

10-301/601: Introduction to Machine Learning Lecture 26 – Random Forests

Henry Chai

8/2/22

Front Matter

- Announcements
 - HW8 released 7/27, due 8/3 (tomorrow) at 1 PM
 - Please be mindful of your grace day usage (see the course syllabus for the policy)
 - Exam 3 on 8/12, one week from Friday!

Exam 3 Logistics

- Friday, 8/12 from 4:00 – 5:20 PM in PH 100
- Closed book/notes
 - 1-page cheatsheet allowed, both back and front; can be typeset or handwritten
- Covered material: Lectures 17 – 27
 - Graphical Models: Bayesian Networks & HMMs
 - Reinforcement Learning
 - Unsupervised Learning: Clustering & Dimensionality Reduction
 - Ensemble Methods: Random Forests & Boosting
 - Exam 1 & 2 content may be referenced but will not be the primary focus of any question

Exam 3 Preparation

- Review exam practice problems, posted to the course website (under [Recitations](#))
- Attend the exam review recitation (Thursday, 8/11)
- Attend the exam review lecture (Tuesday, 8/9)
- Review this year's homework problems
- Consider whether you understand the “Key Takeaways” for each lecture / section
- Write your cheat sheet

Top picks for you

ByAllison Jigsaw Puzzle Sorting Trays 8 Pieces Stackable Large...

★★★★★ 164
\$37.99
✓prime FREE One-Day

NEW JETBLUE STUDIO
TREK TRENDY America's BEST Business Class | JETBLUE Mint Studio

Trek Trendy

194K views • 3 months ago

Machine Learning Full Course

Recommended For You



★★★★★ 57,753
\$18.99 - \$100.00

★★★★★ 74,458
\$6.99 - \$54.99

Search Twitter

For you Trending COVID-19 News Sports Entertainment

War in Ukraine - LIVE
Russian missiles strike western Ukrainian city of Lviv, near the Polish border

Trending with Lviv

Trending in NFL
Robert Woods

Adam Schefter @AdamSchefter • 12h
After signing Allen Robinson today, the Rams begin receiving calls about the availability of WR Robert Woods, who is now a prime trade candidate, per league sources. Woods is coming off a torn ACL, but is expected to be ready by training camp.

5,687 Tweets

ET Canada • Yesterday
Ryan Reynolds hilariously responds to kid's question about kissing Zoe Saldana in 'The Adam Project'

