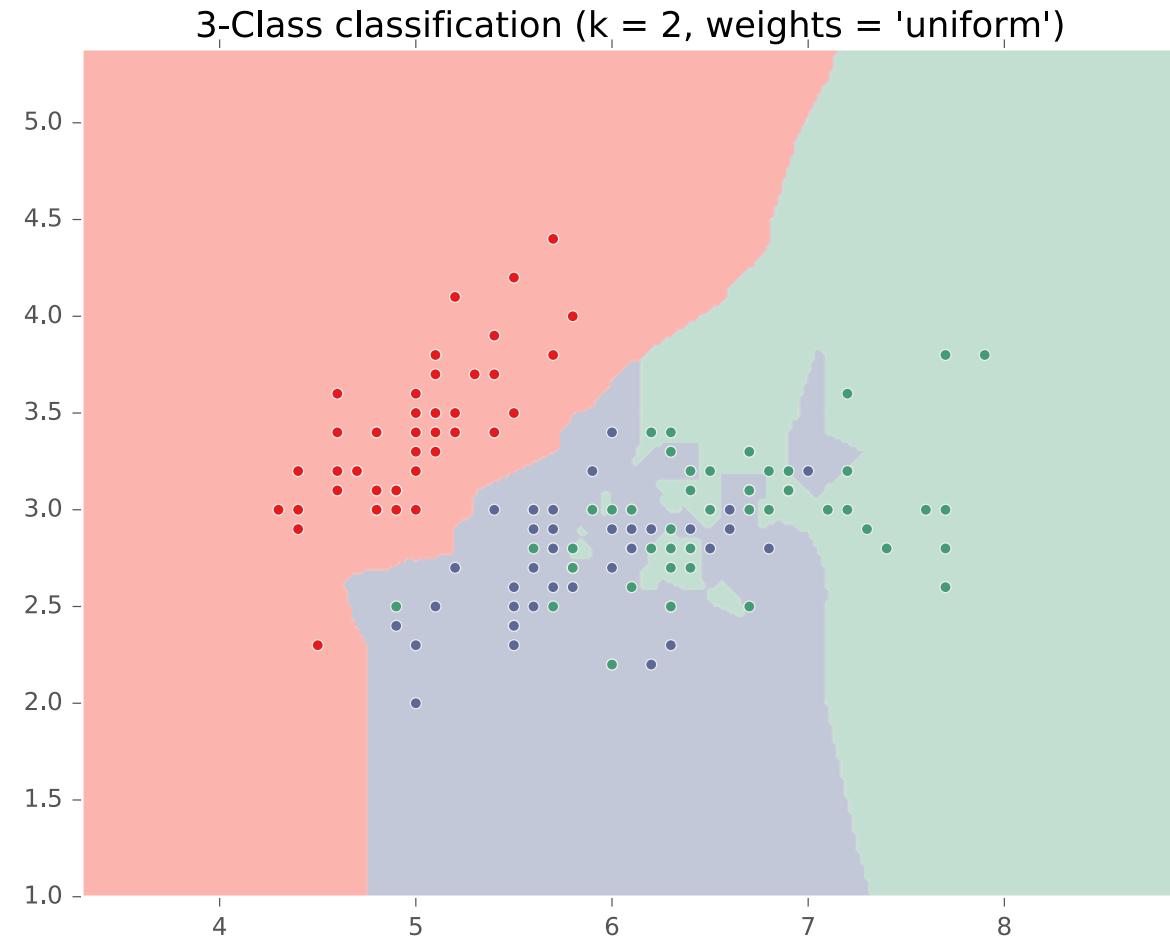
But how to choose k ?

