
10-301/601: Introduction
to Machine Learning
Lecture 29 – Exam 3
Review
Henry Chai

8/9/22

Front Matter

� Announcements:

� Exam 3 on 8/12, this Friday!

� Exam review recitation on 8/10 (tomorrow)

� Please show up to PH 100 (in-person) at 3:50

PM as the exam will begin promptly at 4 PM

Henry Chai - 8/9/22 2

Recall:
Naïve Bayes
Assumption

� Assume features are conditionally independent given the
label:

𝑃 𝑋 𝑌 =%
!"#

$

𝑃 𝑋! 𝑌

� Pros:

� Significantly reduces computational complexity

� Also reduces model complexity, combats overfitting

� Cons:

� Is a strong, often illogical assumption
� We’ll see a relaxed version of this later in the

semester today when we discuss Bayesian networks

Henry Chai - 8/9/22 3

Constructing a
Network

� Directed acyclic graph
where edges indicate
conditional dependency

� A variable is conditionally
independent of all its non-
descendants (i.e., upstream

variables) given its parents

� 𝑃 𝐻,𝑊, 𝑆, 𝐶, 𝑃 =
𝑃 𝐻 𝑃 𝑊 𝑃 𝑆 𝐻,𝑊
𝑃 𝐶 𝑆 𝑃 𝑀 𝑆

Henry Chai - 8/9/22 4

𝑆

𝐻

𝑀𝐶

𝑊

Bayesian
Networks:
Outline

� How can we learn a Bayesian network?

� Learning the graph structure

� Learning the conditional probabilities

� What inference questions can we answer with a

Bayesian network?

� Computing (or estimating) marginal (conditional)

probabilities

� Implied (conditional) independencies

Henry Chai - 8/9/22 5

Practice
Problem:
Bayesian
Networks

Henry Chai - 8/9/22 6

• How many parameters are needed to fully specify this Bayesian network?

10-601: Machine Learning Page 11 of 15 4/27/2016

5 Graphical Models [16 pts.]

We use the following Bayesian network to model the relationship between studying (S),
being well-rested (R), doing well on the exam (E), and getting an A grade (A). All nodes
are binary, i.e., R, S,E,A 2 {0, 1}.

S

E

R

A

Figure 5: Directed graphical model for problem 5.

All the following questions will be with respect to Figure 5.

(a) [2 pts.] Write the expression for the joint distribution.

(b) [2 pts.] How many parameters, i.e., entries in the CPT tables, are necessary to describe
the joint distribution?

(c) [2 pts.] What is the Markov Blanket of each of the nodes in the network?

(d) [2 pts.] Is S marginally independent of R? Is S conditionally independent of R given
E? Answer yes or no to each questions and provide a brief explanation why.

(e) [2 pts.] Explain when would you use the EM algorithm in learning the parameters for
this joint distribution.

Learning the
Parameters
(Fully-observed)

� 𝒟 = 𝐻 % ,𝑊 % , 𝑆 % , 𝐶 % , 𝑀 %
%"#
&

� Set parameters via MLE

𝑃 𝐻 = 1 =
𝑁'"#
𝑁

⋮

𝑃 𝑆 = 1|𝐻 = 0,𝑊 = 1 =
𝑁("#,'"*,+"#
𝑁'"*,+"#

⋮

Henry Chai - 8/9/22 7

𝑆

𝐻

𝑀𝐶

𝑊

Computing
Joint
Probabilities
is easy

Henry Chai - 8/9/22 8

𝑆

𝐻

𝑀𝐶

𝑊
𝑃 𝐻 = 1,𝑊 = 0, 𝑆 = 1, 𝐶 = 1,𝑀 = 0
=
𝑃 𝐻 = 1 ∗

1 − 𝑃 𝑊 = 1 ∗
𝑃 𝑆 = 1|𝐻 = 1,𝑊 = 0 ∗
𝑃 𝐶 = 1|𝑆 = 1 ∗

1 − 𝑃 𝑀 = 1|𝑆 = 1

Computing
Marginal
Probabilities…

� Computing arbitrary marginal

(conditional) distributions requires
summing over exponentially many
possible combinations of the
unobserved variables

� Computation can be improved by

storing and reusing calculated values
(dynamic programming)

� Still exponential in the worst case

Henry Chai - 8/9/22 9

𝑆

𝐻

𝑀𝐶

𝑊

Sampling for
Bayesian
Networks

Henry Chai - 8/9/22 10

𝑆

𝐻

𝑀𝐶

𝑊

� Sampling from a Bayesian network is
easy!

1. Sample all free variables
(𝐻 and 𝑊)

2. Sample any variable whose
parents have already been
sampled

3. Stop once all variables have
been sampled

𝑃 𝑆 = 1 ≈
of samples w/ 𝑆 = 1

of samples

Conditional
Independence

� 𝑋 and 𝑌 are conditionally

independent given 𝑍 (𝑋 ⊥ 𝑌 | 𝑍) if
𝑃 𝑋, 𝑌 𝑍 = 𝑃 𝑋 𝑍 𝑃 𝑌 𝑍

� In a Bayesian network, each variable

is conditionally independent of its
non-descendants given its parents

� 𝐻 and 𝑀 are not independent
but they are conditionally
independent given 𝑆

� What other conditional
independencies does a Bayesian

network imply?
Henry Chai - 8/9/22 11

𝑆

𝐻

𝑀𝐶

𝑊

Markov
Blanket

Henry Chai - 8/9/22 12

� Let 𝒮 be the set of all

random variables in a
Bayesian network

� A Markov blanket of 𝐴 ∈ 𝒮
is any set 𝐵 ⊆ 𝒮 s.t.

𝐴 ⊥ 𝒮\𝐵 | 𝐵

� Contains all the useful
information about 𝐴

� Trivially, 𝒮 is always a
Markov blanket for any
random variable in 𝒮

Markov
Boundary

Henry Chai - 8/9/22 13

� Let 𝒮 be the set of all

random variables in a
Bayesian network

� The Markov boundary of 𝐴
is the smallest possible
Markov blanket of 𝐴

� The Markov boundary
consists of a variable’s
children, parents and co-
parents (the other parents
of its children)

Source: https://en.wikipedia.org/wiki/Markov_blanket#/media/File:Diagram_of_a_Markov_blanket.svg

https://en.wikipedia.org/wiki/Markov_blanket

D-separation

� Random variables 𝐴 and 𝐵 are d-separated given evidence
variables 𝑍 if 𝐴 ⊥ 𝐵 | 𝑍

� Definition 1: 𝐴 and 𝐵 are d-separated given 𝑍 iff every
undirected path between 𝐴 and 𝐵 is blocked by 𝑍

� An undirected path between 𝐴 and 𝐵 is blocked by 𝑍 if

1. ∃ a “common parent” variable 𝐶 on the path and 𝐶 ∈ 𝑍

2. ∃ a “cascade” variable 𝐶 on the path and 𝐶 ∈ 𝑍

3. ∃ a “collider” variable 𝐶 on the path and

𝐶, descendents 𝐶 ∉ 𝑍

Henry Chai - 8/9/22 14

𝐴 ⋯ 𝐶 𝐵⋯

𝐴 ⋯ 𝐶 𝐵⋯

𝐴 ⋯ 𝐶 𝐵⋯

� Random variables 𝐴 and 𝐵 are d-separated given evidence
variables 𝑍 if 𝐴 ⊥ 𝐵 | 𝑍

� Definition 2: 𝐴 and 𝐵 are d-separated given 𝑍 iff ∄ a path
between 𝐴 and 𝐵 in the undirected ancestral moral graph with
𝑍 removed

1. Keep only 𝐴, 𝐵, 𝑍 and their ancestors (ancestral graph)
2. Add edges between all co-parents (moral graph)
3. Undirected: replace directed edges with undirected ones
4. Delete 𝑍 and check if 𝐴 and 𝐵 are connected

� Example: 𝐴 ⊥ 𝐵 | 𝐷, 𝐸 ?