Trending in Football
La'el Collins

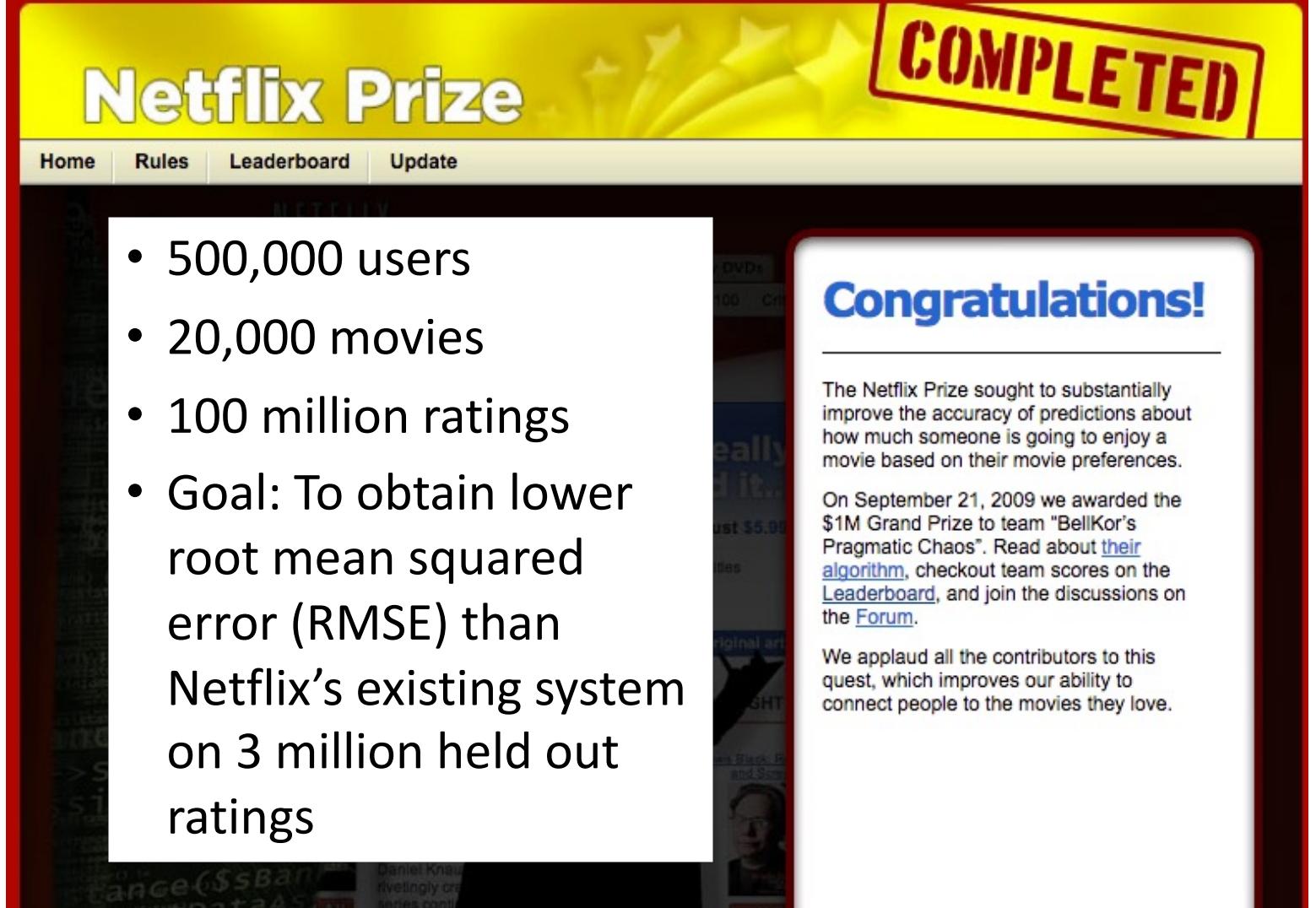
16.4K Tweets

COVID-19 - LIVE
COVID-19: News and updates for Pennsylvania

CAPTAIN AMERICA THE WINTER SOLDIER

Personalized Recommendations

The Netflix Prize



The Netflix Prize website homepage. The top banner is yellow with the text "Netflix Prize" and a large red "COMPLETED" stamp. Below the banner is a navigation menu with links to "Home", "Rules", "Leaderboard", and "Update". The main content area features a large white box containing a bulleted list of statistics and the goal of the competition. To the right of this box is a "Congratulations!" section with text about the completion of the prize and links to the Leaderboard and Forum.

Completed

Home | Rules | Leaderboard | Update

- 500,000 users
- 20,000 movies
- 100 million ratings
- Goal: To obtain lower root mean squared error (RMSE) than Netflix's existing system on 3 million held out ratings

Congratulations!

The Netflix Prize sought to substantially improve the accuracy of predictions about how much someone is going to enjoy a movie based on their movie preferences. On September 21, 2009 we awarded the \$1M Grand Prize to team "BellKor's Pragmatic Chaos". Read about [their algorithm](#), checkout team scores on the [Leaderboard](#), and join the discussions on the [Forum](#). We applaud all the contributors to this quest, which improves our ability to connect people to the movies they love.

The Netflix Prize

Netflix Prize COMPLETED

Home | **Rules** | Leaderboard | Update | Download

Leaderboard

Showing Test Score. [Click here to show quiz score](#)

Display top **20** leaders.

Rank	Team Name	Best Test Score	% Improvement	Best Submit Time
Grand Prize - RMSE = 0.8567 - Winning Team: BellKor's Pragmatic Chaos				
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22
3	Grand Prize Team	0.8582	9.90	2009-07-10 21:24:40
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31
5	Vandelay Industries !	0.8591	9.81	2009-07-10 00:32:20
6	PragmaticTheory	0.8594	9.77	2009-06-24 12:06:56
7	BellKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09
8	Dace	0.8612	9.59	2009-07-24 17:18:43
9	Feeds2	0.8622	9.48	2009-07-12 13:11:51
10	BigChaos	0.8623	9.47	2009-04-07 12:33:59
11	Opera Solutions	0.8623	9.47	2009-07-24 00:34:07
12	BellKor	0.8624	9.46	2009-07-26 17:19:11