k-NN on Fisher Iris Data

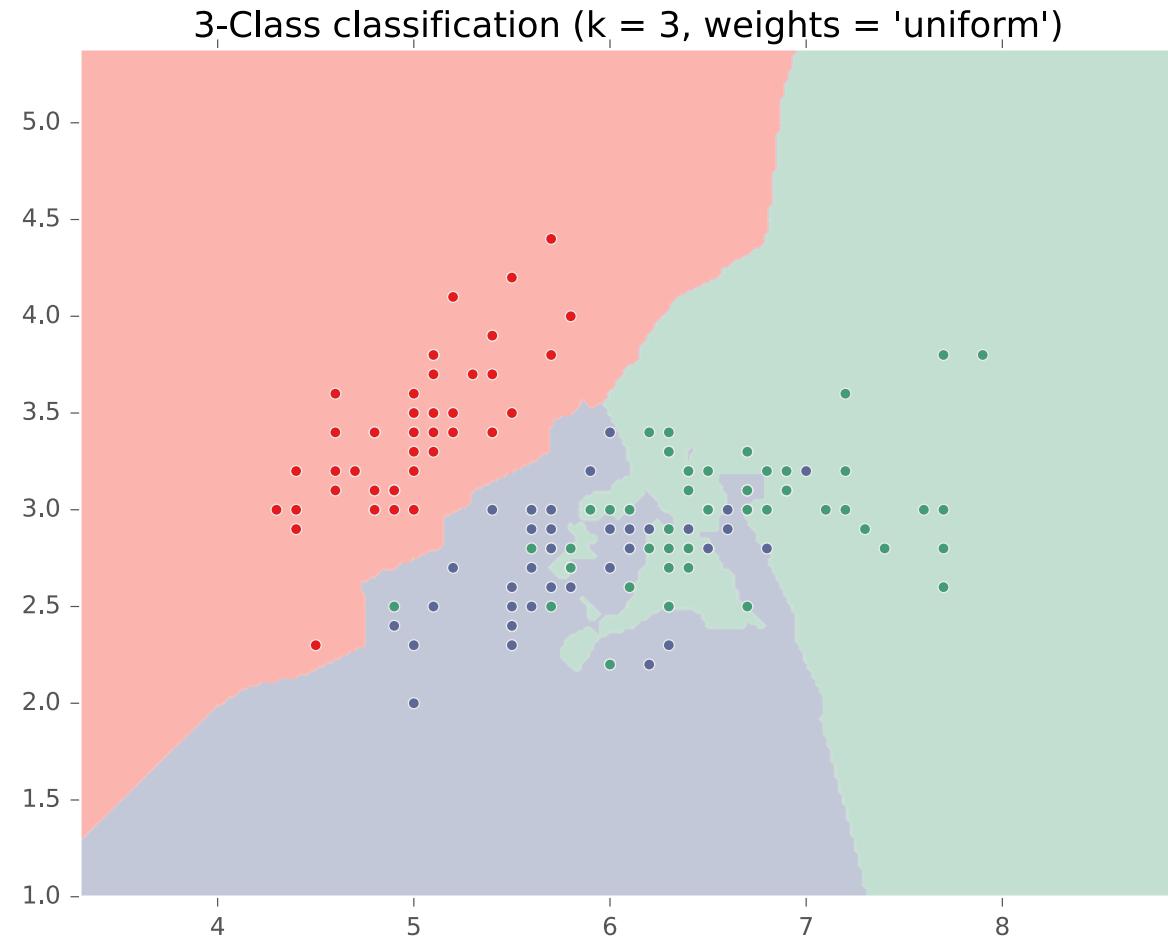
Special Case: Nearest Neighbor



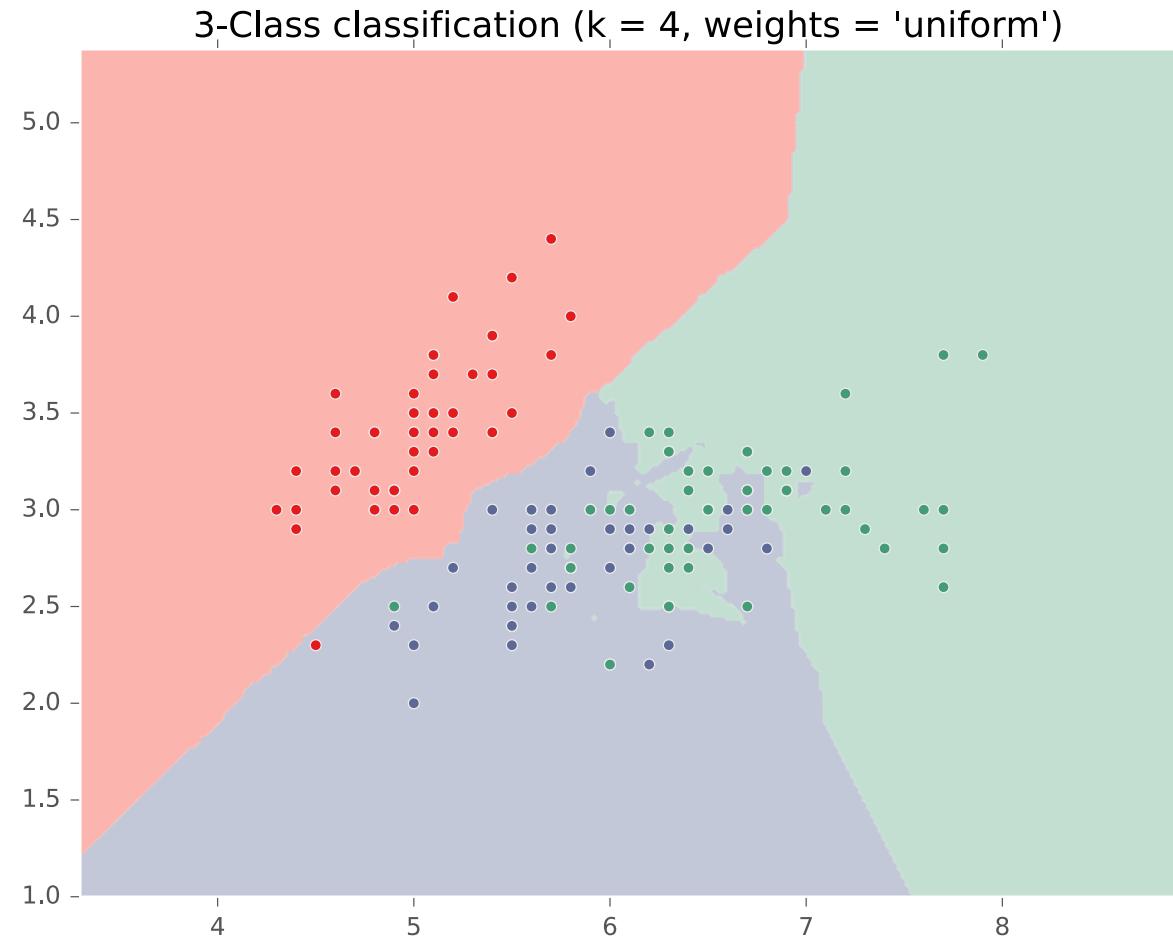
k-NN on Fisher Iris Data



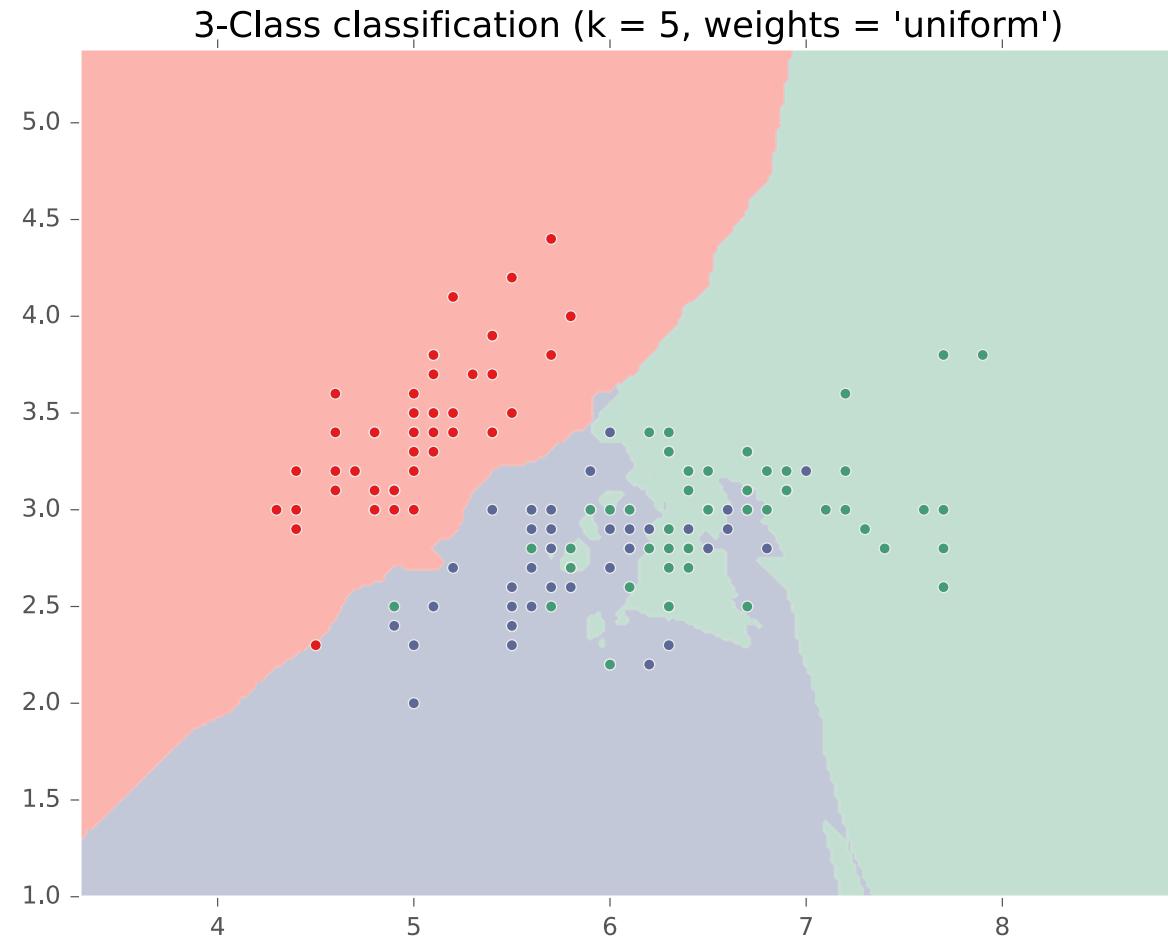
k-NN on Fisher Iris Data



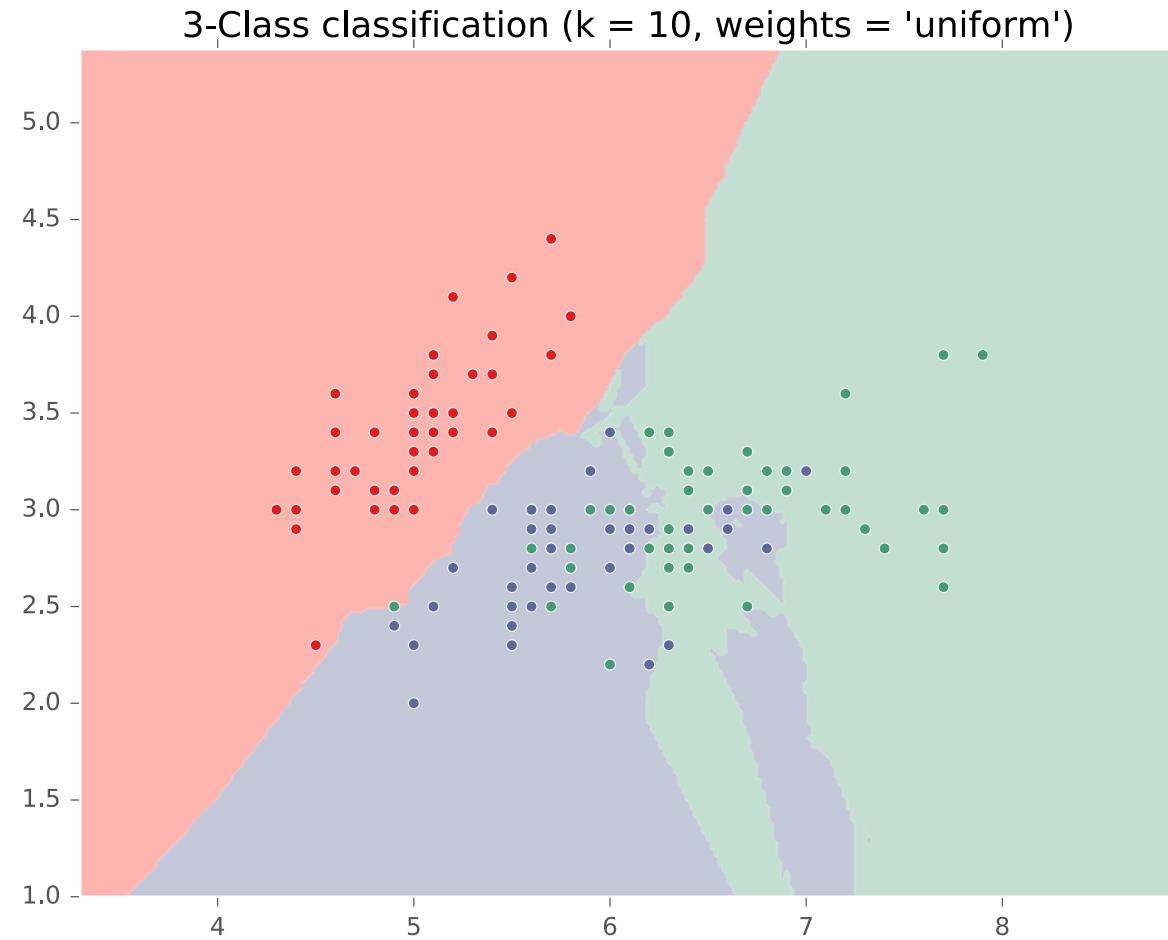
k-NN on Fisher Iris Data



k-NN on Fisher Iris Data



k-NN on Fisher Iris Data



k-NN on Fisher Iris Data

Special Case: Majority Vote



k-NN: Remarks

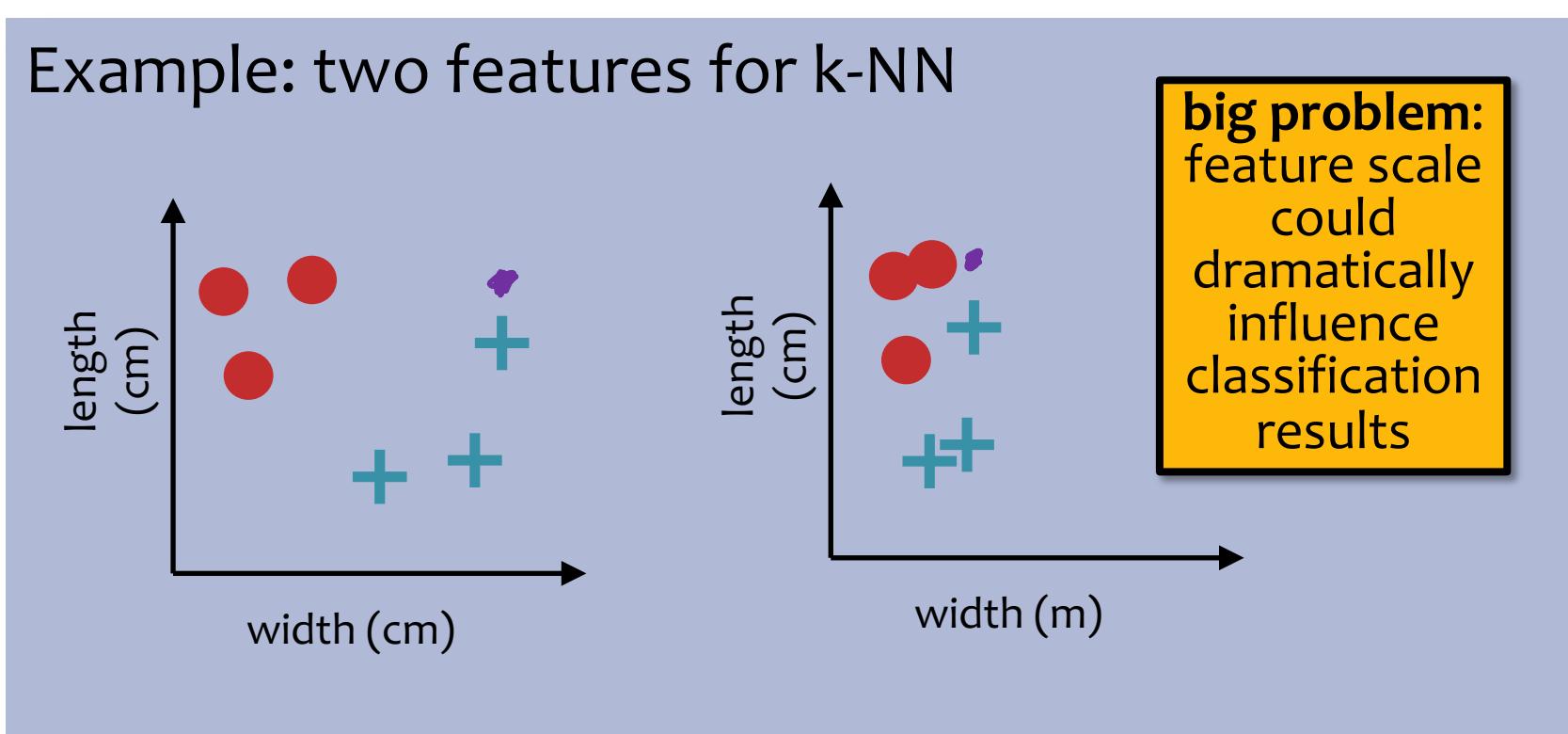
Inductive Bias:

1. Close points should have similar labels
2. All dimensions are created equally!

k-NN: Remarks

Inductive Bias:

1. Close points should have similar labels
2. All dimensions are created equally!



k-NN: Remarks

Computational Efficiency:

- Suppose we have N training examples, and each one has M features
