10-301/601: Introduction
to Machine Learning
Lecture 29 — Exam 3
Review

Henry Chai
8/9/22



* Announcements:
* Exam 3 on 8/12, this Friday!
Front Matter * Exam review recitation on 8/10 (tomorrow)

* Please show up to PH 100 (in-person) at 3:50
PM as the exam will begin promptly at 4 PM

Henry Chai - 8/9/22



- Assume features are conditionally independent given the
label:

D
ey = | [ PXaln)
d=1

* Pros:
Recall:

* Significantly reduces computational complexity

Naive Bayes
Assumption * Also reduces model complexity, combats overfitting

* Cons:

* Is a strong, often illogical assumption

- We’'ll see a relaxed version of this latern-the
semester today when we discuss Bayesian networks

Henry Chai - 8/9/22



Constructing a

Network

Henry Chai - 8/9/22

* Directed acyclic graph

where edges indicate

conditional dependency

- A variable is conditionally

independent of all its non-
descendants (i.e., upstream

variables) given its parents

P(H,W,S,C,P) =

P(H)P(W)P(S|H, W)
P(C|S)P(M|S)



Bayesian

Networks:
Outline

Henry Chai - 8/9/22

* How can we learn a Bayesian network?

* Learning the graph structure

* Learning the conditional probabilities

- What inference questions can we answer with a

Bayesian network?
* Computing (or estimating) marginal (conditional)

probabilities

* Implied (conditional) independencies



Practice
Problem:

Bayesian
Networks

Henry Chai - 8/9/22

We use the following Bayesian network to model the relationship between studying (S),
being well-rested (R), doing well on the exam (E), and getting an A grade (A). All nodes

are binary, i.e., R, S, E, A € {0,1}.

(=
@

Figure 5: Directed graphical model for problem 5.

* How many parameters are needed to fully specify this Bayesian network?



G @ D = {(H®,Wwm, 5<n>,C(n),M<n>)}N 1
n=

* Set parameters via MLE

Learning the _ 1y = Nu=1
g e P(H=1)=—
EICINEES .

(Fully-observed)

NS=1,H=O,W=1

P(S=1H=0,W =1) =

Ny—ow=1

Henry Chai - 8/9/22



@ PH=1W=0,S=1,C=1,M = 0)

P(H=1)*

Joint

Probabilities e (1=PW=1)~

: P(S=1|H=1W = 0) +
is easy

P(C=1|S=1)*

(1-PM=1|S=1))
() W

Computing

Henry Chai - 8/9/22



Computing
Marginal

Probabilities...

Henry Chai - 8/9/22

- Computing arbitrary marginal

(conditional) distributions requires
summing over exponentially many
possible combinations of the

unobserved variables

- Computation can be improved by

storing and reusing calculated values
(dynamic programming)

- Still exponential in the worst case



Sampling for

Bayesian
Networks

Henry Chai - 8/9/22

- Sampling from a Bayesian network is

easy!

1. Sample all free variables
(H and W)

2. Sample any variable whose
parents have already been
sampled

3. Stop once all variables have
been sampled

# of samplesw/S =1

P(S=1) =
( ) # of samples

10



Conditional

Independence

Henry Chai - 8/9/22

- X and Y are conditionally

independentgivenZ (X LY | Z)if
P(X,Y|Z) =P(X|Z)P(Y|Z)

* In a Bayesian network, each variable

is conditionally independent of its

non-descendants given its parents

- H and M are not independent
but they are conditionally

independent given S

- What other conditional

independencies does a Bayesian

network imply?

11



Markov

Blanket

Henry Chai - 8/9/22

* Let § be the set of all

random variables in a

Bayesian network

* A Markov blanket of A € §

isanyset B C § s.t.
A1LS\B|B

* Contains all the useful

information about A

* Trivially, § is always a

Markov blanket for any

random variablein §

12



* Let § be the set of all
random variables in a

Bayesian network

* The Markov boundary of A
is the smallest possible
Markov blanket of A

Markov

Boundary

* The Markov boundary
consists of a variable’s
children, parents and co-
parents (the other parents

of its children)

Henry Chai - 8/9/22 Source: https://en.wikipedia.org/wiki/Markov_blanket#/media/File:Diagram_of a Markov_blanket.svg 13



https://en.wikipedia.org/wiki/Markov_blanket

- Random variables A and B are d-separated given evidence
variablesZifA L B | Z

* Definition 1: A and B are d-separated given Z iff every
undirected path between A and B is blocked by Z

* An undirected path between A and B is blocked by Z if

1. 3 a“common parent” variable C on the pathand C € Z

D-separation m 4_@_. 4@7

2. 3 a “cascade” variable C on the pathand C € Z

3. 3 a “collider” variable C on the path and
{C,descendents(C)} & Z

Henry Chai - 8/9/22 @_Qi LI _H : H_ co e 4‘ )7 14




- Random variables A and B are d-separated given evidence
variablesZifA L B | Z

* Definition 2: A and B are d-separated given Z iff 4 a path
between A and B in the undirected ancestral moral graph with
Z removed

1. Keep only A4, B, Z and their ancestors (ancestral graph)

. 2. Add edges between all co-parents (moral graph)
D-separatlon 3. Undirected: replace directed edges with undirected ones

4. Delete Z and check if A and B are connected

* Example: A L B |{D,E}?