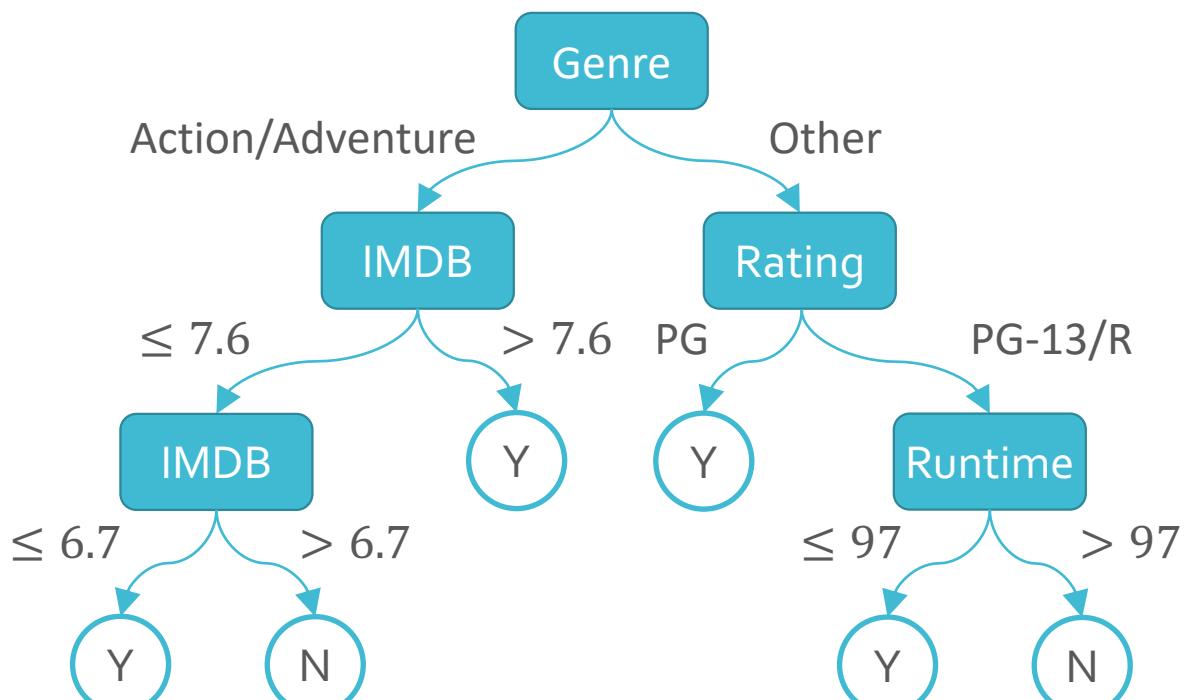
The Wisdom of Crowds

- In 1906, Francis Galton asked ~800 people at a farmer's fair to guess the weight of a cow, including "experts"
 - Actual weight: 1198 lbs
 - Mean guess: 1197 lbs
 - Mean guess was more accurate than any single guess, even the experts

MovielID	Runtime	Genre	Budget	Year	IMDB	Rating	Liked?
1	124	Action	18M	1980	8.7	PG	Y
2	105	Action	30M	1984	7.8	PG	Y
3	103	Comedy	6M	1986	7.8	PG-13	N
4	98	Adventure	16M	1987	8.1	PG	Y
5	128	Comedy	16.4M	1989	8.1	PG	Y
6	120	Comedy	11M	1992	7.6	R	N
7	120	Drama	14.5M	1996	6.7	PG-13	N
8	136	Action	115M	1999	6.5	PG	Y
9	90	Action	90M	2001	6.6	PG-13	Y
10	161	Adventure	100M	2002	7.4	PG	N
11	201	Action	94M	2003	8.9	PG-13	Y
12	94	Comedy	26M	2004	7.2	PG-13	Y
13	157	Biography	100M	2007	7.8	R	N
14	128	Action	110M	2007	7.1	PG-13	N
15	107	Drama	39M	2009	7.1	PG-13	N
16	158	Drama	61M	2012	7.6	PG-13	N
17	169	Adventure	165M	2014	8.6	PG-13	Y
18	100	Biography	9M	2016	6.7	R	N
19	130	Action	180M	2017	7.9	PG-13	Y
20	141	Action	275M	2019	6.5	PG-13	Y

Movie Recommendations

MovielID	Runtime	Genre	Budget	Year	IMDB	Rating	Liked?
1	124	Action	18M	1980	8.7	PG	Y
2	105	Action	30M	1984	7.8	PG	Y
3	103	Comedy	6M	1986	7.8	PG-13	N
4	98	Adventure	16M	1987	8.1	PG	Y
5	128	Comedy	16.4M	1989	8.1	PG	Y
6	120	Comedy	11M	1992	7.6	R	N
7	120	Drama	14.5M	1996	6.7	PG-13	N
8	136	Action	115M	1999	6.5	PG	Y
9	90	Action	90M	2001	6.6	PG-13	Y
10	161	Adventure	100M	2002	7.4	PG	N
11	201	Action	94M	2003	8.9	PG-13	Y
12	94	Comedy	26M	2004	7.2	PG-13	Y
13	157	Biography	100M	2007	7.8	R	N
14	128	Action	110M	2007	7.1	PG-13	N
15	107	Drama	39M	2009	7.1	PG-13	N
16	158	Drama	61M	2012	7.6	PG-13	N
17	169	Adventure	165M	2014	8.6	PG-13	Y
18	100	Biography	9M	2016	6.7	R	N
19	130	Action	180M	2017	7.9	PG-13	Y
20	141	Action	275M	2019	6.5	PG-13	Y