- Computational complexity for the special case where $k=1$:

Poll 5 (train) and Poll 6 (predict)

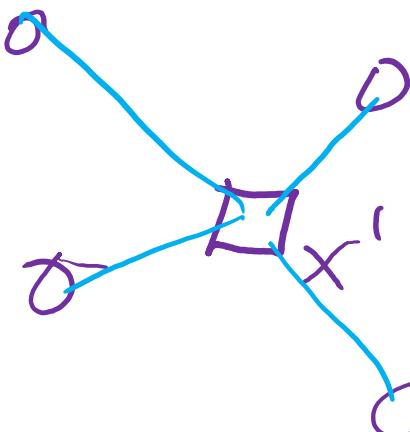
def train(D)
state D

Suppose we have N training examples, and each one has M features

Computational complexity for the special case where k=1:

- A. O(1)
- B. O(log N)
- C. O(log M)
- D. O(log NM)
- E. O(N)
- F. O(M)
- G. O(NM)
- H. O(N^2)
- I. O(N^2M)

def predict(\vec{x}')
for i in 1..N
 $d(\vec{x}^{(:)}, \vec{x}')$



def $d(\vec{x}, \vec{z})$
for j in 1..M

$$d(x, z) = \left(\sum_{j=1}^M (x_j - z_j)^2 \right)^{1/2}$$

Poll 5 (train) and Poll 6 (predict)

Suppose we have N training examples, and each one has M features

Computational complexity for the special case where $k=1$:

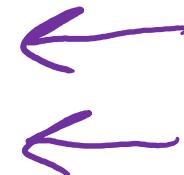
- A. $O(1)$
- B. $O(\log N)$
- C. $O(\log M)$
- D. $O(\log NM)$
- E. $O(N)$
- F. $O(M)$
- G. $O(NM)$
- H. $O(N^2)$
- I. $O(N^2M)$

k-NN: Remarks

Computational Efficiency:

- Suppose we have N training examples, and each one has M features
- Computational complexity for the special case where $k=1$:

Task	Naive	k-d Tree
Train	$O(1)$	$\sim O(M N \log N)$
Predict (one test example)	$O(MN)$	$\sim O(2^M \log N)$ on average



Problem: Very fast for small M , but very slow for large M

In practice: use stochastic approximations (very fast, and empirically often as good)

MODEL SELECTION

Model Selection

WARNING:

- In some sense, our discussion of model selection is premature.
- The models we have considered thus far are fairly simple.
- The models and the many decisions available to the data scientist wielding them will grow to be much more complex than what we've seen so far.

