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Front Matter

� Announcements:

� Exam 3 on 8/12, this Friday!

� Exam review recitation on 8/10 (tomorrow)

� Please show up to PH 100 (in-person) at 3:50 

PM as the exam will begin promptly at 4 PM
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Recall: 
Naïve Bayes 
Assumption

� Assume features are conditionally independent given the 
label:

𝑃 𝑋 𝑌 =%
!"#

$

𝑃 𝑋! 𝑌

� Pros:

� Significantly reduces computational complexity 

� Also reduces model complexity, combats overfitting

� Cons:

� Is a strong, often illogical assumption 
� We’ll see a relaxed version of this later in the 

semester today when we discuss Bayesian networks
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Constructing a 
Network

� Directed acyclic graph 
where edges indicate 
conditional dependency 

� A variable is conditionally 
independent of all its non-
descendants (i.e., upstream 

variables) given its parents

� 𝑃 𝐻,𝑊, 𝑆, 𝐶, 𝑃 =
𝑃 𝐻 𝑃 𝑊 𝑃 𝑆 𝐻,𝑊
𝑃 𝐶 𝑆 𝑃 𝑀 𝑆
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𝑆

𝐻

𝑀𝐶

𝑊



Bayesian 
Networks: 
Outline

� How can we learn a Bayesian network? 

� Learning the graph structure

� Learning the conditional probabilities

� What inference questions can we answer with a 

Bayesian network? 

� Computing (or estimating) marginal (conditional) 

probabilities

� Implied (conditional) independencies
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Practice 
Problem: 
Bayesian 
Networks

Henry Chai - 8/9/22 6

• How many parameters are needed to fully specify this Bayesian network? 
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5 Graphical Models [16 pts.]

We use the following Bayesian network to model the relationship between studying (S),
being well-rested (R), doing well on the exam (E), and getting an A grade (A). All nodes
are binary, i.e., R, S,E,A 2 {0, 1}.

S

E

R

A

Figure 5: Directed graphical model for problem 5.

All the following questions will be with respect to Figure 5.

(a) [2 pts.] Write the expression for the joint distribution.

(b) [2 pts.] How many parameters, i.e., entries in the CPT tables, are necessary to describe
the joint distribution?

(c) [2 pts.] What is the Markov Blanket of each of the nodes in the network?

(d) [2 pts.] Is S marginally independent of R? Is S conditionally independent of R given
E? Answer yes or no to each questions and provide a brief explanation why.

(e) [2 pts.] Explain when would you use the EM algorithm in learning the parameters for
this joint distribution.



Learning the 
Parameters
(Fully-observed)

� 𝒟 = 𝐻 % ,𝑊 % , 𝑆 % , 𝐶 % , 𝑀 %
%"#
&

� Set parameters via MLE

𝑃 𝐻 = 1 =
𝑁'"#
𝑁

⋮

𝑃 𝑆 = 1|𝐻 = 0,𝑊 = 1 =
𝑁("#,'"*,+"#
𝑁'"*,+"#

⋮
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𝑆

𝐻

𝑀𝐶

𝑊



Computing 
Joint 
Probabilities 
is easy
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𝑆

𝐻

𝑀𝐶

𝑊
𝑃 𝐻 = 1,𝑊 = 0, 𝑆 = 1, 𝐶 = 1,𝑀 = 0
=
𝑃 𝐻 = 1 ∗

1 − 𝑃 𝑊 = 1 ∗
𝑃 𝑆 = 1|𝐻 = 1,𝑊 = 0 ∗
𝑃 𝐶 = 1|𝑆 = 1 ∗

1 − 𝑃 𝑀 = 1|𝑆 = 1



Computing 
Marginal 
Probabilities…

� Computing arbitrary marginal 

(conditional) distributions requires 
summing over exponentially many 
possible combinations of the 
unobserved variables

� Computation can be improved by 

storing and reusing calculated values 
(dynamic programming) 

� Still exponential in the worst case
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𝑆

𝐻

𝑀𝐶

𝑊



Sampling for 
Bayesian 
Networks
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𝑆

𝐻

𝑀𝐶

𝑊

� Sampling from a Bayesian network is 
easy!

1. Sample all free variables          
(𝐻 and 𝑊) 

2. Sample any variable whose 
parents have already been 
sampled

3. Stop once all variables have 
been sampled

𝑃 𝑆 = 1 ≈
# of samples w/ 𝑆 = 1

# of samples



Conditional 
Independence

� 𝑋 and 𝑌 are conditionally 

independent given 𝑍 (𝑋 ⊥ 𝑌 | 𝑍) if 
𝑃 𝑋, 𝑌 𝑍 = 𝑃 𝑋 𝑍 𝑃 𝑌 𝑍

� In a Bayesian network, each variable 

is conditionally independent of its 
non-descendants given its parents

� 𝐻 and 𝑀 are not independent 
but they are conditionally 
independent given 𝑆

� What other conditional 
independencies does a Bayesian 

network imply?
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𝑆

𝐻

𝑀𝐶

𝑊



Markov 
Blanket
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� Let 𝒮 be the set of all 

random variables in a 
Bayesian network

� A Markov blanket of 𝐴 ∈ 𝒮
is any set 𝐵 ⊆ 𝒮 s.t.

𝐴 ⊥ 𝒮\𝐵 | 𝐵

� Contains all the useful 
information about 𝐴

� Trivially, 𝒮 is always a 
Markov blanket for any 
random variable in 𝒮



Markov 
Boundary
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� Let 𝒮 be the set of all 

random variables in a 
Bayesian network

� The Markov boundary of 𝐴
is the smallest possible 
Markov blanket of 𝐴

� The Markov boundary 
consists of a variable’s 
children, parents and co-
parents (the other parents 
of its children)

Source: https://en.wikipedia.org/wiki/Markov_blanket#/media/File:Diagram_of_a_Markov_blanket.svg

https://en.wikipedia.org/wiki/Markov_blanket


D-separation

� Random variables 𝐴 and 𝐵 are d-separated given evidence 
variables 𝑍 if 𝐴 ⊥ 𝐵 | 𝑍

� Definition 1: 𝐴 and 𝐵 are d-separated given 𝑍 iff every 
undirected path between 𝐴 and 𝐵 is blocked by 𝑍

� An undirected path between 𝐴 and 𝐵 is blocked by 𝑍 if

1. ∃ a “common parent” variable 𝐶 on the path and 𝐶 ∈ 𝑍

2. ∃ a “cascade” variable 𝐶 on the path and 𝐶 ∈ 𝑍

3. ∃ a “collider” variable 𝐶 on the path and 

𝐶, descendents 𝐶 ∉ 𝑍
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𝐴 ⋯ 𝐶 𝐵⋯

𝐴 ⋯ 𝐶 𝐵⋯

𝐴 ⋯ 𝐶 𝐵⋯



� Random variables 𝐴 and 𝐵 are d-separated given evidence 
variables 𝑍 if 𝐴 ⊥ 𝐵 | 𝑍

� Definition 2: 𝐴 and 𝐵 are d-separated given 𝑍 iff ∄ a path 
between 𝐴 and 𝐵 in the undirected ancestral moral graph with 
𝑍 removed

1. Keep only 𝐴, 𝐵, 𝑍 and their ancestors (ancestral graph)
2. Add edges between all co-parents (moral graph)
3. Undirected: replace directed edges with undirected ones
4. Delete 𝑍 and check if 𝐴 and 𝐵 are connected

� Example: 𝐴 ⊥ 𝐵 | 𝐷, 𝐸 ?