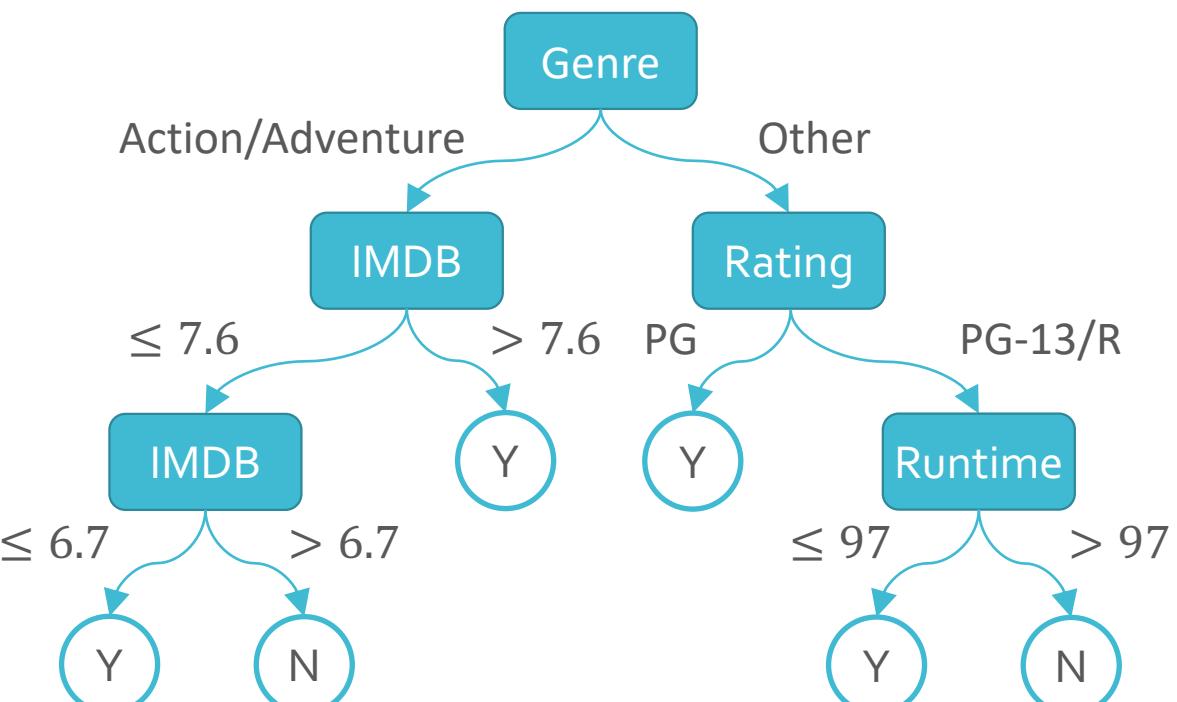


Decision Trees

Recall: Decision Tree Pros & Cons

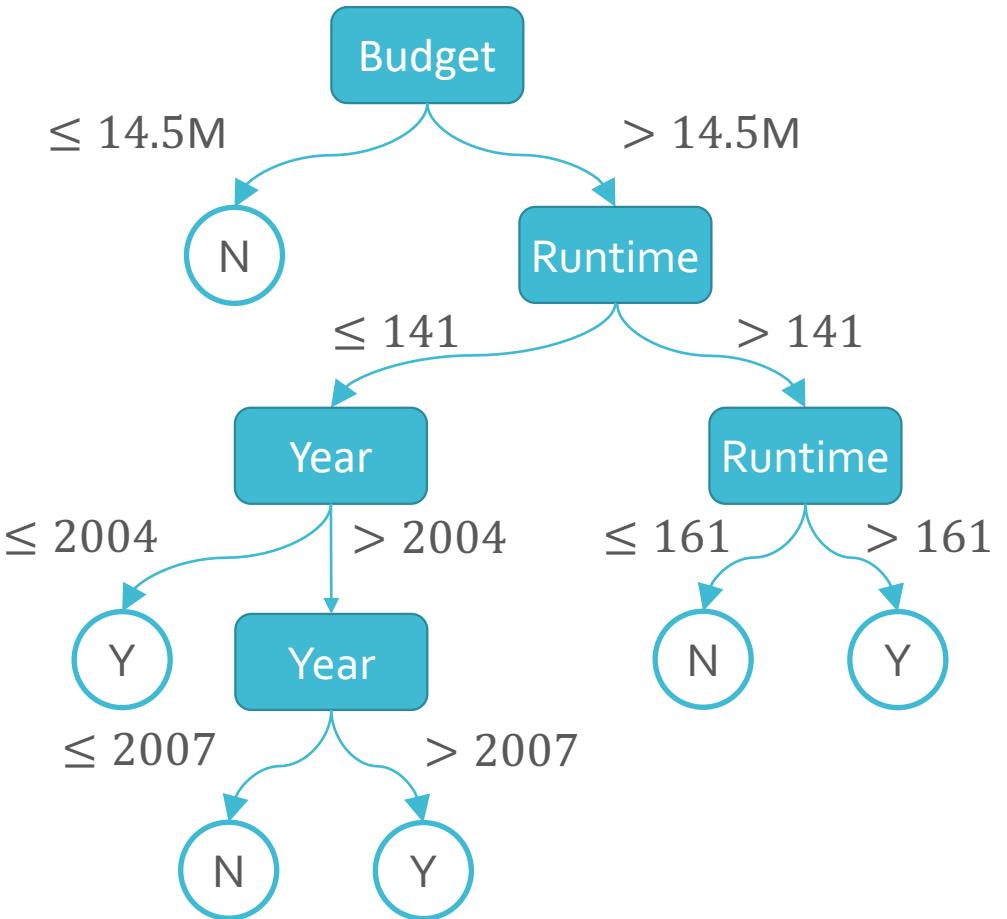
- Pros
 - Interpretable
 - Efficient (computational cost and storage)
 - Can be used for classification and regression tasks
 - Compatible with categorical and real-valued features
- Cons
 - Learned greedily: each split only considers the immediate impact on the splitting criterion
 - Not guaranteed to find the smallest (fewest number of splits) tree that achieves a training error rate of 0.
 - Prone to overfit
 - High variance