Model Selection

Statistics

- *Def:* a **model** defines the data generation process (i.e. a set or family of parametric probability distributions)
- *Def:* **model parameters** are the values that give rise to a particular probability distribution in the model family
- *Def:* **learning** (aka. estimation) is the process of finding the parameters that best fit the data
- *Def:* **hyperparameters** are the parameters of a prior distribution over parameters

Machine Learning

- *Def:* (loosely) a **model** defines the hypothesis space over which learning performs its search
- *Def:* **model parameters** are the numeric values or structure selected by the learning algorithm that give rise to a hypothesis
- *Def:* the **learning algorithm** defines the data-driven search over the hypothesis space (i.e. search for good parameters)
- *Def:* **hyperparameters** are the tunable aspects of the model, that the learning algorithm does not select

Model Selection

Example: Decision Tree

- model = set of all possible trees, possibly restricted by some hyperparameters (e.g. max depth)
- parameters = structure of a specific decision tree
- learning algorithm = ID3, CART, etc.
- hyperparameters = max-depth, threshold for splitting criterion, etc.

Machine Learning

- Def: (loosely) a **model** defines the hypothesis space over which learning performs its search
- Def: **model parameters** are the numeric values or structure selected by the learning algorithm that give rise to a hypothesis
- Def: the **learning algorithm** defines the data-driven search over the hypothesis space (i.e. search for good parameters)
- Def: **hyperparameters** are the tunable aspects of the model, that the learning algorithm does not select

Model Selection

Example: k-Nearest Neighbors

- model = set of all possible nearest neighbors classifiers
- parameters = none (KNN is an instance-based or non-parametric method)
- learning algorithm = for naïve setting, just storing the data
- hyperparameters = k , the number of neighbors to consider

Machine Learning

- Def: (loosely) a **model** defines the hypothesis space over which learning performs its search
- Def: **model parameters** are the numeric values or structure selected by the learning algorithm that give rise to a hypothesis
- Def: the **learning algorithm** defines the data-driven search over the hypothesis space (i.e. search for good parameters)
- Def: **hyperparameters** are the tunable aspects of the model, that the learning algorithm does not select

Model Selection

Statistics

- Def: a **model** defines the data generation process (i.e. a set or family of probability distributions)
- Def: **model parameters** are the numeric parameters that give rise to a particular probability distribution in the model family
- Def: **learning** (aka. estimation) is the process of finding the parameters that best fit the data
- Def: **hyperparameters** are the parameters of a prior distribution over parameters

Machine Learning

- Def: (loosely) a **model** defines the hypothesis which learning performs its task
- **parameters** are the numeric parameters that give rise to a hypothesis
- Def: the **learning algorithm** defines the data-driven search over the hypothesis space (i.e. search for good parameters)
- Def: **hyperparameters** are the tunable aspects of the model, that the learning algorithm does not select

Model Selection

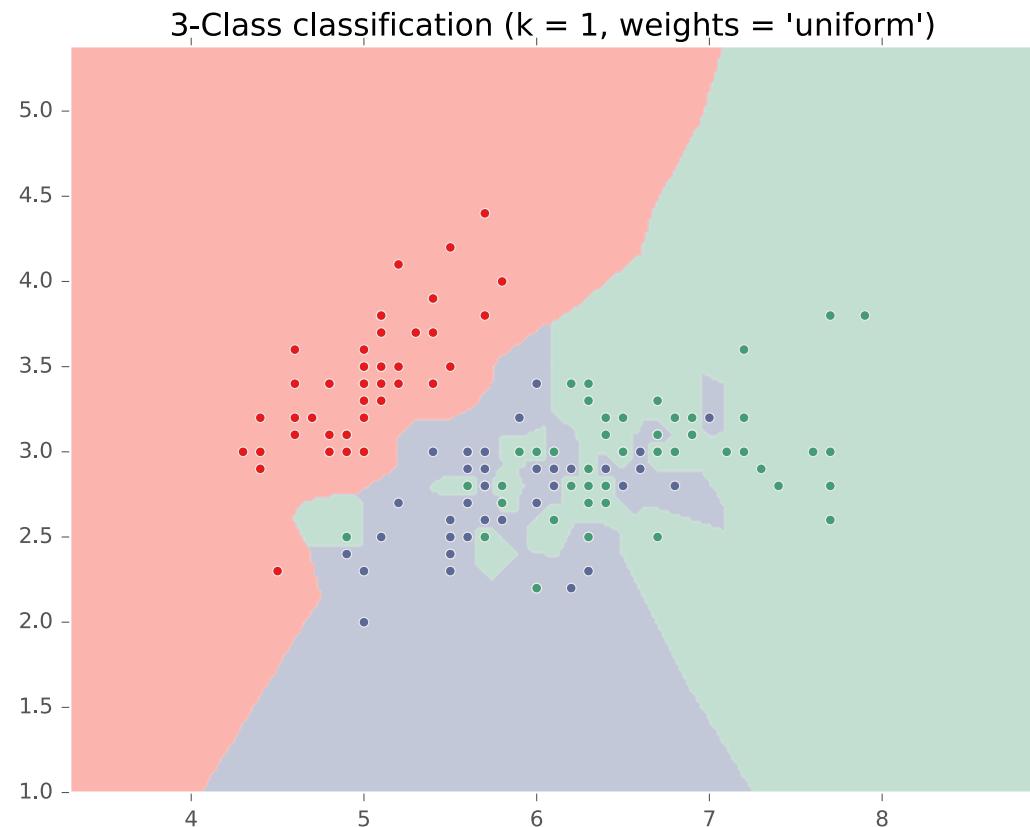
- Two very similar definitions:
 - *Def: model selection* is the process by which we choose the “best” model from among a set of candidates
 - *Def: hyperparameter optimization* is the process by which we choose the “best” hyperparameters from among a set of candidates (**could be called a special case of model selection**)
- **Both** assume access to a function capable of measuring the quality of a model
- **Both** are typically done “outside” the main training algorithm --- typically training is treated as a black box