Original: Ancestral: Moral: Undirected: Givens Removed:

T O T 0 0T O
= not d-separated

Figure courtesy of Matt Gormley 15
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Practice
Problem:

Bayesian
Networks

Henry Chai - 8/9/22

We use the following Bayesian network to model the relationship between studying (S),
being well-rested (R), doing well on the exam (E), and getting an A grade (A). All nodes

are binary, i.e., R, S, E, A € {0,1}.

(=
@

Figure 5: Directed graphical model for problem 5.

* Are S and R independent? Are S and R conditionally independent given E?

16



Shortcomings of

Bayesian
Networks

Henry Chai - 8/9/22

* Graph structure must be acyclic

- Cannot encode temporal/sequential relationships

- We’ll address these (related) problems rext today with

hidden Markov models

17



@: “I abel Corre@

‘ Verb

Label
Noun
Part-of-Speech D Adjective
: Correct
(PoS) Tagging: Verb
Example Tags  \oun

Verb

Henry Chai - 8/9/22
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Verb Verb Verb
Noun Noun Noun
Adjective Adjective Adjective

r Y, Y3
Hidden Markov Y 2/ 3/
Models for

PoS Tagging @ @ @

Label Correct Tags

Henry Chai - 8/9/22



Hidden Markov
Models

Henry Chai - 8/9/22

* Two types of variables: observations (observed) and states

(hidden or latent)

* Set of states usually pre-specified via domain

expertise/prior knowledge: {s4, ..., Sy}
* Emission model:
* Current observation is conditionally independent of
all other variables given the current state: P(X;|Y;)

* Transition model (Markov assumption):

* Current state is conditionally independent of all

earlier states given the previous state:
P(YelYe—yq, ., Yo) = P(YeYe-1)

20



Hidden Markov

Models vs.
Bayesian
Networks

Henry Chai - 8/9/22

* Two types of variables: observations (observed) and states

(hidden or latent)

* Set of states usually pre-specified via domain

expertise/prior knowledge: {s4, ..., Sy}
* Emission & transition models are fixed over time steps
P(X¢|Y; =s;) =P(Xp|Yy =s;) Vit
P(Ye|Ye—y = 5;) = P(Ye|[Yer_y =55) VL, U
- Parameter reuse makes learning efficient

* Can handle sequences of varying lengths

21



Hidden Markov
Models:

Outline

Henry Chai - 8/9/22

- How can we learn the conditional probabilities used by a

hidden Markov model?

- What inference questions can we answer with a hidden

Markov model?

1. Computing the distribution of a single state (or a

sequence of states) given a sequence of observations

2. Finding the most-probable sequence of states given a

sequence of observations

3. Computing the probability of a sequence of

observations

22



Practice

Problem:
HMMs

Henry Chai - 8/9/22

1. Given the POS tagging data shown, what
are the parameter values learned by an HMM?

Verb Noun Verb
see spot run
Verb Noun Verb
run spot run
Adj. Ad;. Noun
funny | funny spot

23



Learning the
Parameters

(Fully-
observed)

Henry Chai - 8/9/22

CP = {(xm),y(n))}?’;’:l

- Set the parameters via MLE

al-j =

sy || sy
a1 - iy
A1 - QM

Ja Ac1 t Qem

Emission matrix, A

T
21::1 NXt=Oi, Yt=Sj

=1 NYt=Sj

---

BEE

bij =

b4

byi -+ bum

END b(M+1)O b+ 0 bm+nm

Transition matrix, B

T+1

T+1
2 NYt_1=Sj

24



1. Marginal Computation: P(Yt = s; |x(")) (or P(Y|x(")))

P(x®y)p(y) Ii=1P (xz(:")‘Yt) P(Y¢|Ye-1)

P(Y[x™) = P(x™) P(x™)

3 Inference

Questions for
HMMs

2. Decoding: Y = argmax P(Y|x("))
Y

3. Evaluation: P(x("))

P(x™) = D P(x™]Y)P(Y)

Y € {all possible sequences}

Henry Chai - 8/9/22 25



The Brute

Force
Algorithm

Henry Chai - 8/9/22

* Inputs: query P(x(”)), emission matrix 4, transition matrix B
* Initializep = 0

* For Y € {all possible sequences}

- Compute the joint probability

T
P(x™,y) = P(x®Y)PY) = | [P (x[¥e) PCUelYe-n)
t=1

p+=P(x",Y)

* Returnp = P(x(”))

26



Practice

Problem:
HMMs

Henry Chai - 8/9/22

1. Given the POS tagging data shown, what
are the parameter values learned by an HMM?

2. How many POS tag sequences of length 23
are there?

3. How does an HMM efficiently search for
the most probable sequence of tags given a 23-
word sentence?

Verb Noun Verb
see spot run
Verb Noun Verb
run spot run
Adj. Ad;. Noun
funny | funny spot