MoviedID	Runtime	Genre	Budget	Year	IMDB	Rating	Liked?
1	124	Action	18M	1980	8.7	PG	Y
2	105	Action	30M	1984	7.8	PG	Y
3	103	Comedy	6M	1986	7.8	PG-13	N
4	98	Adventure	16M	1987	8.1	PG	Y
5	128	Comedy	16.4M	1989	8.1	PG	Y
6	120	Comedy	11M	1992	7.6	R	N
7	120	Drama	14.5M	1996	6.7	PG-13	N
8	136	Action	115M	1999	6.5	PG	Y
9	90	Action	90M	2001	6.6	PG-13	Y
10	161	Adventure	100M	2002	7.4	PG	N
11	201	Action	94M	2003	8.9	PG-13	Y
12	94	Comedy	26M	2004	7.2	PG-13	Y
13	157	Biography	100M	2007	7.8	R	N
14	128	Action	110M	2007	7.1	PG-13	N
15	107	Drama	39M	2009	7.1	PG-13	N
16	158	Drama	61M	2012	7.6	PG-13	N
17	169	Adventure	165M	2014	8.6	PG-13	Y
18	100	Biography	9M	2016	6.7	R	N
19	130	Action	180M	2017	7.9	PG-13	Y
20	141	Action	275M	2019	6.5	PG-13	Y

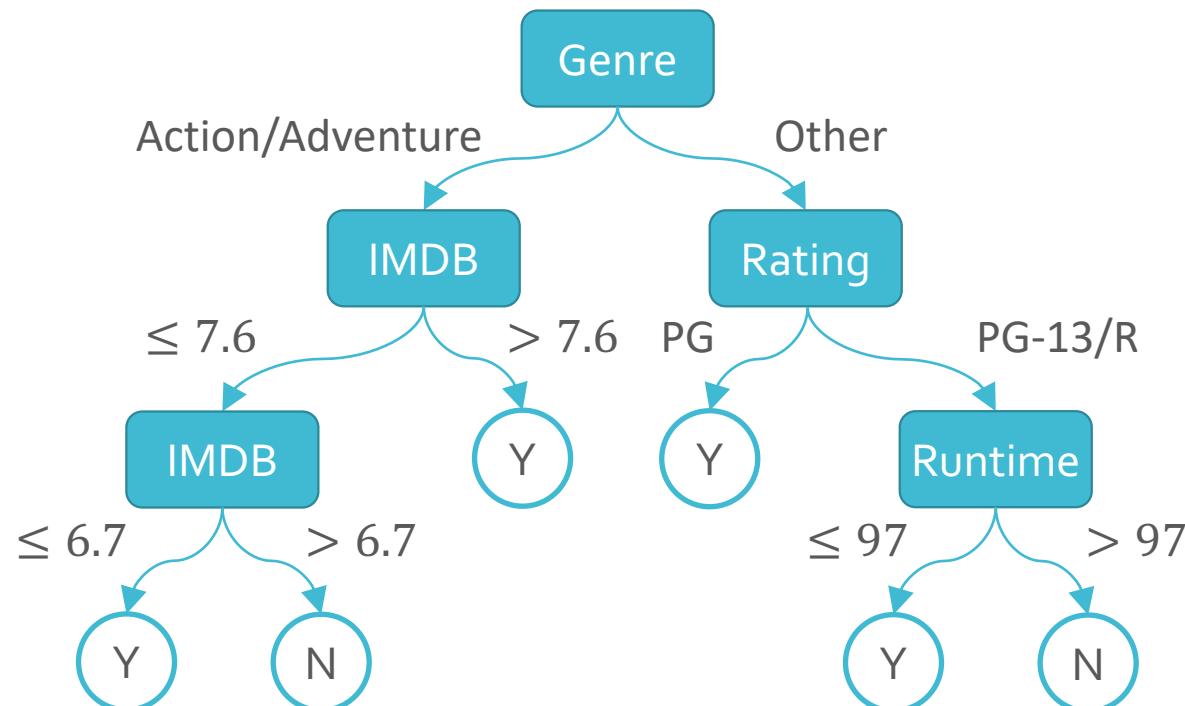
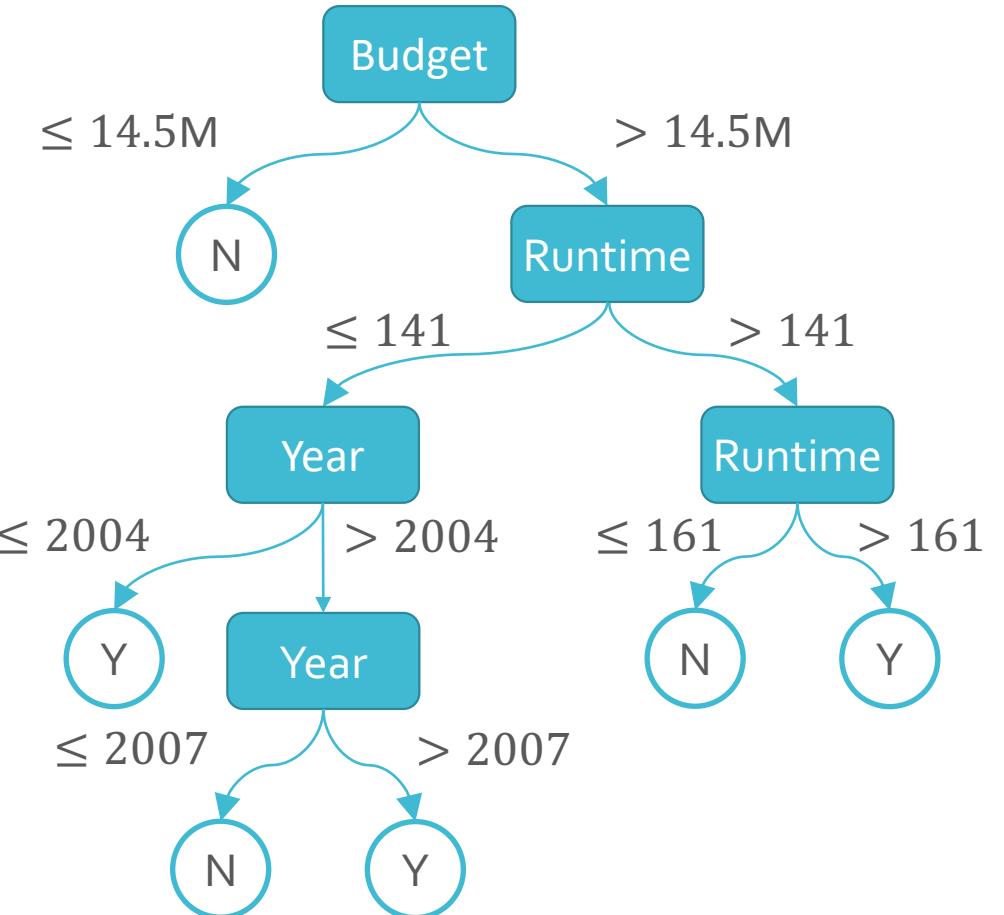