Experimental Design

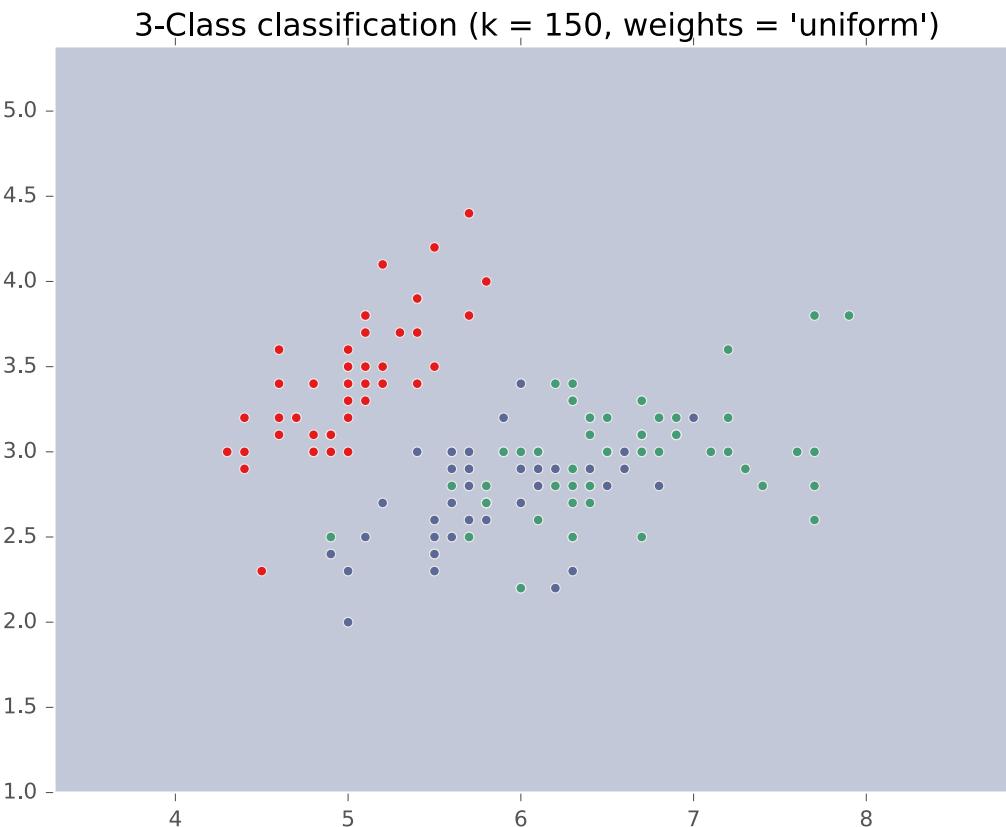
	Input	Output	Notes
Training	<ul style="list-style-type: none">• training dataset• hyperparameters	<ul style="list-style-type: none">• best model parameters	We pick the best model parameters by learning on the training dataset for a fixed set of hyperparameters
Hyperparameter Optimization	<ul style="list-style-type: none">• <u>training dataset</u>• <u>validation dataset</u>	<ul style="list-style-type: none">• <u>best hyperparameters</u>	We pick the best hyperparameters by learning on the training data and evaluating error on the validation error
Testing	<ul style="list-style-type: none">• <u>test dataset</u>• <u>hypothesis</u> (i.e. fixed model parameters)	<ul style="list-style-type: none">• test error	We evaluate a hypothesis corresponding to a decision rule with fixed model parameters on a test dataset to obtain test error

Special Cases of k-NN

k=1: Nearest Neighbor

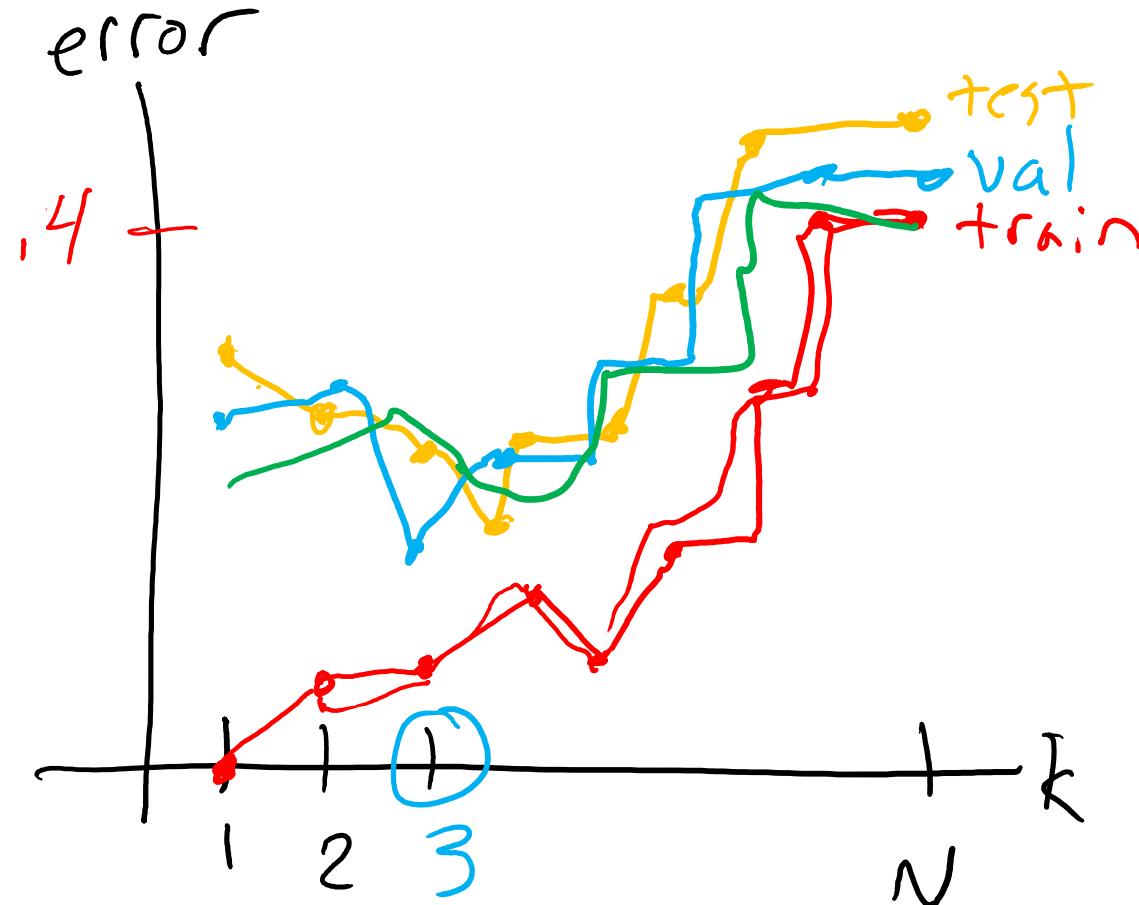
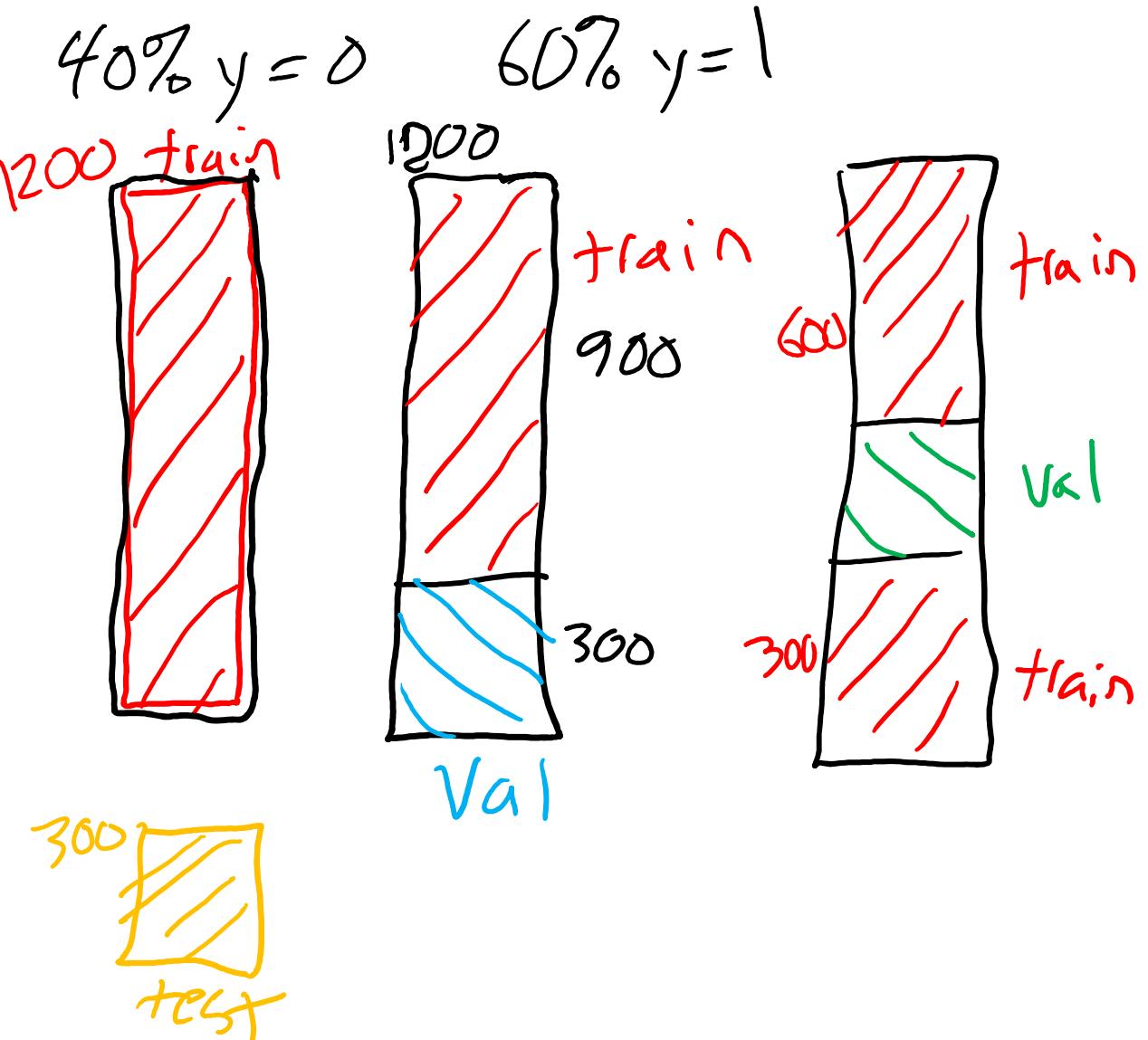