D-separation

Henry Chai - 8/9/22 15Figure courtesy of Matt Gormley



Practice 
Problem: 
Bayesian 
Networks

Henry Chai - 8/9/22 16

10-601: Machine Learning Page 11 of 15 4/27/2016

5 Graphical Models [16 pts.]

We use the following Bayesian network to model the relationship between studying (S),
being well-rested (R), doing well on the exam (E), and getting an A grade (A). All nodes
are binary, i.e., R, S,E,A 2 {0, 1}.

S

E

R

A

Figure 5: Directed graphical model for problem 5.

All the following questions will be with respect to Figure 5.

(a) [2 pts.] Write the expression for the joint distribution.

(b) [2 pts.] How many parameters, i.e., entries in the CPT tables, are necessary to describe
the joint distribution?

(c) [2 pts.] What is the Markov Blanket of each of the nodes in the network?

(d) [2 pts.] Is S marginally independent of R? Is S conditionally independent of R given
E? Answer yes or no to each questions and provide a brief explanation why.

(e) [2 pts.] Explain when would you use the EM algorithm in learning the parameters for
this joint distribution.

• Are S and R independent? Are S and R conditionally independent given E?



Shortcomings of 
Bayesian 
Networks

� Graph structure must be acyclic

� Cannot encode temporal/sequential relationships 

� We’ll address these (related) problems next today with  

hidden Markov models
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Part-of-Speech 
(PoS) Tagging:
Example

Henry Chai - 8/9/22 18

Hey Siri: “Label Correct Tags” 

Label
Verb
Noun

Correct
Adjective

Verb

Tags
Noun
Verb



Hidden Markov 
Models for 
PoS Tagging
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Label Correct Tags

Verb
Noun

Adjective

Verb
Noun

Adjective

Verb
Noun

Adjective

𝑌#

𝑋# 𝑋, 𝑋-

𝑌, 𝑌-𝑌* 𝑌.



Hidden Markov 
Models

� Two types of variables: observations (observed) and states 

(hidden or latent)

� Set of states usually pre-specified via domain 
expertise/prior knowledge: 𝑠#, … , 𝑠/

� Emission model:

� Current observation is conditionally independent of 
all other variables given the current state: 𝑃 𝑋0 𝑌0

� Transition model (Markov assumption): 

� Current state is conditionally independent of all 
earlier states given the previous state: 
𝑃 𝑌0 𝑌01#, … , 𝑌* = 𝑃 𝑌0 𝑌01#
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Hidden Markov 
Models vs. 
Bayesian 
Networks
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� Two types of variables: observations (observed) and states 

(hidden or latent)

� Set of states usually pre-specified via domain 
expertise/prior knowledge: 𝑠#, … , 𝑠/

� Emission & transition models are fixed over time steps

𝑃 𝑋0|𝑌0 = 𝑠2 = 𝑃 𝑋0! 𝑌0! = 𝑠2 ∀ 𝑡, 𝑡3

𝑃 𝑌0|𝑌01# = 𝑠2 = 𝑃 𝑌0! 𝑌0!1# = 𝑠2 ∀ 𝑡, 𝑡3

� Parameter reuse makes learning efficient

� Can handle sequences of varying lengths



Hidden Markov 
Models: 
Outline

� How can we learn the conditional probabilities used by a 

hidden Markov model? 

� What inference questions can we answer with a hidden 

Markov model? 

1. Computing the distribution of a single state (or a 

sequence of states) given a sequence of observations

2. Finding the most-probable sequence of states given a 

sequence of observations 

3. Computing the probability of a sequence of 

observations
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Practice 
Problem:
HMMs
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Verb Noun Verb

see spot run

Verb Noun Verb

run spot run

Adj. Adj. Noun

funny funny spot

1. Given the POS tagging data shown, what 
are the parameter values learned by an HMM?



� 𝒟 = 𝒙 % , 𝒚 %
%"#
&

� Set the parameters via MLE

Learning the 
Parameters
(Fully-
observed)
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𝑠# ⋯ 𝑠/
𝑜# 𝑎## ⋯ 𝑎#/
𝑜, 𝑎,# ⋯ 𝑎,/
⋮ ⋮ ⋱ ⋮
𝑜4 𝑎4# ⋯ 𝑎4/

Emission matrix, 𝐴 Transition matrix, 𝐵

START 𝑠# ⋯ 𝑠/
𝑠# 𝑏#* 𝑏## ⋯ 𝑏#/
⋮ ⋮ ⋮ ⋱ ⋮
𝑠/ 𝑏/* 𝑏/# ⋯ 𝑏//

END 𝑏 /5# * 𝑏 /5# # ⋯ 𝑏 /5# /

_𝑏62 =
∑0"#75#𝑁8""9#,8"$%"9&
∑0"#75#𝑁8"$%"9&

a𝑎62 =
∑0"#7 𝑁:"";#, 8""9&
∑0"#7 𝑁8""9&



1. Marginal Computation: 𝑃 𝑌0 = 𝑠2 𝒙 % (or 𝑃 𝑌 𝒙 % )

2. Decoding: _𝑌 = argmax
8

𝑃 𝑌 𝒙 %

3. Evaluation: 𝑃 𝒙 %

3 Inference 
Questions for 
HMMs

Henry Chai - 8/9/22 25

𝑃 𝑌 𝒙 % =
𝑃 𝒙 % |𝑌 𝑃(𝑌)

𝑃 𝒙 % =
∏0"#
7 𝑃 𝒙0

% 𝑌0 𝑃 𝑌0 𝑌01#
𝑃 𝒙 %

𝑃 𝒙 % = h
𝒴 ∈ >?? @ABBCD?E BEFGEHIEB

𝑃 𝒙 % 𝒴 𝑃 𝒴



The Brute 
Force 
Algorithm

� Inputs: query 𝑃 𝒙 % , emission matrix 𝐴, transition matrix 𝐵

� Initialize 𝑝 = 0

� For 𝒴 ∈ all possible sequences
� Compute the joint probability

𝑃 𝒙 % , 𝒴 = 𝑃 𝒙 % |𝒴 𝑃 𝒴 =%
0"#

7

𝑃 𝒙0
% 𝒴0 𝑃 𝒴0 𝒴01#

� 𝑝 += 𝑃 𝒙 % , 𝒴

� Return 𝑝 = 𝑃 𝒙 %
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Practice 
Problem:
HMMs
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1. Given the POS tagging data shown, what 
are the parameter values learned by an HMM?