27



3 Inference

Questions for
HMMs

Henry Chai - 8/9/22

1. Marginal Computation: P(Yt = s; |x(")) (or P(Y|x(")))

P(Y; = sj,x™)

P(te =5 ™) = =5 Gom

2. Decoding: Y = argmax P(Y|x("))
Y

3. Evaluation: P(x("))

M
P(x™) = Y P(V, = 5,2
m=1

28



Recursive

Marginals

Henry Chai - 8/9/22

P (Yt = sj,xgn), ...,x(Tn))

=P (xﬁ)l, XMy, = sj,xgn), ...,xgn)) P (Yt = Sj,xgn), ...,xgn))
| By conditional independence assumptions
— P (xﬁ)l, ...,x(Tn) Y, = sj) P (Yt = Sj,xgn), ...,xgn))
= ,Bf(i)at(i)

T

Can be computed recursively (forward algorithm)

Can be computed recursively (backward algorithm)

29



* Inputs: query P(Yt = 5j |x(n)), emission matrix 4, transition matrix B
* Initialize @y (START) = 1 and f741(END) =1

*Fort=1,..,T

The ‘Form=1,.. M

Forward-

M
Backward az(m) = P (x{"|Y; = sp,) kz; P(Yy = spl¥peq = sp)ar_q (k)

Algorithm

*Fort=T,..,1
*Form=1,.. M

ﬁr(m) — z ﬁr+1(k)P( g-:-)1 1:+1 — Sk) P(YT+1 - Skly — Sm)

P(re=s;x™) _ Br(Da:()
P(x(")) M_ B.(m)a,(m)

- Return P(Y; = S; |x(n)) =

Henry Chai - 8/9/22



Most
Probable

State
Sequence

Henry Chai - 8/9/22

we () =

max P (y, Y =5, xgn), e xgn)

Y € {all possible sequences of t—1 states}

= the probability of the most probable sequence of t states that
ends in Sj, conditioned on the first t observations

max
me{1,..,.M}

Wi (M) P(Y, = 51,1 = )P (xVY, = s;)

)

31



The
Viterbi

Algorithm

Henry Chai - 8/9/22

* Initialize wy(START) =1
*Fort=1,...,.T+1

*Form=1,.. M

_ (n)
woi(m) =, %y P (xT

p,(m) = argmax P (x§")
ke{1,.,M}

*Yr = pr+1(END)
*Fort=T-1,..,1

Y = pr+1(?1+1)

Ve = Sm) P(Yy = S,

Ve = Sm) P(Yy = Sy

* Return the most probable assignment given x(M.

* Inputs: observations x("), emission matrix 4, transition matrix B

Yio1 = sp)wp—q (k)

Yi_1 = sp)we—1(k)

32



3 4 Inference

Questions for
HMMs

Henry Chai - 8/9/22

1. Marginal Computation: P(Y; = S; |x(")) (or P(Y|x(”)))

T (n)
p(¥]x®) = P(x™|Y)P(v) _Ii=1P (x|v,) Pl ¥ip)

P (x() P(x™)

1. Viterbi Decoding: ¥ = argmax P(Y|x(”))
Y

2. Evaluation: P(x("))

P(x) = P(x™|Y)P(Y)

Y € {all possible sequences}

3. Minimum Bayes Risk (MBR) Decoding:

Y =argmin E_,
y Y'~Pyp

(-|x™) [£(Y,Y")]

33



Learning

Paradigms

Henry Chai - 8/9/22

* Supervised learning - D = {(x(n)’y(n))}jj:l

- Regression - y™ € R
- Classification - y(”) e{1,..,C}

N
* Unsupervised learning - D = {x(n)}n=1

* Clustering

- Dimensionality reduction

* Reinforcement learning - D = {s(n), a(”),r(")}

N
n=1

34



Outline

Henry Chai - 8/9/22

* Problem formulation

* Time discounted cumulative reward

* Markov decision processes (MDPs)

- Algorithms:

* Value & policy iteration (dynamic programming)

* (Deep) Q-learning (temporal difference learning)

35



* In reinforcement learning, our model consists of
multiple kinds of functions; for each of following
functions, fill in the domains (input space) and ranges
(output space). Choose from: § (state space), A (action
space), R (set of real numbers) or a combination from
any of these sets.

- [voman  jRenge
M D PS Transition function

Reward function

Practice

Problem:

Policy

Value function

Q function

Henry Chai - 8/9/22 36



Markov

Decision
Process (MDP)

Henry Chai - 8/9/22

* Assume the following model for our data:

1. Startin some initial state s

2. Fortime step t:

1.

2
3.
4

Agent observes state s;
Agent takes action a; = m(s;)
Agent receives reward 1y ~ p(r | s¢, a;t)

Agent transitions to state sy, ~ p(s’ | s¢, ag)

(0.0)
3. Total reward is Z yir,

t=0

- MDPs make the Markov assumption: the reward and

next state only depend on the current state and action.