D-separation

Henry Chai - 8/9/22 15Figure courtesy of Matt Gormley

Practice
Problem:
Bayesian
Networks

Henry Chai - 8/9/22 16

10-601: Machine Learning Page 11 of 15 4/27/2016

5 Graphical Models [16 pts.]

We use the following Bayesian network to model the relationship between studying (S),
being well-rested (R), doing well on the exam (E), and getting an A grade (A). All nodes
are binary, i.e., R, S,E,A 2 {0, 1}.

S

E

R

A

Figure 5: Directed graphical model for problem 5.

All the following questions will be with respect to Figure 5.

(a) [2 pts.] Write the expression for the joint distribution.

(b) [2 pts.] How many parameters, i.e., entries in the CPT tables, are necessary to describe
the joint distribution?

(c) [2 pts.] What is the Markov Blanket of each of the nodes in the network?

(d) [2 pts.] Is S marginally independent of R? Is S conditionally independent of R given
E? Answer yes or no to each questions and provide a brief explanation why.

(e) [2 pts.] Explain when would you use the EM algorithm in learning the parameters for
this joint distribution.

• Are S and R independent? Are S and R conditionally independent given E?

Shortcomings of
Bayesian
Networks

� Graph structure must be acyclic

� Cannot encode temporal/sequential relationships

� We’ll address these (related) problems next today with

hidden Markov models

Henry Chai - 8/9/22 17

Part-of-Speech
(PoS) Tagging:
Example

Henry Chai - 8/9/22 18

Hey Siri: “Label Correct Tags”

Label
Verb
Noun

Correct
Adjective

Verb

Tags
Noun
Verb

Hidden Markov
Models for
PoS Tagging

Henry Chai - 8/9/22 19

Label Correct Tags

Verb
Noun

Adjective

Verb
Noun

Adjective

Verb
Noun

Adjective

𝑌#

𝑋# 𝑋, 𝑋-

𝑌, 𝑌-𝑌* 𝑌.

Hidden Markov
Models

� Two types of variables: observations (observed) and states

(hidden or latent)

� Set of states usually pre-specified via domain
expertise/prior knowledge: 𝑠#, … , 𝑠/

� Emission model:

� Current observation is conditionally independent of
all other variables given the current state: 𝑃 𝑋0 𝑌0

� Transition model (Markov assumption):

� Current state is conditionally independent of all
earlier states given the previous state:
𝑃 𝑌0 𝑌01#, … , 𝑌* = 𝑃 𝑌0 𝑌01#

Henry Chai - 8/9/22 20

Hidden Markov
Models vs.
Bayesian
Networks

Henry Chai - 8/9/22 21

� Two types of variables: observations (observed) and states

(hidden or latent)

� Set of states usually pre-specified via domain
expertise/prior knowledge: 𝑠#, … , 𝑠/

� Emission & transition models are fixed over time steps

𝑃 𝑋0|𝑌0 = 𝑠2 = 𝑃 𝑋0! 𝑌0! = 𝑠2 ∀ 𝑡, 𝑡3

𝑃 𝑌0|𝑌01# = 𝑠2 = 𝑃 𝑌0! 𝑌0!1# = 𝑠2 ∀ 𝑡, 𝑡3

� Parameter reuse makes learning efficient

� Can handle sequences of varying lengths

Hidden Markov
Models:
Outline

� How can we learn the conditional probabilities used by a

hidden Markov model?

� What inference questions can we answer with a hidden

Markov model?

1. Computing the distribution of a single state (or a

sequence of states) given a sequence of observations

2. Finding the most-probable sequence of states given a

sequence of observations

3. Computing the probability of a sequence of

observations

Henry Chai - 8/9/22 22

Practice
Problem:
HMMs

Henry Chai - 8/9/22 23

Verb Noun Verb

see spot run

Verb Noun Verb

run spot run

Adj. Adj. Noun

funny funny spot

1. Given the POS tagging data shown, what
are the parameter values learned by an HMM?

� 𝒟 = 𝒙 % , 𝒚 %
%"#
&

� Set the parameters via MLE

Learning the
Parameters
(Fully-
observed)

Henry Chai - 8/9/22 24

𝑠# ⋯ 𝑠/
𝑜# 𝑎## ⋯ 𝑎#/
𝑜, 𝑎,# ⋯ 𝑎,/
⋮ ⋮ ⋱ ⋮
𝑜4 𝑎4# ⋯ 𝑎4/

Emission matrix, 𝐴 Transition matrix, 𝐵

START 𝑠# ⋯ 𝑠/
𝑠# 𝑏#* 𝑏## ⋯ 𝑏#/
⋮ ⋮ ⋮ ⋱ ⋮
𝑠/ 𝑏/* 𝑏/# ⋯ 𝑏//

END 𝑏 /5# * 𝑏 /5# # ⋯ 𝑏 /5# /

_𝑏62 =
∑0"#75#𝑁8""9#,8"$%"9&
∑0"#75#𝑁8"$%"9&

a𝑎62 =
∑0"#7 𝑁:"";#, 8""9&
∑0"#7 𝑁8""9&

1. Marginal Computation: 𝑃 𝑌0 = 𝑠2 𝒙 % (or 𝑃 𝑌 𝒙 %)

2. Decoding: _𝑌 = argmax
8

𝑃 𝑌 𝒙 %

3. Evaluation: 𝑃 𝒙 %

3 Inference
Questions for
HMMs

Henry Chai - 8/9/22 25

𝑃 𝑌 𝒙 % =
𝑃 𝒙 % |𝑌 𝑃(𝑌)