Verb Noun Verb

see spot run

Verb Noun Verb

run spot run

Adj. Adj. Noun

funny funny spot

2. How many POS tag sequences of length 23 
are there?

3. How does an HMM efficiently search for 
the most probable sequence of tags given a 23-
word sentence?



1. Marginal Computation: 𝑃 𝑌0 = 𝑠2 𝒙 % (or 𝑃 𝑌 𝒙 % )

2. Decoding: _𝑌 = argmax
8

𝑃 𝑌 𝒙 %

3. Evaluation: 𝑃 𝒙 %

𝑃 𝒙 % = h
J"#

/

𝑃 𝑌0 = 𝑠J, 𝒙 %

𝑃 𝑌0 = 𝑠2 𝒙 % =
𝑃 𝑌0 = 𝑠2, 𝒙 %

𝑃 𝒙 %

3 Inference 
Questions for 
HMMs
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Recursive 
Marginals
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By conditional independence assumptions 

Can be computed recursively (backward algorithm)

Can be computed recursively (forward algorithm)

𝑃 𝑌0 = 𝑠2, 𝒙#
% , … , 𝒙7

%

= 𝑃 𝒙05#
% , … , 𝒙7

% 𝑌0 = 𝑠2, 𝒙#
% , … , 𝒙0

% 𝑃 𝑌0 = 𝑠2, 𝒙#
% , … , 𝒙0

%

= 𝑃 𝒙05#
% , … , 𝒙7

% 𝑌0 = 𝑠2 𝑃 𝑌0 = 𝑠2, 𝒙#
% , … , 𝒙0

%

≔ 𝛽0 𝑗 𝛼0 𝑗
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The 
Forward-
Backward 
Algorithm

� Inputs: query 𝑃 𝑌0 = 𝑠2 𝒙 % , emission matrix 𝐴, transition matrix 𝐵

� Initialize 𝛼* START = 1 and 𝛽75# END = 1

� For 𝜏 = 1,… , 𝑇
� For 𝑚 = 1,… ,𝑀

𝛼K 𝑚 = 𝑃 𝒙K
% |𝑌K = 𝑠J h

L"#

/

𝑃 𝑌K = 𝑠J 𝑌K1# = 𝑠L 𝛼K1# 𝑘

� For 𝜏 = 𝑇,… , 1
� For 𝑚 = 1,… ,𝑀

𝛽K 𝑚 = h
L"#

/

𝛽K5# 𝑘 𝑃 𝒙K5#
% 𝑌K5# = 𝑠L 𝑃 𝑌K5# = 𝑠L 𝑌K = 𝑠J

� Return 𝑃 𝑌0 = 𝑠2 𝒙 % =
M 8""9&,𝒙 '

M 𝒙 ' = O" 2 P" 2
∑()%
* O" J P" J



Most 
Probable
State
Sequence
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𝜔0 𝑗 ≔ max
𝒴 ∈ >?? @ABBCD?E BEFGEHIEB AR 01# BS>SEB

𝑃 𝒴, 𝑌0 = 𝑠2, 𝒙#
% , … , 𝒙0

%

𝜔0 𝑗 = the probability of the most probable sequence of 𝑡 states that   
ends in 𝑠2, conditioned on the first 𝑡 observations

𝜔0 𝑗 = max
J∈ #,…,/

𝜔01# 𝑚 𝑃 𝑌0 = 𝑠2|𝑌01# = 𝑠J 𝑃 𝒙0
% |𝑌0 = 𝑠2



The 
Viterbi 
Algorithm
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� Inputs: observations 𝒙 % , emission matrix 𝐴, transition matrix 𝐵

� Initialize 𝜔* START = 1

� For 𝜏 = 1,… , 𝑇 + 1
� For 𝑚 = 1,… ,𝑀

𝜔K 𝑚 = max
L ∈ #,…,/

𝑃 𝒙K
% |𝑌K = 𝑠J 𝑃 𝑌K = 𝑠J 𝑌K1# = 𝑠L 𝜔K1# 𝑘

𝜌K 𝑚 = argmax
L ∈ #,…,/

𝑃 𝒙K
% |𝑌K = 𝑠J 𝑃 𝑌K = 𝑠J 𝑌K1# = 𝑠L 𝜔K1# 𝑘

� Return the most probable assignment given 𝒙 % :

� _𝑌7 = 𝜌75# END
� For 𝜏 = 𝑇 − 1,… , 1

� _𝑌K = 𝜌K5# _𝑌K5#



1. Marginal Computation: 𝑃 𝑌0 = 𝑠2 𝒙 % (or 𝑃 𝑌 𝒙 % )

1. Viterbi Decoding: _𝑌 = argmax
8

𝑃 𝑌 𝒙 %

2. Evaluation: 𝑃 𝒙 %

3. Minimum Bayes Risk (MBR) Decoding:
_𝑌 = argmin

8
𝔼
8!∼M+,- ⋅ 𝒙 % ℓ 𝑌, 𝑌3

3 4 Inference 
Questions for 
HMMs
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𝑃 𝑌 𝒙 % =
𝑃 𝒙 % |𝑌 𝑃(𝑌)

𝑃 𝒙 % =
∏0"#
7 𝑃 𝒙0

% 𝑌0 𝑃 𝑌0 𝑌01#
𝑃 𝒙 %

𝑃 𝒙 % = h
𝒴 ∈ >?? @ABBCD?E BEFGEHIEB

𝑃 𝒙 % 𝒴 𝑃 𝒴



Learning 
Paradigms

� Supervised learning - 𝒟 = 𝒙 % , 𝑦 %
%"#
&

� Regression - 𝑦 % ∈ ℝ

� Classification - 𝑦 % ∈ 1,… , 𝐶

� Unsupervised learning - 𝒟 = 𝒙 %
%"#
&

� Clustering 
� Dimensionality reduction

� Reinforcement learning - 𝒟 = 𝒔 % , 𝒂 % , 𝑟 %
%"#
&
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Outline

� Problem formulation 

� Time discounted cumulative reward

� Markov decision processes (MDPs)

� Algorithms:

� Value & policy iteration (dynamic programming)

� (Deep) Q-learning (temporal difference learning)

35Henry Chai - 8/9/22



Practice 
Problem: 
MDPs

� In reinforcement learning, our model consists of 
multiple kinds of functions; for each of following 
functions, fill in the domains (input space) and ranges 
(output space). Choose from: 𝒮 (state space), 𝒜 (action 
space), ℝ (set of real numbers) or a combination from 
any of these sets. 