Decision Trees

MovielID	Runtime	Genre	Budget	Year	IMDB	Rating	Liked?
1	124	Action	18M	1980	8.7	PG	Y
2	105	Action	30M	1984	7.8	PG	Y
3	103	Comedy	6M	1986	7.8	PG-13	N
4	98	Adventure	16M	1987	8.1	PG	Y
5	128	Comedy	16.4M	1989	8.1	PG	Y
6	120	Comedy	11M	1992	7.6	R	N
7	120	Drama	14.5M	1996	6.7	PG-13	N
8	136	Action	115M	1999	6.5	PG	Y
9	90	Action	90M	2001	6.6	PG-13	Y
10	161	Adventure	100M	2002	7.4	PG	N
11	201	Action	94M	2003	8.9	PG-13	Y
12	94	Comedy	26M	2004	7.2	PG-13	Y
13	157	Biography	100M	2007	7.8	R	N
14	128	Action	110M	2007	7.1	PG-13	N
15	107	Drama	39M	2009	7.1	PG-13	N
16	158	Drama	61M	2012	7.6	PG-13	Y
17	169	Adventure	165M	2014	8.6	PG-13	Y
18	100	Biography	9M	2016	6.7	R	N
19	130	Action	180M	2017	7.9	PG-13	Y
20	141	Action	275M	2019	6.5	PG-13	Y



Decision Trees



Decision Trees

Decision Trees: Pros & Cons

- Pros
 - Interpretable
 - Efficient (computational cost and storage)
 - Can be used for classification and regression tasks
 - Compatible with categorical and real-valued features
- Cons
 - Learned greedily: each split only considers the immediate impact on the splitting criterion
 - Not guaranteed to find the smallest (fewest number of splits) tree that achieves a training error rate of 0.
 - Prone to overfit
 - High variance
 - Can be addressed via ensembles → random forests

Random Forests

- Combines the prediction of many diverse decision trees to reduce their variability
- If B independent random variables $x^{(1)}, x^{(2)}, \dots, x^{(B)}$ all have variance σ^2 , then the variance of $\frac{1}{B} \sum_{b=1}^B x^{(b)}$ is $\frac{\sigma^2}{B}$
- Random forests = bagging + split-feature randomization
= bootstrap aggregating + split-feature randomization

Random Forests

- Combines the prediction of many diverse decision trees to reduce their variability
- If B independent random variables $x^{(1)}, x^{(2)}, \dots, x^{(B)}$ all have variance σ^2 , then the variance of $\frac{1}{B} \sum_{b=1}^B x^{(b)}$ is $\frac{\sigma^2}{B}$
- Random forests = bagging + split-feature randomization
= bootstrap aggregating + split-feature randomization

Aggregating

- How can we combine multiple decision trees, $\{t_1, t_2, \dots, t_B\}$, to arrive at a single prediction?
- Regression - average the predictions:

$$\bar{t}(\mathbf{x}) = \frac{1}{B} \sum_{b=1}^B t_b(\mathbf{x})$$

- Classification - plurality (or majority) vote; for binary labels encoded as $\{-1, +1\}$:

$$\bar{t}(\mathbf{x}) = \text{sign} \left(\frac{1}{B} \sum_{b=1}^B t_b(\mathbf{x}) \right)$$

Random Forests

- Combines the prediction of many **diverse** decision trees to reduce their variability
- If B independent random variables $x^{(1)}, x^{(2)}, \dots, x^{(B)}$ all have variance σ^2 , then the variance of $\frac{1}{B} \sum_{b=1}^B x^{(b)}$ is $\frac{\sigma^2}{B}$
- Random forests = bagging + split-feature randomization
= bootstrap aggregating + split-feature randomization

Bootstrapping

- Insight: one way of generating different decision trees is by changing the training data set
- Issue: often, we only have one fixed set of training data
- Idea: resample the data multiple times ***with replacement***

MovielID	...
1	...
2	...
3	...
⋮	⋮
19	...
20	...