𝑃 𝒙 % =
∏0"#
7 𝑃 𝒙0

% 𝑌0 𝑃 𝑌0 𝑌01#
𝑃 𝒙 %

𝑃 𝒙 % = h
𝒴 ∈ >?? @ABBCD?E BEFGEHIEB

𝑃 𝒙 % 𝒴 𝑃 𝒴

The Brute
Force
Algorithm

� Inputs: query 𝑃 𝒙 % , emission matrix 𝐴, transition matrix 𝐵

� Initialize 𝑝 = 0

� For 𝒴 ∈ all possible sequences
� Compute the joint probability

𝑃 𝒙 % , 𝒴 = 𝑃 𝒙 % |𝒴 𝑃 𝒴 =%
0"#

7

𝑃 𝒙0
% 𝒴0 𝑃 𝒴0 𝒴01#

� 𝑝 += 𝑃 𝒙 % , 𝒴

� Return 𝑝 = 𝑃 𝒙 %

Henry Chai - 8/9/22 26

Practice
Problem:
HMMs

Henry Chai - 8/9/22 27

1. Given the POS tagging data shown, what
are the parameter values learned by an HMM?

Verb Noun Verb

see spot run

Verb Noun Verb

run spot run

Adj. Adj. Noun

funny funny spot

2. How many POS tag sequences of length 23
are there?

3. How does an HMM efficiently search for
the most probable sequence of tags given a 23-
word sentence?

1. Marginal Computation: 𝑃 𝑌0 = 𝑠2 𝒙 % (or 𝑃 𝑌 𝒙 %)

2. Decoding: _𝑌 = argmax
8

𝑃 𝑌 𝒙 %

3. Evaluation: 𝑃 𝒙 %

𝑃 𝒙 % = h
J"#

/

𝑃 𝑌0 = 𝑠J, 𝒙 %

𝑃 𝑌0 = 𝑠2 𝒙 % =
𝑃 𝑌0 = 𝑠2, 𝒙 %

𝑃 𝒙 %

3 Inference
Questions for
HMMs

Henry Chai - 8/9/22 28

Recursive
Marginals

Henry Chai - 8/9/22 29

By conditional independence assumptions

Can be computed recursively (backward algorithm)

Can be computed recursively (forward algorithm)

𝑃 𝑌0 = 𝑠2, 𝒙#
% , … , 𝒙7

%

= 𝑃 𝒙05#
% , … , 𝒙7

% 𝑌0 = 𝑠2, 𝒙#
% , … , 𝒙0

% 𝑃 𝑌0 = 𝑠2, 𝒙#
% , … , 𝒙0

%

= 𝑃 𝒙05#
% , … , 𝒙7

% 𝑌0 = 𝑠2 𝑃 𝑌0 = 𝑠2, 𝒙#
% , … , 𝒙0

%

≔ 𝛽0 𝑗 𝛼0 𝑗

Henry Chai - 8/9/22 30

The
Forward-
Backward
Algorithm

� Inputs: query 𝑃 𝑌0 = 𝑠2 𝒙 % , emission matrix 𝐴, transition matrix 𝐵

� Initialize 𝛼* START = 1 and 𝛽75# END = 1

� For 𝜏 = 1,… , 𝑇
� For 𝑚 = 1,… ,𝑀

𝛼K 𝑚 = 𝑃 𝒙K
% |𝑌K = 𝑠J h

L"#

/

𝑃 𝑌K = 𝑠J 𝑌K1# = 𝑠L 𝛼K1# 𝑘

� For 𝜏 = 𝑇,… , 1
� For 𝑚 = 1,… ,𝑀

𝛽K 𝑚 = h
L"#

/

𝛽K5# 𝑘 𝑃 𝒙K5#
% 𝑌K5# = 𝑠L 𝑃 𝑌K5# = 𝑠L 𝑌K = 𝑠J

� Return 𝑃 𝑌0 = 𝑠2 𝒙 % =
M 8""9&,𝒙 '

M 𝒙 ' = O" 2 P" 2
∑()%
* O" J P" J

Most
Probable
State
Sequence

Henry Chai - 8/9/22 31

𝜔0 𝑗 ≔ max
𝒴 ∈ >?? @ABBCD?E BEFGEHIEB AR 01# BS>SEB

𝑃 𝒴, 𝑌0 = 𝑠2, 𝒙#
% , … , 𝒙0

%

𝜔0 𝑗 = the probability of the most probable sequence of 𝑡 states that
ends in 𝑠2, conditioned on the first 𝑡 observations

𝜔0 𝑗 = max
J∈ #,…,/

𝜔01# 𝑚 𝑃 𝑌0 = 𝑠2|𝑌01# = 𝑠J 𝑃 𝒙0
% |𝑌0 = 𝑠2

The
Viterbi
Algorithm

Henry Chai - 8/9/22 32

� Inputs: observations 𝒙 % , emission matrix 𝐴, transition matrix 𝐵

� Initialize 𝜔* START = 1

� For 𝜏 = 1,… , 𝑇 + 1
� For 𝑚 = 1,… ,𝑀

𝜔K 𝑚 = max
L ∈ #,…,/

𝑃 𝒙K
% |𝑌K = 𝑠J 𝑃 𝑌K = 𝑠J 𝑌K1# = 𝑠L 𝜔K1# 𝑘

𝜌K 𝑚 = argmax
L ∈ #,…,/

𝑃 𝒙K
% |𝑌K = 𝑠J 𝑃 𝑌K = 𝑠J 𝑌K1# = 𝑠L 𝜔K1# 𝑘

� Return the most probable assignment given 𝒙 % :

� _𝑌7 = 𝜌75# END
� For 𝜏 = 𝑇 − 1,… , 1

� _𝑌K = 𝜌K5# _𝑌K5#

1. Marginal Computation: 𝑃 𝑌0 = 𝑠2 𝒙 % (or 𝑃 𝑌 𝒙 %)

1. Viterbi Decoding: _𝑌 = argmax
8

𝑃 𝑌 𝒙 %

2. Evaluation: 𝑃 𝒙 %

3. Minimum Bayes Risk (MBR) Decoding:
_𝑌 = argmin

8
𝔼
8!∼M+,- ⋅ 𝒙 % ℓ 𝑌, 𝑌3

3 4 Inference
Questions for
HMMs

Henry Chai - 8/9/22 33

𝑃 𝑌 𝒙 % =
𝑃 𝒙 % |𝑌 𝑃(𝑌)

𝑃 𝒙 % =
∏0"#
7 𝑃 𝒙0

% 𝑌0 𝑃 𝑌0 𝑌01#
𝑃 𝒙 %

𝑃 𝒙 % = h
𝒴 ∈ >?? @ABBCD?E BEFGEHIEB

𝑃 𝒙 % 𝒴 𝑃 𝒴

Learning
Paradigms

� Supervised learning - 𝒟 = 𝒙 % , 𝑦 %
%"#
&

� Regression - 𝑦 % ∈ ℝ

� Classification - 𝑦 % ∈ 1,… , 𝐶

� Unsupervised learning - 𝒟 = 𝒙 %
%"#
&

� Clustering
� Dimensionality reduction

� Reinforcement learning - 𝒟 = 𝒔 % , 𝒂 % , 𝑟 %
%"#
&

Henry Chai - 8/9/22 34

Outline

� Problem formulation

� Time discounted cumulative reward

� Markov decision processes (MDPs)

� Algorithms:

� Value & policy iteration (dynamic programming)

� (Deep) Q-learning (temporal difference learning)

35Henry Chai - 8/9/22

Practice
Problem:
MDPs

� In reinforcement learning, our model consists of
multiple kinds of functions; for each of following
functions, fill in the domains (input space) and ranges
(output space). Choose from: 𝒮 (state space), 𝒜 (action
space), ℝ (set of real numbers) or a combination from
any of these sets.

Henry Chai - 8/9/22 36

Domain Range

Transition function

Reward function

Policy

Value function

Q function

Markov
Decision
Process (MDP)

� Assume the following model for our data:

1. Start in some initial state 𝑠*

2. For time step 𝑡:
1. Agent observes state 𝑠0
2. Agent takes action 𝑎0 = 𝜋 𝑠0
3. Agent receives reward 𝑟0 ∼ 𝑝 𝑟 𝑠0, 𝑎0)

4. Agent transitions to state 𝑠05# ∼ 𝑝 𝑠3 𝑠0, 𝑎0)

3. Total reward is

� MDPs make the Markov assumption: the reward and
next state only depend on the current state and action.