Henry Chai - 8/9/22 36

Domain Range

Transition function

Reward function

Policy

Value function

Q function



Markov 
Decision 
Process (MDP)

� Assume the following model for our data:

1. Start in some initial state 𝑠*

2. For time step 𝑡:
1. Agent observes state 𝑠0
2. Agent takes action 𝑎0 = 𝜋 𝑠0
3. Agent receives reward 𝑟0 ∼ 𝑝 𝑟 𝑠0, 𝑎0)

4. Agent transitions to state 𝑠05# ∼ 𝑝 𝑠3 𝑠0, 𝑎0)

3. Total reward is

� MDPs make the Markov assumption: the reward and 
next state only depend on the current state and action.

37

h
0"*

V

𝛾0𝑟0
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Reinforcement 
Learning: 
Objective 
Function

� Find a policy 𝜋∗ = argmax
X

𝑉X 𝑠 ∀ 𝑠 ∈ 𝒮

� 𝑉X 𝑠 = 𝔼[discounted total reward of starting in state 
𝑠 and executing policy 𝜋 forever]

� 𝑉X 𝑠 = 𝔼Y 9! 9, Z)[𝑅 𝑠* = 𝑠, 𝜋 𝑠*

� − + 𝛾𝑅 𝑠#, 𝜋 𝑠# + 𝛾,𝑅 𝑠,, 𝜋 𝑠, +⋯]

𝑉X 𝑠 =h
0"*

V

𝛾0𝔼Y 9! 9, Z) 𝑅 𝑠0, 𝜋 𝑠0

� where 0 < 𝛾 < 1 is some discount factor for future rewards

38Henry Chai - 8/9/22



Value 
Function

� 𝑉X 𝑠 = 𝔼[discounted total reward of starting in state 𝑠 and       

executing policy 𝜋 forever]

� = 𝔼[𝑅 𝑠*, 𝜋 𝑠* + 𝛾𝑅 𝑠#, 𝜋 𝑠# + 𝛾,𝑅 𝑠,, 𝜋 𝑠, +⋯ 𝑠* = 𝑠

� = 𝑅 𝑠, 𝜋 𝑠 + 𝛾𝔼[𝑅 𝑠#, 𝜋 𝑠# + 𝛾𝑅 𝑠,, 𝜋 𝑠, + … | 𝑠* = 𝑠]

� = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 ∑9%∈ 𝒮 𝑝 𝑠# | 𝑠, 𝜋 𝑠 �

�

𝑅 𝑠#, 𝜋 𝑠# +

+𝛾𝔼 𝑅 𝑠,, 𝜋 𝑠, +⋯ 𝑠#]

VX s = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 h
9%∈ 𝒮

𝑝 𝑠# | 𝑠, 𝜋 𝑠 𝑉X 𝑠#
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Optimality

� Optimal value function:

𝑉∗ 𝑠 = max
Z ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾 h
9!∈ 𝒮

𝑝 𝑠3 | 𝑠, 𝑎 𝑉∗ 𝑠3

� System of 𝒮 equations and 𝒮 variables

� Optimal policy:

𝜋∗ 𝑠 = argmax
Z ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾 h
9!∈ 𝒮

𝑝 𝑠3 | 𝑠, 𝑎 𝑉∗ 𝑠3

40

Immediate 
reward

(Discounted) 
Future reward
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Fixed 
Point 
Iteration

� Iterative method for solving a system of equations

� Given some equations and initial values
𝑥# = 𝑓# 𝑥#, … , 𝑥%

⋮
𝑥% = 𝑓% 𝑥#, … , 𝑥%

𝑥#
* , … , 𝑥%

*

� While not converged, do

𝑥#
05# ← 𝑓# 𝑥#

0 , … , 𝑥%
0

⋮

𝑥%
05# ← 𝑓% 𝑥#

0 , … , 𝑥%
0
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Synchronous
Value Iteration

42

� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’ | 𝑠, 𝑎)
� Initialize 𝑉 * 𝑠 = 0 ∀ 𝑠 ∈ 𝒮 (or randomly) and set 𝑡 = 0
� While not converged, do:

� For 𝑠 ∈ 𝒮
� For 𝑎 ∈ 𝒜

𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 h
9!∈ 𝒮

𝑝 𝑠3 | 𝑠, 𝑎 𝑉 0 𝑠3

� 𝑉 05# 𝑠 ← max
Z ∈𝒜

𝑄 𝑠, 𝑎

� 𝑡 = 𝑡 + 1
� For 𝑠 ∈ 𝒮

𝜋∗ 𝑠 ← argmax
Z ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾 h
9!∈ 𝒮

𝑝 𝑠3 | 𝑠, 𝑎 𝑉 0 𝑠3

� Return 𝜋∗
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Asynchronous
Value Iteration

43

� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’ | 𝑠, 𝑎)
� Initialize 𝑉 * 𝑠 = 0 ∀ 𝑠 ∈ 𝒮 (or randomly) and set 𝑡 = 0
� While not converged, do:

� For 𝑠 ∈ 𝒮
� For 𝑎 ∈ 𝒜

𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 h
9!∈ 𝒮

𝑝 𝑠3 | 𝑠, 𝑎 𝑉 𝑠3

� 𝑉 𝑠 ← max
Z ∈𝒜

𝑄 𝑠, 𝑎

� For 𝑠 ∈ 𝒮

𝜋∗ 𝑠 ← argmax
Z ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾 h
9!∈ 𝒮

𝑝 𝑠3 | 𝑠, 𝑎 𝑉 𝑠3

� Return 𝜋∗
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� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’ | 𝑠, 𝑎)
� Initialize 𝜋 randomly 

� While not converged, do:
� Solve the Bellman equations defined by policy 𝜋

VX s = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 h
9!∈ 𝒮

𝑝 𝑠3 | 𝑠, 𝜋 𝑠 𝑉X 𝑠3

�Update 𝜋

− 𝜋 𝑠 ← argmax
Z ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾 h
9!∈ 𝒮

𝑝 𝑠3 | 𝑠, 𝑎 𝑉X 𝑠3

� Return 𝜋

44

Policy Iteration
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47

� Theorem 1: Value function convergence

𝑉 will converge to 𝑉∗ if each state is “visited” 

infinitely often (Bertsekas, 1989)

� Theorem 2: Convergence criterion 

if max
9 ∈ 𝒮

𝑉 05# 𝑠 − 𝑉 0 𝑠 < 𝜖, 

then max
9 ∈ 𝒮

𝑉 05# 𝑠 − 𝑉∗ 𝑠 < ,^_
#1_

(Williams & Baird, 1993) 

� Theorem 3: Policy convergence

The “greedy” policy, 𝜋 𝑠 = argmax
Z ∈𝒜

𝑄 𝑠, 𝑎 , converges to the 

optimal 𝜋∗ in a finite number of iterations, often before 

the value function has converged! (Bertsekas, 1987) 

Value Iteration
Theory

Henry Chai - 8/9/22



𝑄∗(𝑠, 𝑎)w/ 
deterministic 
rewards

� 𝑄∗ 𝑠, 𝑎 = 𝔼[total discounted reward of taking action 𝑎 in 
state 𝑠, assuming all future actions are optimal]