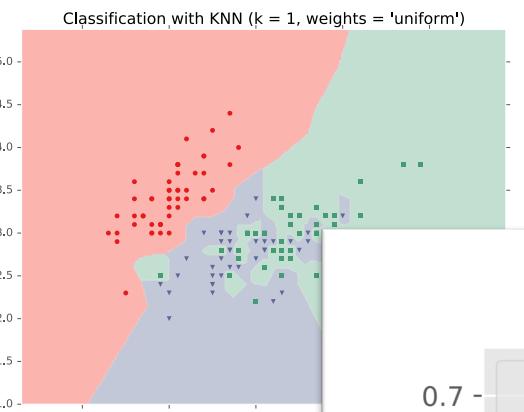
k=N: Majority Vote



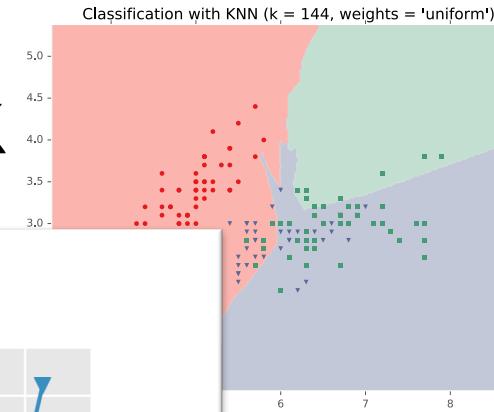
Example of Hyperparameter Optimization

Choosing k for k-NN

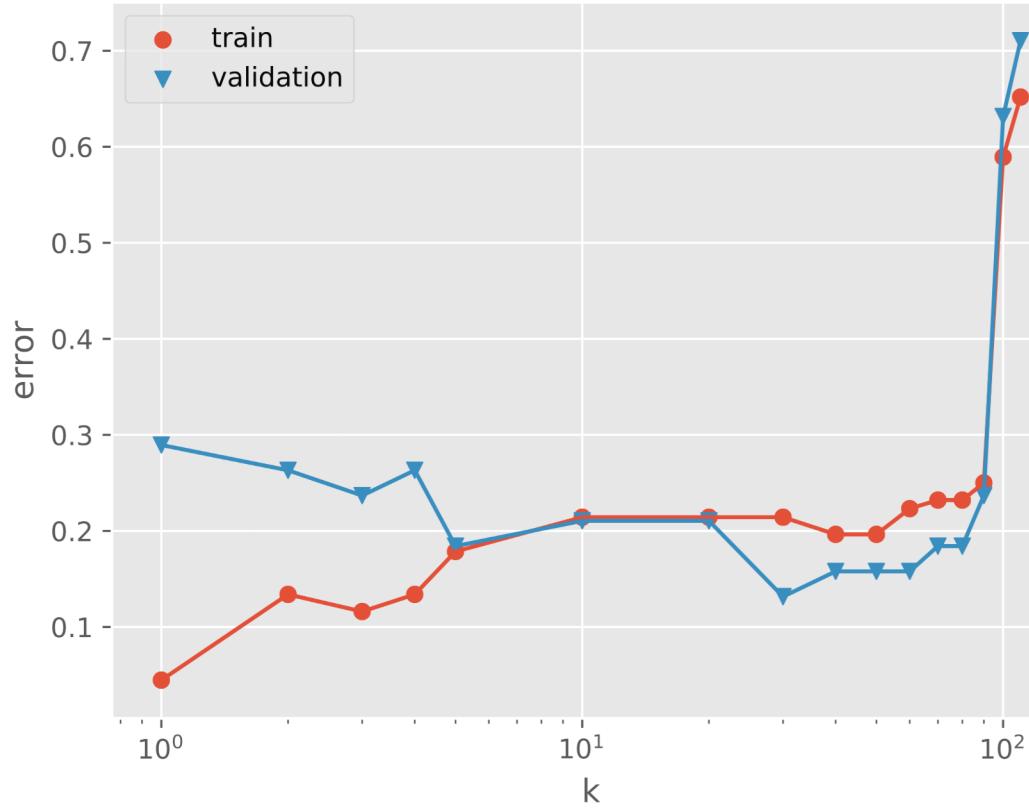




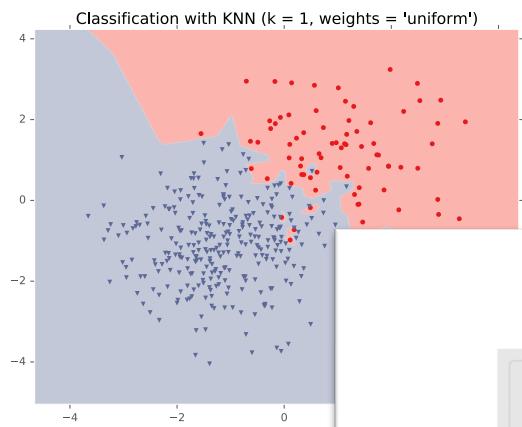
k-NN: Choosing k



Train / ~~Test~~ Errors with k-NN



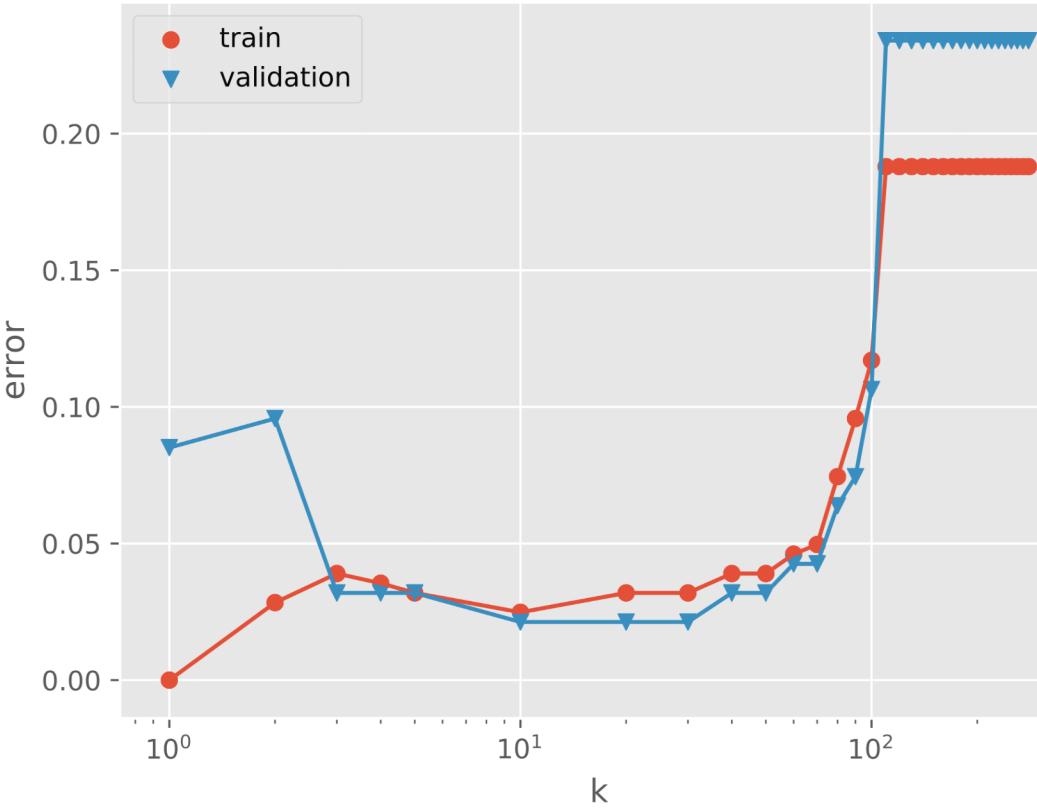
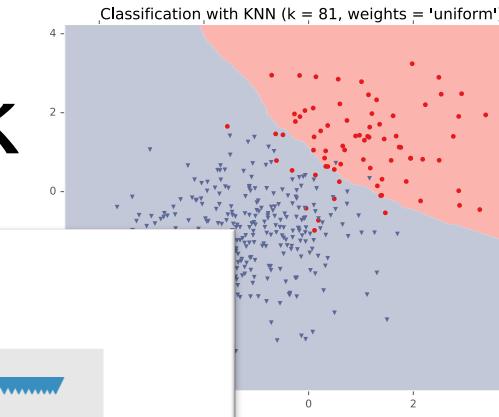
Fisher Iris Data: varying the value of k



k-NN: Choosing k

va

Train / ~~Test~~ Errors with k-NN



Gaussian Data: varying the value of k

Validation

Why do we need validation?

- Choose hyperparameters
- Choose technique
- Help make any choices beyond our parameters

But now, we have another choice to make!

- How do we split training and validation?

Trade-offs

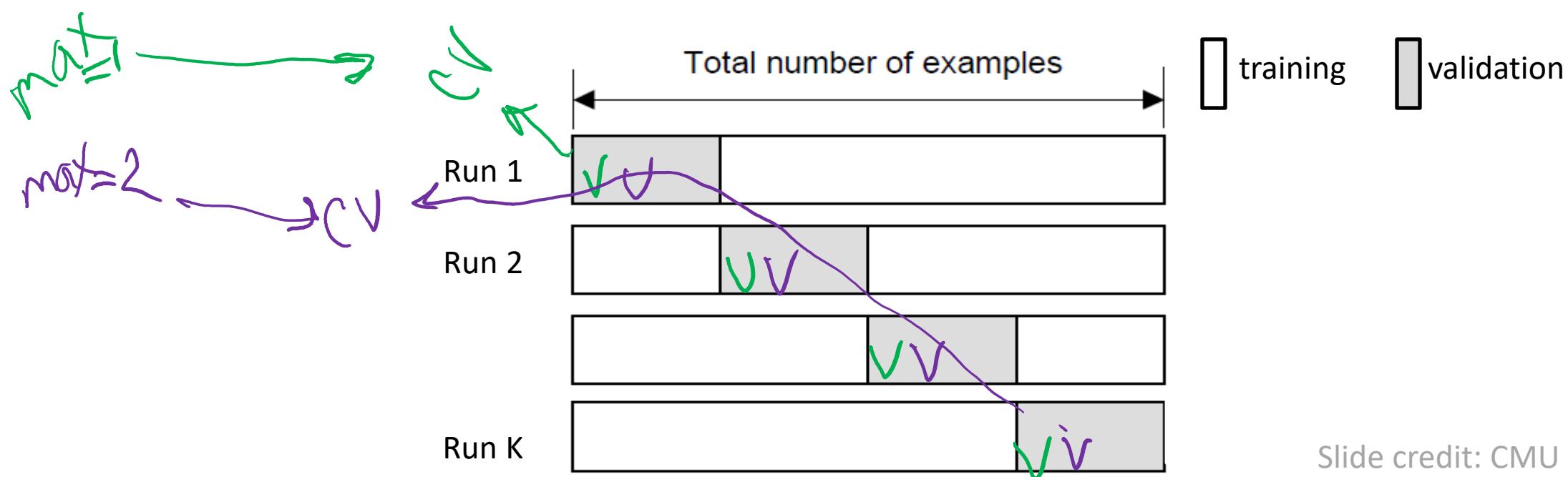
- More held-out data, better meaning behind validation numbers
- More held-out data, less data to train on!

Cross-validation

K-fold cross-validation

Create K-fold partition of the dataset.

Do K runs: train using K-1 partitions and calculate validation error on remaining partition (rotating validation partition on each run).
Report average validation error