37

h
0"*

V

𝛾0𝑟0

Henry Chai - 8/9/22

Reinforcement
Learning:
Objective
Function

� Find a policy 𝜋∗ = argmax
X

𝑉X 𝑠 ∀ 𝑠 ∈ 𝒮

� 𝑉X 𝑠 = 𝔼[discounted total reward of starting in state
𝑠 and executing policy 𝜋 forever]

� 𝑉X 𝑠 = 𝔼Y 9! 9, Z)[𝑅 𝑠* = 𝑠, 𝜋 𝑠*

� − + 𝛾𝑅 𝑠#, 𝜋 𝑠# + 𝛾,𝑅 𝑠,, 𝜋 𝑠, +⋯]

𝑉X 𝑠 =h
0"*

V

𝛾0𝔼Y 9! 9, Z) 𝑅 𝑠0, 𝜋 𝑠0

� where 0 < 𝛾 < 1 is some discount factor for future rewards

38Henry Chai - 8/9/22

Value
Function

� 𝑉X 𝑠 = 𝔼[discounted total reward of starting in state 𝑠 and

executing policy 𝜋 forever]

� = 𝔼[𝑅 𝑠*, 𝜋 𝑠* + 𝛾𝑅 𝑠#, 𝜋 𝑠# + 𝛾,𝑅 𝑠,, 𝜋 𝑠, +⋯ 𝑠* = 𝑠

� = 𝑅 𝑠, 𝜋 𝑠 + 𝛾𝔼[𝑅 𝑠#, 𝜋 𝑠# + 𝛾𝑅 𝑠,, 𝜋 𝑠, + … | 𝑠* = 𝑠]

� = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 ∑9%∈ 𝒮 𝑝 𝑠# | 𝑠, 𝜋 𝑠 �

�

𝑅 𝑠#, 𝜋 𝑠# +

+𝛾𝔼 𝑅 𝑠,, 𝜋 𝑠, +⋯ 𝑠#]

VX s = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 h
9%∈ 𝒮

𝑝 𝑠# | 𝑠, 𝜋 𝑠 𝑉X 𝑠#

39Bellman equationsHenry Chai - 8/9/22

Optimality

� Optimal value function:

𝑉∗ 𝑠 = max
Z ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾 h
9!∈ 𝒮

𝑝 𝑠3 | 𝑠, 𝑎 𝑉∗ 𝑠3

� System of 𝒮 equations and 𝒮 variables

� Optimal policy:

𝜋∗ 𝑠 = argmax
Z ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾 h
9!∈ 𝒮

𝑝 𝑠3 | 𝑠, 𝑎 𝑉∗ 𝑠3

40

Immediate
reward

(Discounted)
Future reward

Henry Chai - 8/9/22

Fixed
Point
Iteration

� Iterative method for solving a system of equations

� Given some equations and initial values
𝑥# = 𝑓# 𝑥#, … , 𝑥%

⋮
𝑥% = 𝑓% 𝑥#, … , 𝑥%

𝑥#
* , … , 𝑥%

*

� While not converged, do

𝑥#
05# ← 𝑓# 𝑥#

0 , … , 𝑥%
0

⋮

𝑥%
05# ← 𝑓% 𝑥#

0 , … , 𝑥%
0

41Henry Chai - 8/9/22

Synchronous
Value Iteration

42

� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’ | 𝑠, 𝑎)
� Initialize 𝑉 * 𝑠 = 0 ∀ 𝑠 ∈ 𝒮 (or randomly) and set 𝑡 = 0
� While not converged, do:

� For 𝑠 ∈ 𝒮
� For 𝑎 ∈ 𝒜

𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 h
9!∈ 𝒮

𝑝 𝑠3 | 𝑠, 𝑎 𝑉 0 𝑠3

� 𝑉 05# 𝑠 ← max
Z ∈𝒜

𝑄 𝑠, 𝑎

� 𝑡 = 𝑡 + 1
� For 𝑠 ∈ 𝒮

𝜋∗ 𝑠 ← argmax
Z ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾 h
9!∈ 𝒮

𝑝 𝑠3 | 𝑠, 𝑎 𝑉 0 𝑠3

� Return 𝜋∗
Henry Chai - 8/9/22

Asynchronous
Value Iteration

43

� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’ | 𝑠, 𝑎)
� Initialize 𝑉 * 𝑠 = 0 ∀ 𝑠 ∈ 𝒮 (or randomly) and set 𝑡 = 0
� While not converged, do:

� For 𝑠 ∈ 𝒮
� For 𝑎 ∈ 𝒜

𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 h
9!∈ 𝒮

𝑝 𝑠3 | 𝑠, 𝑎 𝑉 𝑠3

� 𝑉 𝑠 ← max
Z ∈𝒜

𝑄 𝑠, 𝑎

� For 𝑠 ∈ 𝒮

𝜋∗ 𝑠 ← argmax
Z ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾 h
9!∈ 𝒮

𝑝 𝑠3 | 𝑠, 𝑎 𝑉 𝑠3

� Return 𝜋∗
Henry Chai - 8/9/22

� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’ | 𝑠, 𝑎)
� Initialize 𝜋 randomly

� While not converged, do:
� Solve the Bellman equations defined by policy 𝜋

VX s = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 h
9!∈ 𝒮

𝑝 𝑠3 | 𝑠, 𝜋 𝑠 𝑉X 𝑠3

�Update 𝜋

− 𝜋 𝑠 ← argmax
Z ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾 h
9!∈ 𝒮

𝑝 𝑠3 | 𝑠, 𝑎 𝑉X 𝑠3

� Return 𝜋

44

Policy Iteration

Henry Chai - 8/9/22

47

� Theorem 1: Value function convergence

𝑉 will converge to 𝑉∗ if each state is “visited”

infinitely often (Bertsekas, 1989)

� Theorem 2: Convergence criterion

if max
9 ∈ 𝒮

𝑉 05# 𝑠 − 𝑉 0 𝑠 < 𝜖,

then max
9 ∈ 𝒮

𝑉 05# 𝑠 − 𝑉∗ 𝑠 < ,^_
#1_

(Williams & Baird, 1993)

� Theorem 3: Policy convergence

The “greedy” policy, 𝜋 𝑠 = argmax
Z ∈𝒜

𝑄 𝑠, 𝑎 , converges to the

optimal 𝜋∗ in a finite number of iterations, often before

the value function has converged! (Bertsekas, 1987)

Value Iteration
Theory

Henry Chai - 8/9/22

𝑄∗(𝑠, 𝑎)w/
deterministic
rewards

� 𝑄∗ 𝑠, 𝑎 = 𝔼[total discounted reward of taking action 𝑎 in
state 𝑠, assuming all future actions are optimal]

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 h
9!∈ 𝒮

𝑝 𝑠3 | 𝑠, 𝑎 𝑉∗ 𝑠3

𝑉∗ 𝑠3 = max
Z! ∈𝒜

𝑄∗ 𝑠3, 𝑎3

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 h
9!∈ 𝒮

𝑝 𝑠3 | 𝑠, 𝑎 max
Z! ∈𝒜

𝑄∗ 𝑠3, 𝑎3

𝜋∗ 𝑠 = argmax
Z ∈𝒜

𝑄∗ 𝑠, 𝑎

� Insight: if we know 𝑄∗, we can compute an optimal policy 𝜋∗!