37



Reinforcement
Learning:

Objective
Function

Henry Chai - 8/9/22

* Find a policy m* = argmax V™(s) Vs € S

T

- V™ (s) = E[discounted total reward of starting in state

s and executing policy  forever]
=Ep(s' |5 ) [R(so = s,7(sg))

+ YR(sy,m(s1)) + ¥?R(s2,m(s5)) + -]

— z yt[Ep(S’ |S’ a) [R(St, ﬂ(st))]
t=0

where 0 < ¥ < 1 is some discount factor for future rewards

38



Value

Function

Henry Chai - 8/9/22

- V™ (s) = E[discounted total reward of starting in state s and

executing policy m forever]
= E[R(s0,(s0)) + YR(s1,m(s1)) + ¥*R(s2,7(s2)) + | 59 = 5]
= R(s,n(s)) + yIE[R(Sl,n(Sl)) + )/R(SZ,TL'(SZ)) + .| Sg = 5]

=R(s,7(s)) + ¥ Zs,esP(51 1 5,7())(R(s1,7(51))
+yIE[R(52,n(Sz)) + .- | 51])

Vi) = R(s,m() +7 ) p(s1]5m()V ()

S1€ES

\_ /
e

Bellman equations

39



Optimality

Henry Chai - 8/9/22

* Optimal value function:

V*(s) = max R(s,a)+ vy z p(s'|s,a)V*(s")
a
s'esS
- System of |S| equations and |S| variables

* Optimal policy:

n*(s) = argmax R(s,a) + y p(s'|s,a)V*(s")

€
aEA s'es

G AN J
Y Y

Immediate (Discounted)
reward Future reward

40



Fixed

Point
Iteration

Henry Chai - 8/9/22

* Iterative method for solving a system of equations

* Given some equations and initial values

x1 = f1(X1, ., Xp)

— fn(xl: ) xn)

NONENO

- While not converged, do

D £, (20, .. 1)

A £ (39, 20)

41



Synchronous

Value Iteration

Henry Chai - 8/9/22

* Inputs: R(s,a), p(s’ | s,a)
- Initialize V(9 (s) = 0V s € § (or randomly) and set t = 0

- While not converged, do:

‘Fors €S

*Fora € A

Q(s,a) =R(s,a) +v z p(s'|s, )V (s")
( ) s'eS§
. 7 (t+1
VETH(s) « max Q(s,a)
‘t=t+1
‘Fors €$§

m*(s) « argmax R(s,a) + y z p(s’|s, )V (s"

=
@ EA s'es

* Return t*

42



Asynchronous

Value Iteration

Henry Chai - 8/9/22

* Inputs: R(s,a), p(s’ | s,a)
- Initialize V(®(s) = 0V s € S (or randomly) and sett = 0

- While not converged, do:

‘Fors €S
*Forae A

0(s,) =R, @) +7 ) p(s'|5,0V(s)
V) e max Q@

‘Fors €S

n*(s) « argmax R(s,a) + y p(s’'|s,a)V(s")

=
@ EA s'es

* Return *

43



Policy Iteration

Henry Chai - 8/9/22

* Inputs: R(s,a), p(s’ | s,a)
* Initialize ™ randomly

- While not converged, do:

* Solve the Bellman equations defined by policy

VT(s) = R(s,n(s)) + vy z p(s’ | S,n(s))V”(s’)

s'es
- Update it

n(s) « argmax R(s,a) + y p(s'|s,a)VT(s")

€
@ €A s'es

* Return

44



Value Iteration
Theory

Henry Chai - 8/9/22

* Theorem 1: Value function convergence

I will converge to V™ if each state is “visited”

infinitely often (Bertsekas, 1989)

* Theorem 2: Convergence criterion

if max |V (s) — VO (s)| < ¢,

SES

then max |V(t+1) (s) — V*(s)| < fi); (Williams & Baird, 1993)
o _

- Theorem 3: Policy convergence

The “greedy” policy, m(s) = argmax Q(s, a), converges to the
a€eA
optimal ™ in a finite number of iterations, often before

the value function has converged! (Bertsekas, 1987)

47



Q" (s, a) w/

deterministic

rewards

Henry Chai - 8/9/22

* Q* (s, a) = E[total discounted reward of taking action a in

state s, assuming all future actions are optimal]

=R, @)+7 ) p(s' 5,0V (")

s'es
V*(s") = max Q*(s’,a’)
a' eA

Q') =R(s,@)+y ) p(s'I5,0)[ max Q(s',a")

s'eS

n*(s) = argmax Q*(s,a)
aeA

* Insight: if we know Q~, we can compute an optimal policy ™!

48



Q" (s, a) w/

deterministic

rewards and
transitions

Henry Chai - 8/9/22

- Q*(s,a) = E[total discounted reward of taking action a in

state s, assuming all future actions are optimal]

= R(s,a) + yV*(S(s, a))

. V*(S(s, a)) = max Q*(6(s,a),a’)

Q*(s,a) = R(s,a) +y max Q*(6(s,a),a’)

n*(s) = argmax Q*(s,a)
a€EA

* Insight: if we know Q~, we can compute an optimal policy !