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 h
9!∈ 𝒮

𝑝 𝑠3 | 𝑠, 𝑎 𝑉∗ 𝑠3

𝑉∗ 𝑠3 = max
Z! ∈𝒜

𝑄∗ 𝑠3, 𝑎3

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 h
9!∈ 𝒮

𝑝 𝑠3 | 𝑠, 𝑎 max
Z! ∈𝒜

𝑄∗ 𝑠3, 𝑎3

𝜋∗ 𝑠 = argmax
Z ∈𝒜

𝑄∗ 𝑠, 𝑎

� Insight: if we know 𝑄∗, we can compute an optimal policy 𝜋∗!
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𝑄∗(𝑠, 𝑎)w/ 
deterministic 
rewards and 
transitions

49Henry Chai - 8/9/22

� 𝑄∗ 𝑠, 𝑎 = 𝔼[total discounted reward of taking action 𝑎 in 
state 𝑠, assuming all future actions are optimal]

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉∗ 𝛿 𝑠, 𝑎

� 𝑉∗ 𝛿 𝑠, 𝑎 = max
Z! ∈𝒜

𝑄∗ 𝛿 𝑠, 𝑎 , 𝑎3

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 max
Z! ∈𝒜

𝑄∗ 𝛿 𝑠, 𝑎 , 𝑎3

𝜋∗ 𝑠 = argmax
Z ∈𝒜

𝑄∗ 𝑠, 𝑎

� Insight: if we know 𝑄∗, we can compute an optimal policy 𝜋∗!



Learning
𝑄∗(𝑠, 𝑎)w/
deterministic 
rewards and 
transitions

Algorithm 1: 
Online learning 
(table form) 

50

� Inputs: discount factor 𝛾, an initial state 𝑠

� Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array) 

� While TRUE, do
� Take a random action 𝑎

� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠3 where 𝑠3 = 𝛿 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
Z!

𝑄 𝑠3, 𝑎3

Henry Chai - 8/9/22



Learning
𝑄∗(𝑠, 𝑎)w/
deterministic 
rewards and 
transitions

Algorithm 2: 
𝜖-greedy online 
learning (table 
form) 

51

� Inputs: discount factor 𝛾, an initial state 𝑠,
greediness parameter 𝜖 ∈ 0, 1

� Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array) 

� While TRUE, do
� With probability 𝜖, take the greedy action 

𝑎 = argmax
Z! ∈𝒜

𝑄 𝑠, 𝑎3

Otherwise, with probability 1 − 𝜖, take a random action 𝑎
� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠3 where 𝑠3 = 𝛿 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
Z!

𝑄 𝑠3, 𝑎3

Henry Chai - 8/9/22
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� Inputs: discount factor 𝛾, an initial state 𝑠,
greediness parameter 𝜖 ∈ 0, 1 ,
learning rate 𝛼 ∈ 0, 1 (“trust parameter”)

� Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array) 

� While TRUE, do
� With probability 𝜖, take the greedy action 

𝑎 = argmax
Z! ∈𝒜

𝑄 𝑠, 𝑎3

Otherwise, with probability 1 − 𝜖, take a random action 𝑎
� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠3 where 𝑠3 ∼ 𝑝 𝑠3 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
Z!

𝑄 𝑠3, 𝑎3 − 𝑄 𝑠, 𝑎

Learning
𝑄∗(𝑠, 𝑎)w/
deterministic 
rewards 

Algorithm 3: 
𝜖-greedy online 
learning (table 
form) 

Current 
value

Temporal difference 
target

Temporal 
difference
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Learning
𝑄∗(𝑠, 𝑎): 
Convergence

53

� For Algorithm 3 (temporal difference learning),  

𝑄 converges to 𝑄∗ if

1. Every valid state-action pair is visited infinitely often 

� Q-learning is exploration-insensitive: any visitation 

strategy that satisfies this property will work!

2. 0 ≤ 𝛾 < 1

3. ∃ 𝛽 s.t. 𝑅 𝑠, 𝑎 < 𝛽 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜

4. Initial 𝑄 values are finite

5. Learning rate 𝛼0 follows some “schedule” s.t.
∑0"*V 𝛼0 = ∞ and ∑0"*V 𝛼0, < ∞ e.g., 𝛼0 = ⁄# 05#
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� “True” loss

ℓ Θ = h
9 ∈ 𝒮

h
Z ∈𝒜

𝑄∗ 𝑠, 𝑎 − 𝑄 𝑠, 𝑎; Θ
,

1. Use stochastic gradient descent: just consider one 
state-action pair in each iteration

2. Use temporal difference learning: 
� Given current parameters Θ S the temporal 

difference target is 
𝑄∗ 𝑠, 𝑎 ≈ 𝑟 + 𝛾max

Z!
𝑄 𝑠3, 𝑎3; Θ 0 ≔ 𝑦

� Set the parameters in the next iteration Θ S5# such 
that 𝑄 𝑠, 𝑎; Θ S5# ≈ 𝑦

ℓ Θ S , Θ 05# = 𝑦 − 𝑄 𝑠, 𝑎; Θ S5#
,

1. 𝒮 too big to compute this sum

Deep 
Q-learning:
Loss Function

54

2. Don’t know 𝑄∗

Henry Chai - 8/9/22



Deep 
Q-learning

Algorithm 4: 
Online learning 
(parametric 
form)

55

� Inputs: discount factor 𝛾, an initial state 𝑠*,

learning rate 𝛼

� Initialize parameters Θ *

� For 𝑡 = 0, 1, 2, …
� Gather training sample 𝒔0, 𝒂0, 𝑟0, 𝒔05#
� Update Θ 0 by taking a step opposite the gradient

Θ 05# ← Θ 0 − 𝛼∇` ".% ℓ Θ 0 , Θ 05#

where
∇` ".% ℓ Θ 0 , Θ 05#

= 2 𝑦 − 𝑄 𝑠, 𝑎; Θ 05# ∇` ".% 𝑄 𝑠, 𝑎; Θ 05#
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Deep 
Q-learning:
Experience
Replay

56

� SGD assumes i.i.d. training samples but in RL, samples are 
highly correlated

� Idea: keep a “replay memory” 𝒟 = {𝑒1, 𝑒2, … , 𝑒𝑁} of the 𝑁
most recent experiences 𝑒𝑡 = 𝒔𝑡, 𝒂0, 𝑟0, 𝒔05# (Lin, 1992)

� Also keeps the agent from “forgetting” about recent 
experiences

� Alternate between:
1. Sampling some 𝑒𝑖 uniformly at random from 𝒟 and 

applying a Q-learning update (repeat 𝛵 times)

2. Adding a new experience to 𝒟

� Can also sample experiences from 𝒟 according to some 
distribution that prioritizes experiences with high error 
(Schaul et al., 2016)
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Clustering