48Henry Chai - 8/9/22

𝑄∗(𝑠, 𝑎)w/
deterministic
rewards and
transitions

49Henry Chai - 8/9/22

� 𝑄∗ 𝑠, 𝑎 = 𝔼[total discounted reward of taking action 𝑎 in
state 𝑠, assuming all future actions are optimal]

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉∗ 𝛿 𝑠, 𝑎

� 𝑉∗ 𝛿 𝑠, 𝑎 = max
Z! ∈𝒜

𝑄∗ 𝛿 𝑠, 𝑎 , 𝑎3

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 max
Z! ∈𝒜

𝑄∗ 𝛿 𝑠, 𝑎 , 𝑎3

𝜋∗ 𝑠 = argmax
Z ∈𝒜

𝑄∗ 𝑠, 𝑎

� Insight: if we know 𝑄∗, we can compute an optimal policy 𝜋∗!

Learning
𝑄∗(𝑠, 𝑎)w/
deterministic
rewards and
transitions

Algorithm 1:
Online learning
(table form)

50

� Inputs: discount factor 𝛾, an initial state 𝑠

� Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array)

� While TRUE, do
� Take a random action 𝑎

� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠3 where 𝑠3 = 𝛿 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
Z!

𝑄 𝑠3, 𝑎3

Henry Chai - 8/9/22

Learning
𝑄∗(𝑠, 𝑎)w/
deterministic
rewards and
transitions

Algorithm 2:
𝜖-greedy online
learning (table
form)

51

� Inputs: discount factor 𝛾, an initial state 𝑠,
greediness parameter 𝜖 ∈ 0, 1

� Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array)

� While TRUE, do
� With probability 𝜖, take the greedy action

𝑎 = argmax
Z! ∈𝒜

𝑄 𝑠, 𝑎3

Otherwise, with probability 1 − 𝜖, take a random action 𝑎
� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠3 where 𝑠3 = 𝛿 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
Z!

𝑄 𝑠3, 𝑎3

Henry Chai - 8/9/22

52

� Inputs: discount factor 𝛾, an initial state 𝑠,
greediness parameter 𝜖 ∈ 0, 1 ,
learning rate 𝛼 ∈ 0, 1 (“trust parameter”)

� Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array)

� While TRUE, do
� With probability 𝜖, take the greedy action

𝑎 = argmax
Z! ∈𝒜

𝑄 𝑠, 𝑎3

Otherwise, with probability 1 − 𝜖, take a random action 𝑎
� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠3 where 𝑠3 ∼ 𝑝 𝑠3 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
Z!

𝑄 𝑠3, 𝑎3 − 𝑄 𝑠, 𝑎

Learning
𝑄∗(𝑠, 𝑎)w/
deterministic
rewards

Algorithm 3:
𝜖-greedy online
learning (table
form)

Current
value

Temporal difference
target

Temporal
difference

Henry Chai - 8/9/22

Learning
𝑄∗(𝑠, 𝑎):
Convergence

53

� For Algorithm 3 (temporal difference learning),

𝑄 converges to 𝑄∗ if

1. Every valid state-action pair is visited infinitely often

� Q-learning is exploration-insensitive: any visitation

strategy that satisfies this property will work!

2. 0 ≤ 𝛾 < 1

3. ∃ 𝛽 s.t. 𝑅 𝑠, 𝑎 < 𝛽 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜

4. Initial 𝑄 values are finite

5. Learning rate 𝛼0 follows some “schedule” s.t.
∑0"*V 𝛼0 = ∞ and ∑0"*V 𝛼0, < ∞ e.g., 𝛼0 = ⁄# 05#

Henry Chai - 8/9/22

� “True” loss

ℓ Θ = h
9 ∈ 𝒮

h
Z ∈𝒜

𝑄∗ 𝑠, 𝑎 − 𝑄 𝑠, 𝑎; Θ
,

1. Use stochastic gradient descent: just consider one
state-action pair in each iteration

2. Use temporal difference learning:
� Given current parameters Θ S the temporal

difference target is
𝑄∗ 𝑠, 𝑎 ≈ 𝑟 + 𝛾max

Z!
𝑄 𝑠3, 𝑎3; Θ 0 ≔ 𝑦

� Set the parameters in the next iteration Θ S5# such
that 𝑄 𝑠, 𝑎; Θ S5# ≈ 𝑦

ℓ Θ S , Θ 05# = 𝑦 − 𝑄 𝑠, 𝑎; Θ S5#
,

1. 𝒮 too big to compute this sum

Deep
Q-learning:
Loss Function

54

2. Don’t know 𝑄∗

Henry Chai - 8/9/22

Deep
Q-learning

Algorithm 4:
Online learning
(parametric
form)

55

� Inputs: discount factor 𝛾, an initial state 𝑠*,

learning rate 𝛼

� Initialize parameters Θ *

� For 𝑡 = 0, 1, 2, …
� Gather training sample 𝒔0, 𝒂0, 𝑟0, 𝒔05#
� Update Θ 0 by taking a step opposite the gradient

Θ 05# ← Θ 0 − 𝛼∇` ".% ℓ Θ 0 , Θ 05#

where
∇` ".% ℓ Θ 0 , Θ 05#

= 2 𝑦 − 𝑄 𝑠, 𝑎; Θ 05# ∇` ".% 𝑄 𝑠, 𝑎; Θ 05#

Henry Chai - 8/9/22

Deep
Q-learning:
Experience
Replay

56

� SGD assumes i.i.d. training samples but in RL, samples are
highly correlated

� Idea: keep a “replay memory” 𝒟 = {𝑒1, 𝑒2, … , 𝑒𝑁} of the 𝑁
most recent experiences 𝑒𝑡 = 𝒔𝑡, 𝒂0, 𝑟0, 𝒔05# (Lin, 1992)

� Also keeps the agent from “forgetting” about recent
experiences

� Alternate between:
1. Sampling some 𝑒𝑖 uniformly at random from 𝒟 and

applying a Q-learning update (repeat 𝛵 times)

2. Adding a new experience to 𝒟

� Can also sample experiences from 𝒟 according to some
distribution that prioritizes experiences with high error
(Schaul et al., 2016)

Henry Chai - 8/9/22

Clustering

� Goal: split an unlabeled data set into groups or clusters of
“similar” data points

� Use cases:
� Organizing data
� Discovering patterns or structure
� Preprocessing for downstream machine learning tasks

� Applications:

Henry Chai - 8/9/22 57

Clustering
Algorithms

� Hierarchical

� Top-down (divisive)

� Bottom-up (agglomerative)

� Partitioning

� K-means

Henry Chai - 8/9/22 58

Hierarchical
Clustering

� Bottom-up (agglomerative)

� Start with each data point in its own cluster

� Iteratively combine the most similar clusters

� Stop when all data points are in a single cluster

� Top-down (divisive)

� Start with all data points in one cluster

� Iteratively split the largest cluster into two clusters

� Stop when all clusters are single data points

Henry Chai - 8/9/22 59

Bottom-up
Hierarchical
Clustering

� Bottom-up (agglomerative)

� Start with each data point in its own cluster

� Iteratively combine the most similar clusters

� Stop when all data points are in a single cluster

� Key question: how do we define similarity between clusters?