Training data

MovielID	...
1	...
1	...
1	...
⋮	⋮
14	...
19	...

Bootstrapped
Sample 1

MovielID	...
4	...
4	...
5	...
⋮	⋮
16	...
16	...

Bootstrapped
Sample 2 ...

Bootstrapping

- Idea: resample the data multiple times *with replacement*
 - Each bootstrapped sample has the same number of data points as the original data set
 - Duplicated points cause different decision trees to focus on different parts of the input space

MovielID	...
1	...
2	...
3	...
⋮	⋮
19	...
20	...

Training data

MovielID	...
1	...
1	...
1	...
⋮	⋮
14	...
19	...

Bootstrapped
Sample 1

MovielID	...
4	...
4	...
5	...
⋮	⋮
16	...
16	...

Bootstrapped
Sample 2

...

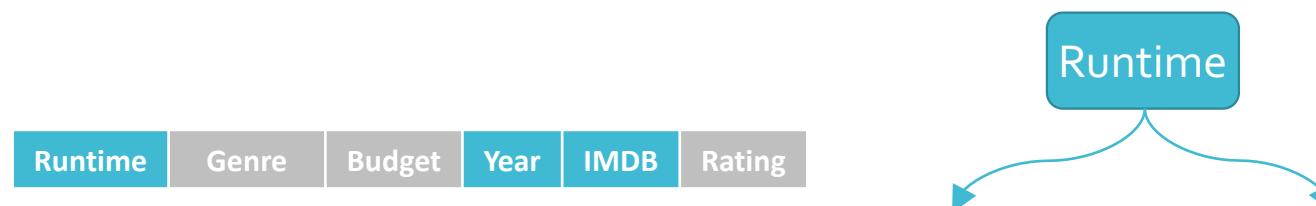
Split-feature Randomization

- Issue: decision trees trained on bootstrapped samples still behave similarly
- Idea: in addition to sampling the data points (i.e., the rows), also sample the features (i.e., the columns)
- Each time a split is being considered, limit the possible features to a randomly sampled subset

Runtime	Genre	Budget	Year	IMDB	Rating
---------	-------	--------	------	------	--------

Split-feature Randomization

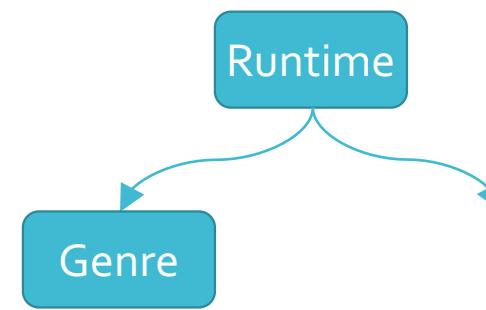
- Issue: decision trees trained on bootstrapped samples still behave similarly
- Idea: in addition to sampling the data points (i.e., the rows), also sample the features (i.e., the columns)
- Each time a split is being considered, limit the possible features to a randomly sampled subset



Split-feature Randomization

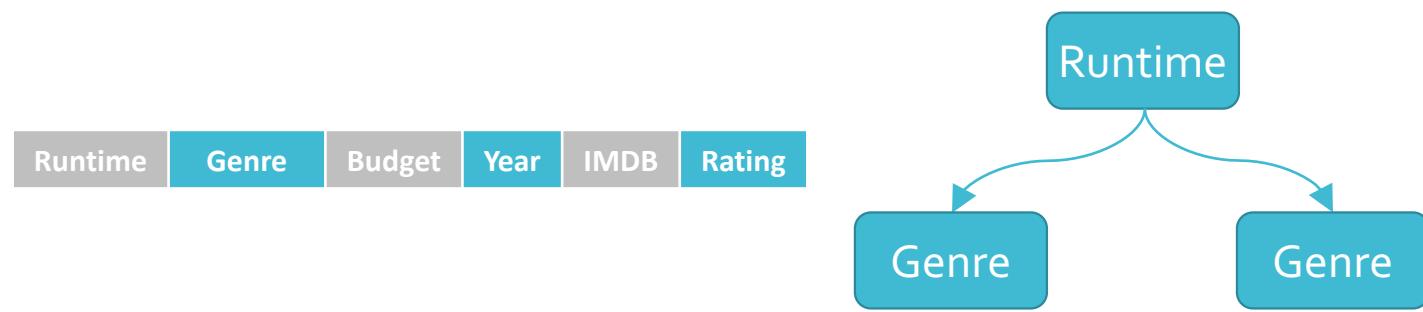
- Issue: decision trees trained on bootstrapped samples still behave similarly
- Idea: in addition to sampling the data points (i.e., the rows), also sample the features (i.e., the columns)
- Each time a split is being considered, limit the possible features to a randomly sampled subset