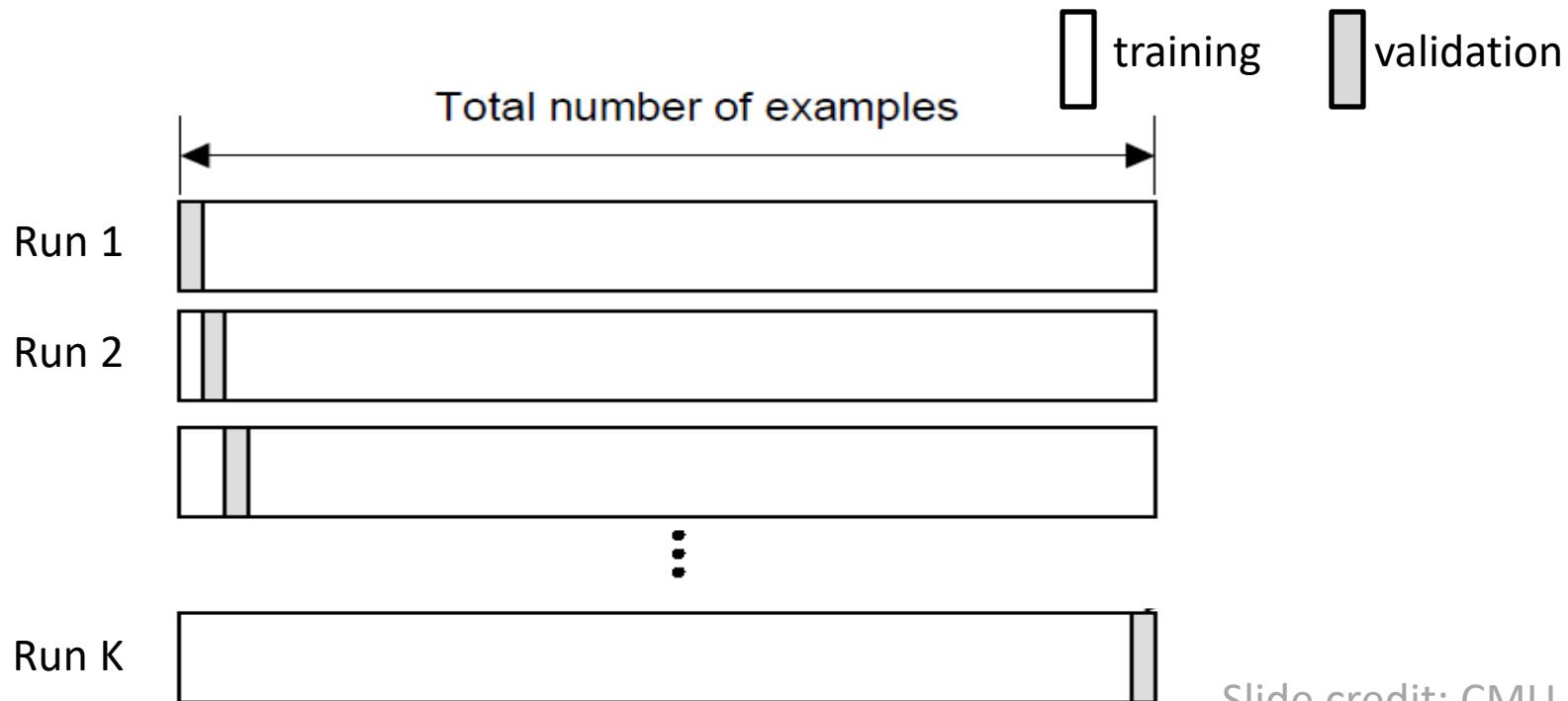


Cross-validation

Leave-one-out (LOO) cross-validation

Special case of K-fold with $K=N$ partitions

Equivalently, train on $N-1$ samples and validate on only one sample per run for N runs



Cross-validation

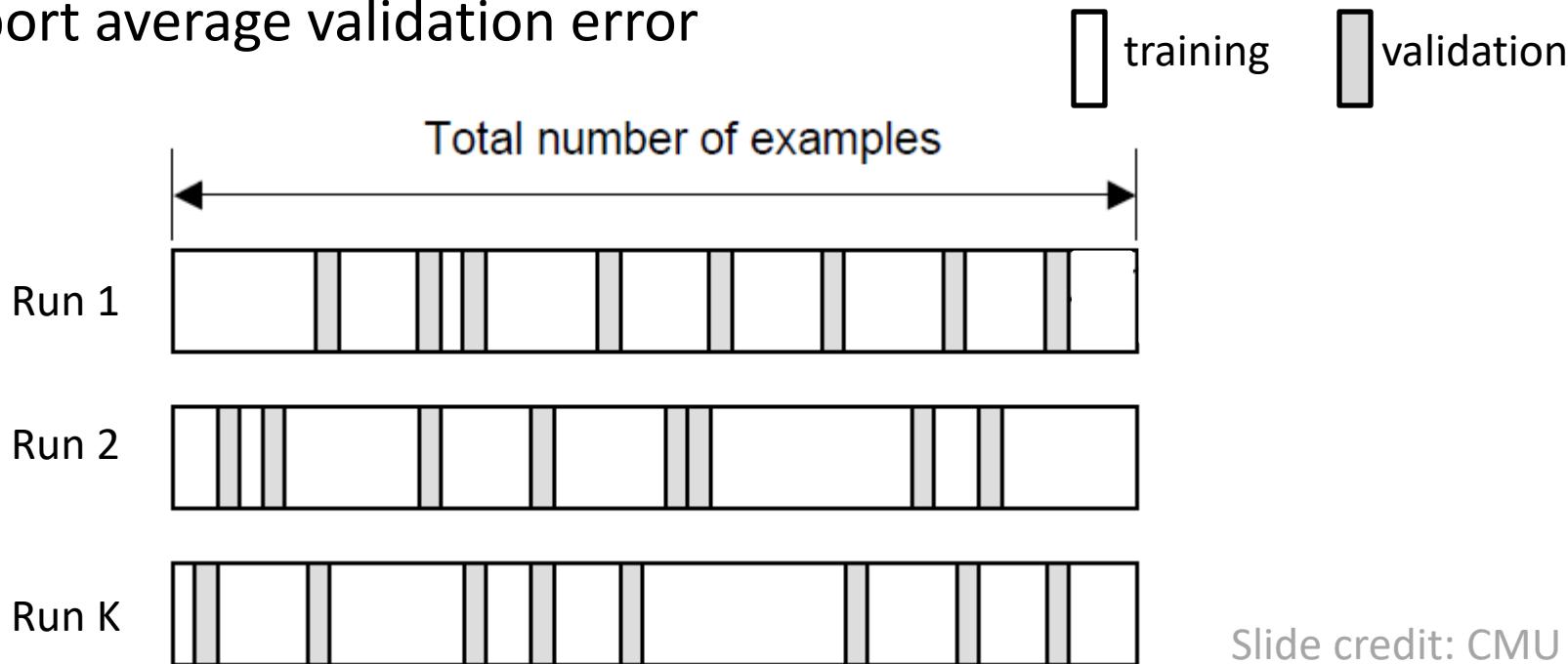
Random subsampling

Randomly subsample a fixed fraction αN ($0 < \alpha < 1$) of the dataset for validation.

Compute validation error with remaining data as training data.

Repeat K times

Report average validation error



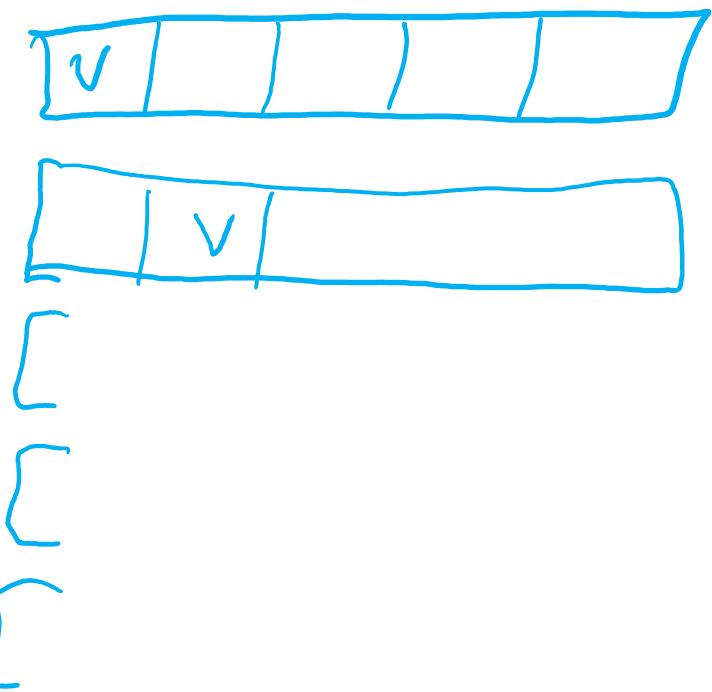
Poll 7

Say you are choosing amongst 7 discrete values of a decision tree *mutual information threshold*, and you want to do K=5-fold cross-validation.

How many times do I have to train my model?

- A. 1
- B. 5
- C. 7
- D. 12
- E. 35
- F. 5^7

```
for i in 1..7
    cv_err[i] = 0
    for j in 1..5
        train
        v_err = →
        cv_err[i] += ↙
```



Poll 7

Say you are choosing amongst 7 discrete values of a decision tree *mutual information threshold*, and you want to do K=5-fold cross-validation.

How many times do I have to train my model?

- A. 1
- B. 5
- C. 7
- D. 12
- E. 35
- F. 5^7

Model Selection

WARNING (again):

- This section is only scratching the surface!
- Lots of methods for hyperparameter optimization: (to talk about later)
 - Grid search
 - Random search
 - Bayesian optimization
 - Gradient-descent
 - ...

Main Takeaway:

- Model selection / hyperparameter optimization is just another form of learning