� Single-linkage: consider the closest data points
𝑑(a 𝐶6, 𝐶2 = min

𝒙 ∈ 4#, 𝒚 ∈ 4&
𝑑 𝒙, 𝒚

� Complete-linkage: consider the farthest data points
𝑑4a 𝐶6, 𝐶2 = max

𝒙 ∈ 4#, 𝒚 ∈ 4&
𝑑 𝒙, 𝒚

Henry Chai - 8/9/22 60

Single-
Linkage
Dendrogram

Henry Chai - 8/9/22 61

1 2 10 16 20

1,2 10 16 20

1,2 10 16,20

1,2

1,2,10,16,20

10,16,20

Complete-
Linkage
Dendrogram

Henry Chai - 8/9/22 62

1 2 10 16 20

1,2 10 16 20

1,2 10 16,20

1,2,10

1,2,10,16,20

16,20

Top-down
Hierarchical
Clustering

� Top-down (divisive)

� Start with all data points in one cluster

� Iteratively split the largest cluster into two clusters

� Stop when all clusters are single data points

� Key question: how can we partition a cluster?

Henry Chai - 8/9/22 63

Recipe
for
𝐾-means

Henry Chai - 8/9/22 64

� Define a model and model parameters
� Assume 𝐾 clusters and use the Euclidean distance
� Parameters: 𝝁#, … , 𝝁c and 𝑧 # , … , 𝑧 &

� Write down an objective function

h
%"#

&

𝒙 % − 𝝁d ' ,

� Optimize the objective w.r.t. the model parameters
� Use (block) coordinate descent

Block
Coordinate
Descent

65

� Goal: minimize some objective

­𝜶, 𝜷̄ = argmin 𝐽 𝜶, 𝜷

� Idea: iteratively pick one block of variables (𝜶 or 𝜷) and
minimize the objective w.r.t. that block, keeping the

other(s) fixed.

� Ideally, blocks should be the largest possible set of

variables that can be efficiently optimized
simultaneously

Henry Chai - 8/9/22

𝐾-means
Algorithm

Henry Chai - 8/9/22 66

� Input: 𝒟 = 𝒙 %
%"#
&

, 𝐾

1. Initialize cluster centers 𝝁#, … , 𝝁c
2. While NOT CONVERGED

a. Assign each data point to the cluster with the
nearest cluster center:
𝑧(%) = argmin

L
𝒙 % − 𝝁L ,

b. Recompute the cluster centers:

𝝁L =
1
𝑁L

h
% ∶d ' "L

𝒙 %

where 𝑁L is the number of data points in cluster 𝑘

� Output: cluster centers 𝝁#, … , 𝝁c and cluster
assignments 𝑧 # , … , 𝑧 &

Practice
Problem:
K-means

Henry Chai - 8/9/22 67

10-601: Machine Learning Page 6 of 16 4/27/2016

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

2.3 “K-Means %%”

The TAs for 10-601 pulled an all nighter and designed a brand new initialization algorithm for
the cluster centers in Lloyd’s algorithm. Below is the algorithm which they called “K-means
%%”.

• Choose the first cluster center, c1, uniformly at random from among the data points.

• For j = 2, . . . , k iteratively choose cj to be one of the data points according to the
following weighted probability

P (cj = x) /

8
<

:

0 if x = c` for ` = 1, . . . , j � 1

min`<j
1

||x � c`||
otherwise

Assume that x 2 R1. Answer the following questions about “K-means %%”:

10-601: Machine Learning Page 5 of 16 4/27/2016

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Figure 2: Initial data and cluster centers

(a) [3 pts] Circle the image which depicts the cluster center positions after 1 iteration of
Lloyd’s algorithm.

Solution: Circle the 3rd image

Given the initial cluster centers shown
below, circle the image that depicts the
cluster center positions after 1 iteration

of the Lloyd’s method

Setting 𝐾

� Idea: choose the value of 𝐾 that minimizes the
objective function

� Look for the characteristic “elbow” or largest decrease
when going from 𝐾 − 1 to 𝐾

Henry Chai - 8/9/22 68

𝐾
O

bj
ec

tiv
e

fu
nc

tio
n

va
lu

e

Initializing
𝐾-means

Henry Chai - 8/9/22 69

� Common choice: choose 𝐾 data points at random to be
the initial cluster centers (Lloyd’s method)

� Lloyd’s method converges to a local minimum and that
local minimum can be arbitrarily bad (relative to the
optimal clusters)

� Intuition: want initial cluster centers to be far apart
from one another

𝐾-means++
(Arthur and
Vassilvitskii,
2007)

1. Choose the first cluster center randomly from the
data points.

2. For each other data point 𝒙, compute 𝐷 𝒙 , the
distance between 𝒙 and the closest cluster center.

3. Select the next cluster center proportional to 𝐷 𝒙 ,.

4. Repeat 2 and 3 𝐾 − 1 times.

� 𝐾-means++ achieves a 𝑂 log𝐾 approximation to the
optimal clustering in expectation

� Both Lloyd’s method and 𝐾-means++ can benefit from
multiple random restarts.

Henry Chai - 8/9/22 70

Dimensionality
Reduction

Henry Chai - 8/9/22 71

� Goal: given some unlabeled data set, learn a latent
(typically lower-dimensional) representation

� Use cases:
� Reducing computational cost (runtime, storage, etc…)
� Improving generalization
� Visualizing data

� Applications:
� High-resolution images/videos
� Text data
� Financial or transaction data

72Henry Chai - 8/9/22

𝑥#

𝑥,

𝑥#

𝑥,

Feature Elimination ∈Dimensionality Reduction

Centering the
Data

� To be consistent, we will constrain principal components
to be orthogonal unit vectors that begin at the origin

� Preprocess data to be centered around the origin:

1. 𝝁 =
1
𝑁
h
%"#

&

𝒙 %

2. ³𝒙 % = 𝒙 % − 𝝁 ∀ 𝑛

3. 𝑋 =

³𝒙 # 7

³𝒙 , 7

⋮
³𝒙 & 7

Henry Chai - 8/9/22 73

Minimizing the
Reconstruction
Error

⇕
Maximizing the
Variance

Henry Chai - 8/9/22 74

­𝒗 = argmin
𝒗: 𝒗 /

/"#
h
%"#

&

³𝒙 % − 𝒗7³𝒙 % 𝒗 ,
,

­𝒗 = argmin
𝒗: 𝒗 /

/"#
h
%"#

&

³𝒙 %
,
,
− 𝒗7³𝒙 % ,

­𝒗 = argmax
𝒗: 𝒗 /

/"#
h
%"#

&

𝒗7³𝒙 % , Variance of projections
(³𝒙 % are centered)