49



Learning
Q*(s,a) w/
deterministic
rewards and
transitions

Algorithm 1:
Online learning
(table form)

Henry Chai - 8/9/22

* Inputs: discount factor y, an initial state s

* Initialize Q(s,a) = 0Vs € S§,a€A(Qisal|S|x|A| array)
* While TRUE, do

* Take a random action a

* Receive reward r = R(s, a)
- Update the state: s « s’ where s’ = 6(s, a)
- Update Q(s, a):

Q(s,a) «r+y max Q(s’,a’)

50



Learning
Q*(s,a) w/
deterministic
rewards and
transitions

Algorithm 2:
e-greedy online
learning (table
form)

Henry Chai - 8/9/22

* Inputs: discount factor y, an initial state s,

greediness parameter € € [0, 1]

* Initialize Q(s,a) = 0Vs € S,a € A(Qisal|S|x|A|array)
* While TRUE, do

- With probability €, take the greedy action

a = argmax Q(s,a’)
a' e A

Otherwise, with probability 1 — ¢, take a random action a
* Receive reward r = R(s, a)
- Update the state: s « s’ where s’ = 6(s,a)
- Update Q(s,a):
Q(s,a) «r+y max Q(s’,a’)

51



Learning

Q*(s,a) w/
deterministic
rewards

Algorithm 3:
e-greedy online
learning (table
form)

Henry Chai - 8/9/22

* Inputs: discount factor y, an initial state s,

greediness parameter € € [0, 1],
learning rate a € [0, 1] (“trust parameter”)

* Initialize Q(s,a) = 0Vs € S,a € A(Qisal|S|x|A|array)
* While TRUE, do

- With probability €, take the greedy action
a = argmax Q(s,a’)
a' eA
Otherwise, with probability 1 — €, take a random action a
* Receive reward r = R(s, a)

* Update the state: s « s’ where s’ ~ p(s' | s,a) Temporal

- Update Q(s,a): diffejrgnce
4
Q(s,a) « Q(s,a) + a (r +ymaxQ(s’,a’) — Q(s, a))
\ ) \ aY J
Current Temporal difference

value target

52



* For Algorithm 3 (temporal difference learning),
Q converges to Q" if

1. Every valid state-action pair is visited infinitely often

* Q-learning is exploration-insensitive: any visitation

Learning strategy that satisfies this property will work!

Q" (s, a):

Convergence

0<y<l1
B st |R(s,a)| < BVsES aeA

Initial Q values are finite

A

Learning rate a; follows some “schedule” s.t.

Yizoar =and Ni2gaf < weg., ar = Y

Henry Chai - 8/9/22
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Deep

Q-learning:
Loss Function

Henry Chai - 8/9/22

1.

“True” loss 2. Don’t know Q"

1 v N\ 2
(@ =) > (060 -0s,00)
seSaeA
1. § too big to compute this sum

Use stochastic gradient descent: just consider one
state-action pair in each iteration

Use temporal difference learning:

* Given current parameters OO the temporal
difference target is

Q*(S’ a) ~A _|_ )/max Q(S’, al; @(t)) ey y
a

- Set the parameters in the next iteration O+ gych
that Q(s,a; 0*V)) ~ y

{)(@(t)' @(t+1)) _ (y _ Q(s, a: @(t+1)))2

54



Deep
Q-learning

Algorithm 4:
Online learning
(parametric
form)

Henry Chai - 8/9/22

* Inputs: discount factor y, an initial state s,

learning rate

- Initialize parameters ©(®)

‘Fort=20,1,2, ..

* Gather training sample (S¢, @, 14, S¢41)
- Update ) by taking a step opposite the gradient
Ot « 0 — qV (1) #(0, 9FD)
where
Vs £(00, 00¢+D)
=2 (y - Q(s @ 6(”1))) Vo Q(s, a; 0+D)

55



Deep
Q-learning:

Experience
Replay

Henry Chai - 8/9/22

* SGD assumes i.i.d. training samples but in RL, samples are

highly correlated

* Idea: keep a “replay memory” D = {e;, e,, ... ,ey}of the N

most recent experiences e, = (s,, @, 1, S¢+1) (Lin, 1992)

* Also keeps the agent from “forgetting” about recent
experiences

 Alternate between:

1. Sampling some e; uniformly at random from D and
applying a Q-learning update (repeat T times)

2. Adding a new experience to D

* Can also sample experiences from D according to some

distribution that prioritizes experiences with high error
(Schaul et al., 2016)

56



Clustering

Henry Chai - 8/9/22

* Goal: split an unlabeled data set into groups or clusters of
“similar” data points

* Use cases:
* Organizing data
* Discovering patterns or structure
* Preprocessing for downstream machine learning tasks

* Applications:

57



Clustering

Algorithms

Henry Chai - 8/9/22

* Hierarchical

* Top-down (divisive)

* Bottom-up (agglomerative)

* Partitioning

* K-means
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Hierarchical

Clustering

Henry Chai - 8/9/22

* Bottom-up (agglomerative)

- Start with each data point in its own cluster
* Iteratively combine the most similar clusters

- Stop when all data points are in a single cluster

* Top-down (divisive)
- Start with all data points in one cluster

* Iteratively split the largest cluster into two clusters

- Stop when all clusters are single data points
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Bottom-up
Hierarchical

Clustering

Henry Chai - 8/9/22

* Bottom-up (agglomerative)

- Start with each data point in its own cluster
* Iteratively combine the most similar clusters

- Stop when all data points are in a single cluster

* Key question: how do we define similarity between clusters?