� Goal: split an unlabeled data set into groups or clusters of 
“similar” data points

� Use cases:
� Organizing data
� Discovering patterns or structure
� Preprocessing for downstream machine learning tasks

� Applications:

Henry Chai - 8/9/22 57



Clustering 
Algorithms

� Hierarchical

� Top-down (divisive)

� Bottom-up (agglomerative)

� Partitioning

� K-means

Henry Chai - 8/9/22 58



Hierarchical 
Clustering

� Bottom-up (agglomerative) 

� Start with each data point in its own cluster

� Iteratively combine the most similar clusters

� Stop when all data points are in a single cluster

� Top-down (divisive)

� Start with all data points in one cluster

� Iteratively split the largest cluster into two clusters

� Stop when all clusters are single data points

Henry Chai - 8/9/22 59



Bottom-up 
Hierarchical 
Clustering

� Bottom-up (agglomerative) 

� Start with each data point in its own cluster

� Iteratively combine the most similar clusters

� Stop when all data points are in a single cluster

� Key question: how do we define similarity between clusters?

� Single-linkage: consider the closest data points
𝑑(a 𝐶6, 𝐶2 = min

𝒙 ∈ 4#, 𝒚 ∈ 4&
𝑑 𝒙, 𝒚

� Complete-linkage: consider the farthest data points
𝑑4a 𝐶6, 𝐶2 = max

𝒙 ∈ 4#, 𝒚 ∈ 4&
𝑑 𝒙, 𝒚
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Single-
Linkage
Dendrogram

Henry Chai - 8/9/22 61
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Complete-
Linkage
Dendrogram
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Top-down 
Hierarchical 
Clustering

� Top-down (divisive)

� Start with all data points in one cluster

� Iteratively split the largest cluster into two clusters

� Stop when all clusters are single data points

� Key question: how can we partition a cluster?
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Recipe 
for 
𝐾-means

Henry Chai - 8/9/22 64

� Define a model and model parameters
� Assume 𝐾 clusters and use the Euclidean distance
� Parameters: 𝝁#, … , 𝝁c and 𝑧 # , … , 𝑧 &

� Write down an objective function

h
%"#

&

𝒙 % − 𝝁d ' ,

� Optimize the objective w.r.t. the model parameters
� Use (block) coordinate descent



Block 
Coordinate 
Descent

65

� Goal: minimize some objective 

­𝜶, 𝜷̄ = argmin 𝐽 𝜶, 𝜷

� Idea: iteratively pick one block of variables (𝜶 or 𝜷) and 
minimize the objective w.r.t. that block, keeping the 

other(s) fixed. 

� Ideally, blocks should be the largest possible set of 

variables that can be efficiently optimized 
simultaneously
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𝐾-means 
Algorithm

Henry Chai - 8/9/22 66

� Input: 𝒟 = 𝒙 %
%"#
&

, 𝐾

1. Initialize cluster centers 𝝁#, … , 𝝁c
2. While NOT CONVERGED

a. Assign each data point to the cluster with the 
nearest cluster center:
𝑧(%) = argmin

L
𝒙 % − 𝝁L ,

b. Recompute the cluster centers:

𝝁L =
1
𝑁L

h
% ∶d ' "L

𝒙 %

where 𝑁L is the number of data points in cluster 𝑘

� Output: cluster centers 𝝁#, … , 𝝁c and cluster 
assignments 𝑧 # , … , 𝑧 &



Practice 
Problem: 
K-means

Henry Chai - 8/9/22 67
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2.3 “K-Means %%”

The TAs for 10-601 pulled an all nighter and designed a brand new initialization algorithm for
the cluster centers in Lloyd’s algorithm. Below is the algorithm which they called “K-means
%%”.

• Choose the first cluster center, c1, uniformly at random from among the data points.

• For j = 2, . . . , k iteratively choose cj to be one of the data points according to the
following weighted probability

P (cj = x) /

8
<

:

0 if x = c` for ` = 1, . . . , j � 1

min`<j
1

||x � c`||
otherwise

Assume that x 2 R1. Answer the following questions about “K-means %%”:

10-601: Machine Learning Page 5 of 16 4/27/2016
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Figure 2: Initial data and cluster centers

(a) [3 pts] Circle the image which depicts the cluster center positions after 1 iteration of
Lloyd’s algorithm.

Solution: Circle the 3rd image

Given the initial cluster centers shown 
below, circle the image that depicts the 
cluster center positions after 1 iteration 

of the Lloyd’s method



Setting 𝐾

� Idea: choose the value of 𝐾 that minimizes the 
objective function 

� Look for the characteristic “elbow” or largest decrease 
when going from 𝐾 − 1 to 𝐾

Henry Chai - 8/9/22 68
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Initializing 
𝐾-means

Henry Chai - 8/9/22 69

� Common choice: choose 𝐾 data points at random to be 
the initial cluster centers (Lloyd’s method)

� Lloyd’s method converges to a local minimum and that 
local minimum can be arbitrarily bad (relative to the 
optimal clusters)

� Intuition: want initial cluster centers to be far apart 
from one another



𝐾-means++ 
(Arthur and 
Vassilvitskii, 
2007)

1. Choose the first cluster center randomly from the 
data points.

2. For each other data point 𝒙, compute 𝐷 𝒙 , the 
distance between 𝒙 and the closest cluster center.

3. Select the next cluster center proportional to 𝐷 𝒙 ,.

4. Repeat 2 and 3 𝐾 − 1 times.

� 𝐾-means++ achieves a 𝑂 log𝐾 approximation to the 
optimal clustering in expectation 

� Both Lloyd’s method and 𝐾-means++ can benefit from 
multiple random restarts. 
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Dimensionality 
Reduction

Henry Chai - 8/9/22 71

� Goal: given some unlabeled data set, learn a latent 
(typically lower-dimensional) representation

� Use cases:
� Reducing computational cost (runtime, storage, etc…)
� Improving generalization
� Visualizing data

� Applications:
� High-resolution images/videos
� Text data
� Financial or transaction data
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𝑥#

𝑥,

𝑥#

𝑥,

Feature Elimination ∈Dimensionality Reduction



Centering the 
Data

� To be consistent, we will constrain principal components 
to be orthogonal unit vectors that begin at the origin

� Preprocess data to be centered around the origin:

1. 𝝁 =
1
𝑁
h
%"#

&

𝒙 %

2. ³𝒙 % = 𝒙 % − 𝝁 ∀ 𝑛

3. 𝑋 =

³𝒙 # 7

³𝒙 , 7

⋮
³𝒙 & 7
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Minimizing the
Reconstruction 
Error 