­𝒗 = argmax
𝒗: 𝒗 /

/"#
𝒗7 h

%"#

&

³𝒙 % ³𝒙 % 7
𝒗

­𝒗 = argmax
𝒗: 𝒗 /

/"#
𝒗7 𝑋7𝑋 𝒗

Maximizing the
Variance

Henry Chai - 8/9/22 75

­𝒗 = argmax
𝒗: 𝒗 /

/"#
𝒗7 𝑋7𝑋 𝒗

𝑋7𝑋 ­𝒗 = 𝜆­𝒗 → ­𝒗7 𝑋7𝑋 ­𝒗 = 𝜆­𝒗7­𝒗 = 𝜆

• The first principal component is the eigenvector ­𝒗# that

corresponds to the largest eigenvalue 𝜆#
• The second principal component is the eigenvector ­𝒗,

that corresponds to the second largest eigenvalue 𝜆#
• ­𝒗# and ­𝒗, are orthogonal

• Etc …
• 𝜆6 is a measure of how much variance falls along ­𝒗6

PCA Algorithm

Henry Chai - 8/9/22 76

� Input: 𝒟 = 𝒙 %
%"#
&

, 𝜌

1. Center the data

2. Use SVD to compute the eigenvalues and eigenvectors
of 𝑋7𝑋

3. Collect the top 𝜌 eigenvectors (corresponding to the 𝜌
largest eigenvalues), 𝑉i ∈ ℝ$×i

4. Project the data into the space defined by 𝑉i, 𝑍 = 𝑋𝑉i

� Output: 𝑍, the transformed (potentially lower-
dimensional) data

Practice
Problem: PCA

Henry Chai - 8/9/22 77

10-601: Machine Learning Page 9 of 15 4/27/2016

4 Principal Component Analysis [16 pts.]

(a) In the following plots, a train set of data points X belonging to two classes on R2

are given, where the original features are the coordinates (x, y). For each, answer the
following questions:

(i) [3 pt.] Draw all the principal components.

(ii) [6 pts.] Can we correctly classify this dataset by using a threshold function after
projecting onto one of the principal components? If so, which principal component
should we project onto? If not, explain in 1–2 sentences why it is not possible.

Dataset 1:

Response to question (ii):

Dataset 2:

Response to question (ii):

10-601: Machine Learning Page 9 of 15 4/27/2016

4 Principal Component Analysis [16 pts.]

(a) In the following plots, a train set of data points X belonging to two classes on R2

are given, where the original features are the coordinates (x, y). For each, answer the
following questions:

(i) [3 pt.] Draw all the principal components.

(ii) [6 pts.] Can we correctly classify this dataset by using a threshold function after
projecting onto one of the principal components? If so, which principal component
should we project onto? If not, explain in 1–2 sentences why it is not possible.

Dataset 1:

Response to question (ii):

Dataset 2:

Response to question (ii):

10-601: Machine Learning Page 9 of 15 4/27/2016

4 Principal Component Analysis [16 pts.]

(a) In the following plots, a train set of data points X belonging to two classes on R2

are given, where the original features are the coordinates (x, y). For each, answer the
following questions:

(i) [3 pt.] Draw all the principal components.

(ii) [6 pts.] Can we correctly classify this dataset by using a threshold function after
projecting onto one of the principal components? If so, which principal component
should we project onto? If not, explain in 1–2 sentences why it is not possible.

Dataset 1:

Response to question (ii):

Dataset 2:

Response to question (ii):

Choosing the
number of PCs

� Define a percentage of explained variance for the 𝑖th PC:

¹𝜆6 ∑𝜆2

� Select all PCs above some threshold of explained

variance, e.g., 5%

� Keep selecting PCs until the total explained variance

exceeds some threshold, e.g., 90%

� Evaluate on some downstream metric

Henry Chai - 8/9/22 78

Shortcomings
of PCA

� Principal components are

orthogonal (unit) vectors

� Principal components can
be expressed as linear

combinations of the data

Henry Chai - 8/9/22 79

Henry Chai - 8/9/22 80Source: https://en.wikipedia.org/wiki/Autoencoder#/media/File:Autoencoder_structure.png

Deep
Autoencoders

https://en.wikipedia.org/wiki/Autoencoder

Decision Trees:
Pros & Cons

� Pros
� Interpretable
� Efficient (computational cost and storage)
� Can be used for classification and regression tasks
� Compatible with categorical and real-valued features

� Cons
� Learned greedily: each split only considers the

immediate impact on the splitting criterion
� Not guaranteed to find the smallest (fewest number

of splits) tree that achieves a training error rate of 0.
� Prone to overfit
� High variance

� Can be addressed via ensembles → random forests
81Henry Chai - 8/9/22

Random
Forests

� Combines the prediction of many diverse decision trees to reduce

their variability

� If 𝐵 independent random variables 𝑥 # , 𝑥 , , … , 𝑥 k all have

variance 𝜎,, then the variance of is l
/

%

� Random forests = bagging - + split-feature randomization

- = bootstrap aggregating + split-feature randomization

82

1
𝐵
h
m"#

k

𝑥 m 𝜎,

𝐵

Henry Chai - 8/9/22

Aggregating

� How can we combine multiple decision trees,

𝑡#, 𝑡,, … , 𝑡k , to arrive at a single prediction?

� Regression - average the predictions:

̅𝑡 𝒙 =
1
𝐵
h
m"#

k

𝑡m 𝒙

� Classification - plurality (or majority) vote; for binary

labels encoded as −1,+1 :

̅𝑡 𝒙 = sign
1
𝐵
h
m"#

k

𝑡m 𝒙

83Henry Chai - 8/9/22

Bootstrapping

84Henry Chai - 8/9/22

� Idea: resample the data multiple times with replacement
� Each bootstrapped sample has the same number of

data points as the original data set
� Duplicated points cause different decision trees to

focus on different parts of the input space
MovieID ⋯

1 ⋯
2 ⋯
3 ⋯
⋮ ⋮

19 ⋯
20 ⋯

MovieID ⋯
1 ⋯
1 ⋯
1 ⋯
⋮ ⋮

14 ⋯
19 ⋯

MovieID ⋯
4 ⋯
4 ⋯
5 ⋯
⋮ ⋮

16 ⋯
16 ⋯

Training data Bootstrapped
Sample 1

Bootstrapped
Sample 2

⋯

⋯

Split-feature
Randomization

� Issue: decision trees trained on bootstrapped samples
still behave similarly

� Idea: in addition to sampling the data points (i.e., the
rows), also sample the features (i.e., the columns)

� Each time a split is being considered, limit the possible
features to a randomly sampled subset

Henry Chai - 8/9/22 85

Runtime Genre Budget Year IMDB Rating

Random
Forests

� Input: 𝒟 = 𝒙 % , 𝑦 %
%"#
&

, 𝐵, 𝜌

� For 𝑏 = 1, 2, … , 𝐵

� Create a dataset, 𝒟m, by sampling 𝑁 points from the
original training data 𝒟 with replacement

� Learn a decision tree, 𝑡m, using 𝒟m and the ID3
algorithm with split-feature randomization,
sampling 𝜌 features for each split

� Output: ̅𝑡 = 𝑓 𝑡#, … , 𝑡k , the aggregated hypothesis

86Henry Chai - 8/9/22

Practice
Problem:
Random
Forests

� Suppose you fix 𝜌, the number of features used for split-feature
randomization, and increase 𝐵, the number of trees in the random forest: will
the variance of the random forest tend to increase, decrease or stay the
same? Briefly justify your answer in 2-3 concise sentences.