- Single-linkage: consider the closest data points
dSL(Ci, Cj) = min d(x,y)

x€C;,yEC)
* Complete-linkage: consider the farthest data points
dCL(Cl-, Cj) = max d(x,y)

xECi,yECj
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Single-

Linkage
Dendrogram

Henry Chai - 8/9/22

1,2,10,16,20

1,2

/\

10,16,20

N

1,2 10 /16','20\
1,2 10 16 20
1 2 10 16 20

61



Complete-

Linkage
Dendrogram

Henry Chai - 8/9/22

1,2,10,16,20

/\

1,2,10 16,20
/"\
1,2 10 16,20
1,2 10 16/"\20
| —
1 2 10 16 20
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Top-down
Hierarchical

Clustering

Henry Chai - 8/9/22

* Top-down (divisive)

- Start with all data points in one cluster
- Iteratively split the largest cluster into two clusters

- Stop when all clusters are single data points

* Key question: how can we partition a cluster?
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Recipe

for
K-means

Henry Chai - 8/9/22

* Define a model and model parameters

* Assume K clusters and use the Euclidean distance

- Parameters: iy, ..., g and zD, ... z(V)

* Write down an objective function

N
> ™ = ol
n=1

* Optimize the objective w.r.t. the model parameters

* Use (block) coordinate descent
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* Goal: minimize some objective
@, f = argmin J(a, B)

* Idea: iteratively pick one block of variables (a or ) and
minimize the objective w.r.t. that block, keeping the

Block .

other(s) fixed.

Coordinate
Descent

- Ideally, blocks should be the largest possible set of

variables that can be efficiently optimized

simultaneously
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K-means

Algorithm

Henry Chai - 8/9/22

N
* Input: D = {(x(") )}n=1'K
1. Initialize cluster centers w4, ..., Uy

2. While NOT CONVERGED

a. Assign each data point to the cluster with the
nearest cluster center:

z(™W = argmin ||x(") - ”kllz
K

b. Recompute the cluster centers:

1
- (n)
Hie =N z *

n :Z(n)zk

where N}, is the number of data points in cluster k

 Output: cluster centers u4, ..., g and cluster
assignments z(1, ..., z(V)

66



35 3.5

Given the initial cluster centers shown S | 2l
below, circle the image that depicts the | Co ] bl
cluster center positions after 1 iteration ‘ 'l

D . of the Lloyd’s method | ] 4o

35 " " " " " " " -1 —0:5 6 0:5 1‘ 1.5 é 2:5 3 -1 —0:5 6 015
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+
-05 1 1
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Figure 2: Initial data and cluster centers ; ‘ »
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Setting K

Henry Chai - 8/9/22

* |[dea: choose the value of K that minimizes the
objective function

Objective function value

K

* Look for the characteristic “elbow” or largest decrease
when going from K —1to K
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- Common choice: choose K data points at random to be
the initial cluster centers (Lloyd’s method)

Initializing ° * °
K-means o . :

* Lloyd’s method converges to a local minimum and that
local minimum can be arbitrarily bad (relative to the

optimal clusters)

* Intuition: want initial cluster centers to be far apart
from one another

69
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K-means++
(Arthur and
Vassilvitskii,
2007)

Henry Chai - 8/9/22

Choose the first cluster center randomly from the
data points.

For each other data point x, compute D(x), the
distance between x and the closest cluster center.

Select the next cluster center proportional to D (x)?.

Repeat 2 and 3 K — 1 times.

* K-means++ achieves a O (log K) approximation to the

optimal clustering in expectation

* Both Lloyd’s method and K-means++ can benefit from

multiple random restarts.
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Dimensionality

Reduction

Henry Chai - 8/9/22

- Goal: given some unlabeled data set, learn a latent
(typically lower-dimensional) representation

* Use cases:
* Reducing computational cost (runtime, storage, etc...)
* Improving generalization

* Visualizing data

* Applications:
- High-resolution images/videos
- Text data

* Financial or transaction data
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Feature Elimination € Dimensionality Reduction
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* To be consistent, we will constrain principal components

to be orthogonal unit vectors that begin at the origin

* Preprocess data to be centered around the origin:

N
1
: — (n)
Centering the LH Nzx
n=1

Data 2. %™ = xW —yvn

_%(1)’1"_

7@

)T
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Minimizing the
Reconstruction
Error

()
Maximizing the
Variance

Henry Chai - 8/9/22

D = argmin ZHx(n) M

v IIvIIZ—l

argmin z ||x(”) || — (v

v IIvIIz—l

(n))z

Variance of projections
= argmax Z(v x(")) — Pro)

vi|lv|l5=1 =1

N

oy T

= argmax vT< E ¥ () x()
vi|lv|l5=1 =1

= argmax v! XTX)v
vilvll5=1

%™ are centered)

)s
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Maximizing the
Variance

Henry Chai - 8/9/22

D = argmax v (XTX)v
vi|lv|l5=1

XTX)o =10 - T XTX)p=9"Dp=2

- The first principal component is the eigenvector v, that
corresponds to the largest eigenvalue 14
- The second principal component is the eigenvector v,
that corresponds to the second largest eigenvalue 14
- V1 and D, are orthogonal
- Etc...