⇕
Maximizing the
Variance

Henry Chai - 8/9/22 74

­𝒗 = argmin
𝒗: 𝒗 /

/"#
h
%"#

&

³𝒙 % − 𝒗7³𝒙 % 𝒗 ,
,

­𝒗 = argmin
𝒗: 𝒗 /

/"#
h
%"#

&

³𝒙 %
,
,
− 𝒗7³𝒙 % ,

­𝒗 = argmax
𝒗: 𝒗 /

/"#
h
%"#

&

𝒗7³𝒙 % , Variance of projections 
(³𝒙 % are centered)

­𝒗 = argmax
𝒗: 𝒗 /

/"#
𝒗7 h

%"#

&

³𝒙 % ³𝒙 % 7
𝒗

­𝒗 = argmax
𝒗: 𝒗 /

/"#
𝒗7 𝑋7𝑋 𝒗



Maximizing the
Variance
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­𝒗 = argmax
𝒗: 𝒗 /

/"#
𝒗7 𝑋7𝑋 𝒗

𝑋7𝑋 ­𝒗 = 𝜆­𝒗 → ­𝒗7 𝑋7𝑋 ­𝒗 = 𝜆­𝒗7­𝒗 = 𝜆

• The first principal component is the eigenvector ­𝒗# that 

corresponds to the largest eigenvalue 𝜆#
• The second principal component is the eigenvector ­𝒗,

that corresponds to the second largest eigenvalue 𝜆#
• ­𝒗# and ­𝒗, are orthogonal 

• Etc … 
• 𝜆6 is a measure of how much variance falls along ­𝒗6



PCA Algorithm
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� Input: 𝒟 = 𝒙 %
%"#
&

, 𝜌

1. Center the data 

2. Use SVD to compute the eigenvalues and eigenvectors 
of 𝑋7𝑋

3. Collect the top 𝜌 eigenvectors (corresponding to the 𝜌
largest eigenvalues), 𝑉i ∈ ℝ$×i

4. Project the data into the space defined by 𝑉i, 𝑍 = 𝑋𝑉i

� Output: 𝑍, the transformed (potentially lower-
dimensional) data



Practice 
Problem: PCA
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10-601: Machine Learning Page 9 of 15 4/27/2016

4 Principal Component Analysis [16 pts.]

(a) In the following plots, a train set of data points X belonging to two classes on R2

are given, where the original features are the coordinates (x, y). For each, answer the
following questions:

(i) [3 pt.] Draw all the principal components.

(ii) [6 pts.] Can we correctly classify this dataset by using a threshold function after
projecting onto one of the principal components? If so, which principal component
should we project onto? If not, explain in 1–2 sentences why it is not possible.

Dataset 1:

Response to question (ii):

Dataset 2:

Response to question (ii):
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Choosing the 
number of PCs

� Define a percentage of explained variance for the 𝑖th PC: 

¹𝜆6 ∑𝜆2

� Select all PCs above some threshold of explained 

variance, e.g., 5%

� Keep selecting PCs until the total explained variance 

exceeds some threshold, e.g., 90%

� Evaluate on some downstream metric
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Shortcomings 
of PCA

� Principal components are 

orthogonal (unit) vectors

� Principal components can 
be expressed as linear 

combinations of the data
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Deep
Autoencoders

https://en.wikipedia.org/wiki/Autoencoder


Decision Trees: 
Pros & Cons

� Pros
� Interpretable
� Efficient (computational cost and storage)
� Can be used for classification and regression tasks
� Compatible with categorical and real-valued features

� Cons
� Learned greedily: each split only considers the 

immediate impact on the splitting criterion
� Not guaranteed to find the smallest (fewest number 

of splits) tree that achieves a training error rate of 0.
� Prone to overfit
� High variance

� Can be addressed via ensembles → random forests
81Henry Chai - 8/9/22



Random 
Forests

� Combines the prediction of many diverse decision trees to reduce 

their variability  

� If 𝐵 independent random variables 𝑥 # , 𝑥 , , … , 𝑥 k all have  

variance 𝜎,, then the variance of                      is l
/

%

� Random forests = bagging              - + split-feature randomization

- = bootstrap aggregating + split-feature randomization

82

1
𝐵
h
m"#

k

𝑥 m 𝜎,

𝐵
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Aggregating

� How can we combine multiple decision trees, 

𝑡#, 𝑡,, … , 𝑡k , to arrive at a single prediction?

� Regression - average the predictions:

̅𝑡 𝒙 =
1
𝐵
h
m"#

k

𝑡m 𝒙

� Classification - plurality (or majority) vote; for binary 

labels encoded as −1,+1 :

̅𝑡 𝒙 = sign
1
𝐵
h
m"#

k

𝑡m 𝒙
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Bootstrapping

84Henry Chai - 8/9/22

� Idea: resample the data multiple times with replacement
� Each bootstrapped sample has the same number of 

data points as the original data set 
� Duplicated points cause different decision trees to 

focus on different parts of the input space
MovieID ⋯

1 ⋯
2 ⋯
3 ⋯
⋮ ⋮

19 ⋯
20 ⋯

MovieID ⋯
1 ⋯
1 ⋯
1 ⋯
⋮ ⋮

14 ⋯
19 ⋯

MovieID ⋯
4 ⋯
4 ⋯
5 ⋯
⋮ ⋮

16 ⋯
16 ⋯

Training data Bootstrapped 
Sample 1

Bootstrapped 
Sample 2

⋯

⋯



Split-feature 
Randomization

� Issue: decision trees trained on bootstrapped samples 
still behave similarly

� Idea: in addition to sampling the data points (i.e., the 
rows), also sample the features (i.e., the columns)

� Each time a split is being considered, limit the possible 
features to a randomly sampled subset 

Henry Chai - 8/9/22 85

Runtime Genre Budget Year IMDB Rating



Random 
Forests

� Input: 𝒟 = 𝒙 % , 𝑦 %
%"#
&

, 𝐵, 𝜌

� For 𝑏 = 1, 2, … , 𝐵

� Create a dataset, 𝒟m, by sampling 𝑁 points from the 
original training data 𝒟 with replacement

� Learn a decision tree, 𝑡m, using 𝒟m and the ID3 
algorithm with split-feature randomization, 
sampling 𝜌 features for each split

� Output: ̅𝑡 = 𝑓 𝑡#, … , 𝑡k , the aggregated hypothesis

86Henry Chai - 8/9/22



Practice 
Problem: 
Random 
Forests

� Suppose you fix 𝜌, the number of features used for split-feature 
randomization, and increase 𝐵, the number of trees in the random forest: will 
the variance of the random forest tend to increase, decrease or stay the 
same? Briefly justify your answer in 2-3 concise sentences. 

87Henry Chai - 8/9/22



Out-of-bag 
Error

� For each training point, 𝒙 % , there are some decision trees 

which 𝒙 % was not used to train (roughly ⁄𝐵 𝑒 trees or 37%)

� Let these be 𝑡 1% = 𝑡#
1% , 𝑡,

1% , … , 𝑡&$'
1%

� Compute an aggregated prediction for each 𝒙 % using the 

trees in 𝑡 1% , ̅𝑡 1% 𝒙 %

� Compute the out-of-bag (OOB) error, e.g., for classification

� 𝐸rrk can be used for hyperparameter optimization!