87Henry Chai - 8/9/22

Out-of-bag
Error

� For each training point, 𝒙 % , there are some decision trees

which 𝒙 % was not used to train (roughly ⁄𝐵 𝑒 trees or 37%)

� Let these be 𝑡 1% = 𝑡#
1% , 𝑡,

1% , … , 𝑡&$'
1%

� Compute an aggregated prediction for each 𝒙 % using the

trees in 𝑡 1% , ̅𝑡 1% 𝒙 %

� Compute the out-of-bag (OOB) error, e.g., for classification

� 𝐸rrk can be used for hyperparameter optimization!

88Henry Chai - 8/9/22

𝐸rrk =
1
𝑁
h
%"#

&

̅𝑡 1% 𝒙 % ≠ 𝑦 %

Feature
Importance

89Henry Chai - 8/9/22

� Some of the interpretability of decision trees gets lost

when switching to random forests

� Random forests allow for the computation of “feature
importance”, a way of ranking features based on how
useful they are at predicting the target

� Initialize each feature’s importance to zero

� Each time a feature is chosen to be split on, add the
reduction in Gini impurity (weighted by the number of
data points in the split) to its importance

Decision Trees:
Pros & Cons

� Pros
� Interpretable
� Efficient (computational cost and storage)
� Can be used for classification and regression tasks
� Compatible with categorical and real-valued features

� Cons
� Learned greedily: each split only considers the

immediate impact on the splitting criterion
� Not guaranteed to find the smallest (fewest number

of splits) tree that achieves a training error rate of 0.
� Prone to overfit
� High variance

� Can be addressed via bagging → random forests
� High bias (especially short trees, i.e., stumps)

� Can be addressed via boosting 90Henry Chai - 8/9/22

Boosting

� Another ensemble method (like bagging) that combines

the predictions of multiple hypotheses.

� Aims to reduce the bias of a “weak” or highly biased
model (can also reduce variance).

91Henry Chai - 8/9/22

92

� Input: 𝒟 𝑦 % ∈ −1,+1 , 𝑇

� Initialize data point weights: 𝜔*
(#), … , 𝜔*

& = #
&

� For 𝑡 = 1,… , 𝑇
1. Train a weak learner, ℎ0, by minimizing the weighted

training error
2. Compute the weighted training error of ℎ0:

𝜖0 = h
%"#

&

𝜔01#
% 𝟙 𝑦 % ≠ ℎ0 𝒙 %

3. Compute the importance of ℎ0:

𝛼0 =
1
2
log

1 − 𝜖0
𝜖0

4. Update the data point weights:

𝜔0
% =

𝜔01#
%

𝑍0
×¿

𝑒1P" if ℎ0 𝒙 % = 𝑦 %

𝑒P" if ℎ0 𝒙 % ≠ 𝑦 % =
𝜔01#

% 𝑒1P"s ' t" 𝒙 '

𝑍0

A
d
a
B
o
o
s
t

𝑔7 𝒙 = sign 𝐻7 𝒙

= sign h
0"#

7

𝛼0ℎ0 𝒙

� Output: an
aggregated
hypothesis

Why
AdaBoost?

1. If you want to use weak
learners …

2. … and want your final
hypothesis to be a

weighted combination of
weak learners, …

3. … then Adaboost greedily
minimizes the

exponential loss:

𝑒 ℎ 𝒙 , 𝑦 = 𝑒 1st 𝒙

1. Because they’re low
variance / computational
constraints

2. Because weak learners
are not great on their own

3. Because the exponential

loss upper bounds binary
error

94Henry Chai - 8/9/22

Exponential
Loss

95Henry Chai - 8/9/22

� Claim:

1
𝑁
h
%"#

&

𝑒 1s ' t 𝒙 '
≥
1
𝑁
h
%"#

&

𝟙 sign ℎ 𝒙 % ≠ 𝑦 %

� Consequence:

1
𝑁
h
%"#

&

𝑒 1s ' t 𝒙 '
→ 0

⟹
1
𝑁
h
%"#

&

𝟙 sign ℎ 𝒙 % ≠ 𝑦 % → 0

Exponential
Loss

� Claim: if 𝑔7 = sign 𝐻7 is the Adaboost hypothesis, then

1
𝑁
h
%"#

&

𝑒 1s ' '0 𝒙 '
=%

0"#

7

𝑍0

� Proof:

𝜔*
% = #

& , 𝜔#
% = u$1%2

' 3% 𝒙 '

&v%
, 𝜔,

% = u$1%2
' 3% 𝒙 '

u$1/2
' 3/ 𝒙 '

&v%v/

𝜔7
% =

∏0"#
7 𝑒1P"s ' t" 𝒙 '

𝑁∏0"#
7 𝑍0

=
𝑒1s ' ∑")%0 P"t" 𝒙 '

𝑁∏0"#
7 𝑍0

=
𝑒1s ' '0 𝒙 '

𝑁∏0"#
7 𝑍0

h
%"#

&

𝜔7
% = h

%"#

&
𝑒1s ' '0 𝒙 '

𝑁∏0"#
7 𝑍0

= 1 ⟹
1
𝑁
h
%"#

&

𝑒1s ' '0 𝒙 ' =%
0"#

7

𝑍0∎

96Henry Chai - 8/9/22

Exponential
Loss

97Henry Chai - 8/9/22

� Claim: if 𝑔7 = sign 𝐻7 is the Adaboost hypothesis, then

1
𝑁
h
%"#

&

𝑒 1s ' '0 𝒙 '
=%

0"#

7

𝑍0

� Consequence: one way to minimize the exponential training loss is to
greedily minimize 𝑍0, i.e., in each iteration, make the normalization
constant as small as possible by tuning 𝛼0.

Greedy
Exponential
Loss
Minimization

98

𝜕𝑍0
𝜕𝑎 = −𝑒1Z 1 − 𝜖0 + 𝑒Z𝜖0 ⟹−𝑒1wZ 1 − 𝜖0 + 𝑒 wZ𝜖0 = 0

⟹ 𝑒 wZ𝜖0 = 𝑒1wZ 1 − 𝜖0

⟹ 𝑒, wZ =
1 − 𝜖0
𝜖0

⟹ a𝑎 =
1
2
log

1 − 𝜖0
𝜖0

= 𝛼0

𝜕,𝑍0
𝜕𝑎,

= 𝑒1Z 1 − 𝜖0 + 𝑒Z𝜖0 > 0

Henry Chai - 8/3/22

𝑍0 = 𝑒1Z 1 − 𝜖0 + 𝑒Z𝜖0

Training Error

99

1
𝑁
h
%"#

&

𝟙 𝑦 % ≠ 𝑔7 𝒙 % ≤
1
𝑁
h
%"#

&

𝑒 1s ' '0 𝒙 '

1
𝑛h
6"#

%

𝑓 𝑥⃗ ≠ 𝑔7 𝑥⃗ =%
0"#

7

𝑍0

1
𝑛
h
6"#

%

𝑓 𝑥⃗ ≠ 𝑔7 𝑥⃗ =%
0"#

7

2 𝜖0 1 − 𝜖0 → 0 as T → ∞

1
𝑛
h
6"#

%

𝑓 𝑥⃗ ≠ 𝑔7 𝑥⃗ as long as 𝜖0 <
1
2
∀ 𝑡

Henry Chai - 8/3/22