- A; is a measure of how much variance falls along v;

75



* Input: D = {(x™ )}Zzl,p
1. Center the data

2. Use SVD to compute the eigenvalues and eigenvectors
of XTX

PCA Algorithm

3. Collect the top p eigenvectors (corresponding to the p

largest eigenvalues), V, € RP*P

4. Project the data into the space defined by ,, Z = XV,

* OQutput: Z, the transformed (potentially lower-

dimensional) data
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Practice

Problem: PCA

Henry Chai - 8/9/22

In the following plots, a train set of data points X belonging to two classes on R?
are given, where the original features are the coordinates (z,y). For each, answer the
following questions:

Draw all the principal components.

Can we correctly classify this dataset by using a threshold function after
projecting onto one of the principal components? If so, which principal component
should we project onto? If not, explain in 1-2 sentences why it is not possible.

Dataset 2:

Dataset 1:
¢ 0
- +
- ¢
: : o © ) 0
’ ¢
. ¢ o o " O ¢ ¢ + ¥
+ > & o +
>0 4= + + o
. ) ¥+
+F of *y
= s | 5 25 ) 15 a5 5
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Choosing the

number of PCs

Henry Chai - 8/9/22

- Define a percentage of explained variance for the it PC:

Ayé%

» Select all PCs above some threshold of explained

variance, e.g., 5%

- Keep selecting PCs until the total explained variance

exceeds some threshold, e.g., 90%

* Evaluate on some downstream metric
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Shortcomings

of PCA

Henry Chai - 8/9/22

v

* Principal components are

orthogonal (unit) vectors

* Principal components can

be expressed as linear

combinations of the data
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Source: https://en.wikipedia.org/wiki/Autoencoder#/media/File:Autoencoder structure.png
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https://en.wikipedia.org/wiki/Autoencoder

* Pros
* Interpretable

* Efficient (computational cost and storage)
* Can be used for classification and regression tasks
* Compatible with categorical and real-valued features

* Cons
Decision Trees: - Learned greedily: each split only considers the

Pros & Cons immediate impact on the splitting criterion

* Not guaranteed to find the smallest (fewest number
of splits) tree that achieves a training error rate of 0.

* Prone to overfit
* High variance
* Can be addressed via ensembles — random forests

81
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Random

Forests

Henry Chai - 8/9/22

* Combines the prediction of many diverse decision trees to reduce

their variability

- If B independent random variables x(), x(2), ... x®B) 3|l have

B
: 2 : 1 (b) - o’
variance g4, then the variance of 3 z x\7 s 7
b=1

* Random forests = bagging + split-feature randomization

= bootstrap aggregating + split-feature randomization
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Aggregating

Henry Chai - 8/9/22

* How can we combine multiple decision trees,

{t, t,, ..., tg}, to arrive at a single prediction?

- Regression - average the predictions:

B
3 1
() =% ) 6,0
b=1

» Classification - plurality (or majority) vote; for binary

labels encoded as {—1, +1}:

B
1
£(x) = sign (E bzl ) (x)>
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Bootstrapping

Henry Chai - 8/9/22

* ldea: resample the data multiple times with replacement

* Each bootstrapped sample has the same number of
data points as the original data set

* Duplicated points cause different decision trees to
focus on different parts of the input space

 MovieiD | [l MovieiD | - [ MovielD | -
1 1 4

2 1
3 1
19 “e 14 oo 16
20 000 19 000 16
Training data Bootstrapped Bootstrapped

Sample 1 Sample 2
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Split-feature

Randomization

Henry Chai - 8/9/22

* Issue: decision trees trained on bootstrapped samples

still behave similarly

* Idea: in addition to sampling the data points (i.e., the

rows), also sample the features (i.e., the columns)

- Each time a split is being considered, limit the possible

features to a randomly sampled subset

unime | Gerre | Budget | vear | 08 | g
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* Input: D = {(x(”),y("))}zzl, B, p

*Forb=1,2,..,B
* Create a dataset, Dy, by sampling N points from the
Random original training data D with replacement

Forests

* Learn a decision tree, tp, using Dy, and the ID3
algorithm with split-feature randomization,

sampling p features for each split

* Qutput: t = f(tq, ..., tg), the aggregated hypothesis
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Practice
Problem:

Random
Forests

Henry Chai - 8/9/22

* Suppose you fix p, the number of features used for split-feature

randomization, and increase B, the number of trees in the random forest: will
the variance of the random forest tend to increase, decrease or stay the
same? Briefly justify your answer in 2-3 concise sentences.
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Out-of-bag

Error

Henry Chai - 8/9/22

* For each training point, x(™) there are some decision trees

which x™ was not used to train (roughly B /e trees or 37%)

- Let these be t(-™ = {ti_n), té_n), . t,E,__:)}

- Compute an aggregated prediction for each x (™ using the

trees in t™, §-1) (x(n))

* Compute the out-of-bag (OOB) error, e.g., for classification

N
1
Epop = Nz [ECM (x™) % y@]
n=1

* Epop can be used for hyperparameter optimization!
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Feature

Importance

Henry Chai - 8/9/22

* Some of the interpretability of decision trees gets lost

when switching to random forests

- Random forests allow for the computation of “feature
importance”, a way of ranking features based on how

useful they are at predicting the target
* Initialize each feature’s importance to zero

* Each time a feature is chosen to be split on, add the
reduction in Gini impurity (weighted by the number of

data points in the split) to its importance
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Decision Trees:
Pros & Cons

Henry Chai - 8/9/22

* Pros

* Interpretable

* Efficient (computational cost and storage)

* Can be used for classification and regression tasks

* Compatible with categorical and real-valued features

* Cons

* Learned greedily: each split only considers the
immediate impact on the splitting criterion

* Not guaranteed to find the smallest (fewest number

of splits) tree that achieves a training error rate of O.

* Prone to overfit
* High variance

* Can be addressed via bagging — random forests
* High bias (especially short trees, i.e., stumps)

- Can be addressed via boosting
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Boosting

Henry Chai - 8/9/22

* Another ensemble method (like bagging) that combines

the predictions of multiple hypotheses.

* Aims to reduce the bias of a “weak” or highly biased

model (can also reduce variance).
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* Input: D (y(”) € {—1, +1}), T ™~

* Initialize data point weights: a)( ). ,a)(gN) ==

A *Fort=1,..,T
1. Train a weak learner, h¢, by minimizing the weighted
d training error
3 2. Compute the weighted training error of h;: * Output: an
aggregated
B €, = z a)(") 1 y(n) £ ht(x("))) > hypothesis
O — sion(H
3. Compute the importance of h;: gr(x) = sign(Hr(x))
O
S
t

B 11 (1 — Et) T
4t =598 € = sign (Z atht(x)>

4. Update the data point weights: t=1

(n) ( ~® if h x(n) — (M) (n) —“ty(n)ht(x(n))
(n) We_q e t y _ We_1€

Z¢ \eat if hy (x™) % y® B Z,
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Why

AdaBoost?

Henry Chai - 8/9/22

1.

If you want to use weak 1.

learners ...

... and want your final
hypothesis to be a 2.
weighted combination of

weak learners, ...

... then Adaboost greedily 3
minimizes the

exponential loss:
e(h(x),y) = e(-¥h(®)

Because they’re low
variance / computational

constraints

Because weak learners

are not great on their own

Because the exponential
loss upper bounds binary

error
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Exponential

Loss

Henry Chai - 8/9/22

* Claim:

N N

1 (n) (n) 1

: —y®h(x™)) __22 m) (n)

NZ > sign h(x ) *y )
n= n=1

- Consequence:
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* Claim: if g = sign(H7) is the Adaboost hypothesis, then

1 N ( ) r
_y(M) (n)
_ y™WHp(x™)) _ l
N z ¢ | 4t
n=1 t=1
* Proof:
Exponential w1y e PmED) ey () ey Mg (x0)
LOSS wO B N’ wl N NZ, / (1)2 o NZ,Z,
(n) '11;_1 —aty (n) ht(x(n)) _y(n) ZZ=1 a; ht(x(")) —y(") Hop (x("))
W = _ B
T Nli=1Z: N [¢=1 Z¢ N [1t=1Z:
N N _,m (n) N T
y ™ Hr () 1
z w;n) - T =1=—= ~yM™WH (x™) — ‘ ‘ Z;

Henry Chai - 8/9/22 }



Exponential

Loss

Henry Chai - 8/9/22

* Claim: if g = sign(H7) is the Adaboost hypothesis, then

T

N
1 (_y(n) HT(x<")))
VD -] |2
n=1

t=1

- Consequence: one way to minimize the exponential training loss is to

greedily minimize Z¢, i.e., in each iteration, make the normalization
constant as small as possible by tuning a;.
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Z; =e (1 —€;) + el

0Z A A
O_at =——e%1—¢)+e%c = —e*(1—¢€)+e% =0

Greedy . = ele, = e (1 —¢,)
Exponential e _lze
Loss €t

o 1. /1-
Minimization :&:Elog( Et)=at

€t
0°Zy

a2 = e Y (1—€)+e% >0
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Training Error

Henry Chai - 8/3/22

Z y(n) Hrp (x(")))
[
t A

=1

ZIF—‘

T
1_[2\/615(1 —€;) > 0asT -
t=1

1
(as longas e; < > v t)
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