88Henry Chai - 8/9/22

𝐸rrk =
1
𝑁
h
%"#

&

̅𝑡 1% 𝒙 % ≠ 𝑦 %



Feature 
Importance

89Henry Chai - 8/9/22

� Some of the interpretability of decision trees gets lost 

when switching to random forests

� Random forests allow for the computation of “feature 
importance”, a way of ranking features based on how 
useful they are at predicting the target

� Initialize each feature’s importance to zero

� Each time a feature is chosen to be split on, add the  
reduction in Gini impurity (weighted by the number of 
data points in the split) to its importance



Decision Trees: 
Pros & Cons

� Pros
� Interpretable
� Efficient (computational cost and storage)
� Can be used for classification and regression tasks
� Compatible with categorical and real-valued features

� Cons
� Learned greedily: each split only considers the 

immediate impact on the splitting criterion
� Not guaranteed to find the smallest (fewest number 

of splits) tree that achieves a training error rate of 0.
� Prone to overfit
� High variance

� Can be addressed via bagging → random forests
� High bias (especially short trees, i.e., stumps)

� Can be addressed via boosting 90Henry Chai - 8/9/22



Boosting

� Another ensemble method (like bagging) that combines 

the predictions of multiple hypotheses.

� Aims to reduce the bias of a “weak” or highly biased 
model (can also reduce variance).

91Henry Chai - 8/9/22



92

� Input: 𝒟 𝑦 % ∈ −1,+1 , 𝑇

� Initialize data point weights: 𝜔*
(#), … , 𝜔*

& = #
&

� For 𝑡 = 1,… , 𝑇
1. Train a weak learner, ℎ0, by minimizing the weighted

training error
2. Compute the weighted training error of ℎ0: 

𝜖0 = h
%"#

&

𝜔01#
% 𝟙 𝑦 % ≠ ℎ0 𝒙 %

3. Compute the importance of ℎ0: 

𝛼0 =
1
2
log

1 − 𝜖0
𝜖0

4. Update the data point weights: 

𝜔0
% =

𝜔01#
%

𝑍0
×¿

𝑒1P" if ℎ0 𝒙 % = 𝑦 %

𝑒P" if ℎ0 𝒙 % ≠ 𝑦 % =
𝜔01#

% 𝑒1P"s ' t" 𝒙 '

𝑍0

A
d
a
B
o
o
s
t

𝑔7 𝒙 = sign 𝐻7 𝒙

= sign h
0"#

7

𝛼0ℎ0 𝒙

� Output: an 
aggregated 
hypothesis



Why 
AdaBoost?

1. If you want to use weak 
learners …

2. … and want your final 
hypothesis to be a 

weighted combination of 
weak learners, …

3. … then Adaboost greedily 
minimizes the 

exponential loss:

𝑒 ℎ 𝒙 , 𝑦 = 𝑒 1st 𝒙

1. Because they’re low 
variance / computational 
constraints

2. Because weak learners 
are not great on their own

3. Because the exponential 

loss upper bounds binary 
error
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Exponential 
Loss

95Henry Chai - 8/9/22

� Claim: 

1
𝑁
h
%"#

&

𝑒 1s ' t 𝒙 '
≥
1
𝑁
h
%"#

&

𝟙 sign ℎ 𝒙 % ≠ 𝑦 %

� Consequence:

1
𝑁
h
%"#

&

𝑒 1s ' t 𝒙 '
→ 0

⟹
1
𝑁
h
%"#

&

𝟙 sign ℎ 𝒙 % ≠ 𝑦 % → 0



Exponential 
Loss

� Claim: if 𝑔7 = sign 𝐻7 is the Adaboost hypothesis, then

1
𝑁
h
%"#

&

𝑒 1s ' '0 𝒙 '
=%

0"#

7

𝑍0

� Proof: 

𝜔*
% = #

& , 𝜔#
% = u$1%2

' 3% 𝒙 '

&v%
, 𝜔,

% = u$1%2
' 3% 𝒙 '

u$1/2
' 3/ 𝒙 '

&v%v/

𝜔7
% =

∏0"#
7 𝑒1P"s ' t" 𝒙 '

𝑁∏0"#
7 𝑍0

=
𝑒1s ' ∑")%0 P"t" 𝒙 '

𝑁∏0"#
7 𝑍0

=
𝑒1s ' '0 𝒙 '

𝑁∏0"#
7 𝑍0

h
%"#

&

𝜔7
% = h

%"#

&
𝑒1s ' '0 𝒙 '

𝑁∏0"#
7 𝑍0

= 1 ⟹
1
𝑁
h
%"#

&

𝑒1s ' '0 𝒙 ' =%
0"#

7

𝑍0∎
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Exponential 
Loss

97Henry Chai - 8/9/22

� Claim: if 𝑔7 = sign 𝐻7 is the Adaboost hypothesis, then

1
𝑁
h
%"#

&

𝑒 1s ' '0 𝒙 '
=%

0"#

7

𝑍0

� Consequence: one way to minimize the exponential training loss is to 
greedily minimize 𝑍0, i.e., in each iteration, make the normalization 
constant as small as possible by tuning 𝛼0.



Greedy 
Exponential 
Loss 
Minimization

98

𝜕𝑍0
𝜕𝑎 = −𝑒1Z 1 − 𝜖0 + 𝑒Z𝜖0 ⟹−𝑒1wZ 1 − 𝜖0 + 𝑒 wZ𝜖0 = 0

⟹ 𝑒 wZ𝜖0 = 𝑒1wZ 1 − 𝜖0

⟹ 𝑒, wZ =
1 − 𝜖0
𝜖0

⟹ a𝑎 =
1
2
log

1 − 𝜖0
𝜖0

= 𝛼0

𝜕,𝑍0
𝜕𝑎,

= 𝑒1Z 1 − 𝜖0 + 𝑒Z𝜖0 > 0

Henry Chai - 8/3/22

𝑍0 = 𝑒1Z 1 − 𝜖0 + 𝑒Z𝜖0



Training Error

99

1
𝑁
h
%"#

&

𝟙 𝑦 % ≠ 𝑔7 𝒙 % ≤
1
𝑁
h
%"#

&

𝑒 1s ' '0 𝒙 '

1
𝑛h
6"#

%

𝑓 𝑥⃗ ≠ 𝑔7 𝑥⃗ =%
0"#

7

𝑍0

1
𝑛
h
6"#

%

𝑓 𝑥⃗ ≠ 𝑔7 𝑥⃗ =%
0"#

7

2 𝜖0 1 − 𝜖0 → 0 as T → ∞

1
𝑛
h
6"#

%

𝑓 𝑥⃗ ≠ 𝑔7 𝑥⃗ as long as 𝜖0 <
1
2
∀ 𝑡
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