Runtime	Genre	Budget	Year	IMDB	Rating
---------	-------	--------	------	------	--------



Split-feature Randomization

- Issue: decision trees trained on bootstrapped samples still behave similarly
- Idea: in addition to sampling the data points (i.e., the rows), also sample the features (i.e., the columns)
- Each time a split is being considered, limit the possible features to a randomly sampled subset



Random Forests

- Input: $\mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^N, B, \rho$
- For $b = 1, 2, \dots, B$
 - Create a dataset, \mathcal{D}_b , by sampling N points from the original training data \mathcal{D} **with replacement**
 - Learn a decision tree, t_b , using \mathcal{D}_b and the ID3 algorithm **with split-feature randomization**, sampling ρ features for each split
- Output: $\bar{t} = f(t_1, \dots, t_B)$, the aggregated hypothesis

How can we set B and ρ ?

- Input: $\mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^N, B, \rho$
- For $b = 1, 2, \dots, B$
 - Create a dataset, \mathcal{D}_b , by sampling N points from the original training data \mathcal{D} **with replacement**
 - Learn a decision tree, t_b , using \mathcal{D}_b and the ID3 algorithm **with split-feature randomization**, sampling ρ features for each split
- Output: $\bar{t} = f(t_1, \dots, t_B)$, the aggregated hypothesis

Recall: Validation Sets



- Suppose we want to compare multiple hyperparameter settings $\theta_1, \dots, \theta_K$
- For $k = 1, 2, \dots, K$
 - Train a model on D_{train} using θ_k
 - Evaluate each model on D_{val} and find the best hyperparameter setting, θ_{k^*}
 - Compute the error of a model trained with θ_{k^*} on D_{test}

Out-of-bag Error

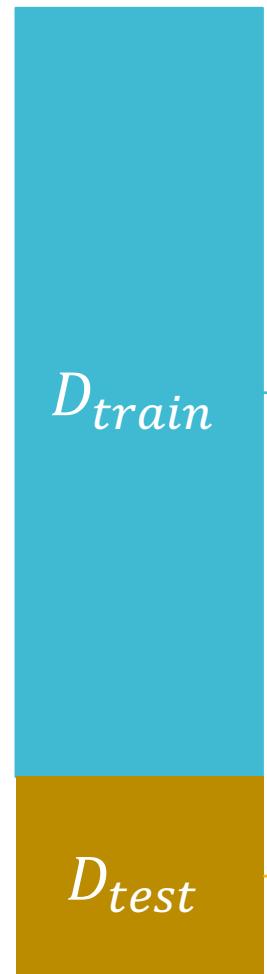
- For each training point, $\mathbf{x}^{(n)}$, there are some decision trees which $\mathbf{x}^{(n)}$ was not used to train (roughly B/e trees or 37%)
 - Let these be $\mathbf{t}^{(-n)} = \{t_1^{(-n)}, t_2^{(-n)}, \dots, t_{N-n}^{(-n)}\}$
 - Compute an aggregated prediction for each $\mathbf{x}^{(n)}$ using the trees in $\mathbf{t}^{(-n)}, \bar{t}^{(-n)}(\mathbf{x}^{(n)})$
 - Compute the out-of-bag (OOB) error, e.g., for regression

$$E_{OOB} = \frac{1}{N} \sum_{n=1}^N (\bar{t}^{(-n)}(\mathbf{x}^{(n)}) - y^{(n)})^2$$

Out-of-bag Error

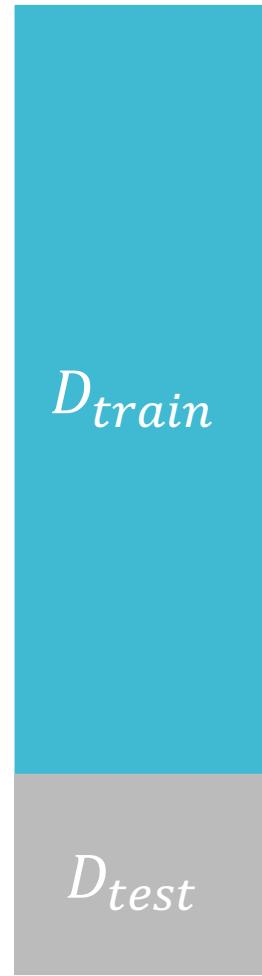
- For each training point, $\mathbf{x}^{(n)}$, there are some decision trees which $\mathbf{x}^{(n)}$ was not used to train (roughly B/e trees or 37%)
 - Let these be $\mathbf{t}^{(-n)} = \{t_1^{(-n)}, t_2^{(-n)}, \dots, t_{N-n}^{(-n)}\}$
 - Compute an aggregated prediction for each $\mathbf{x}^{(n)}$ using the trees in $\mathbf{t}^{(-n)}, \bar{t}^{(-n)}(\mathbf{x}^{(n)})$
 - Compute the out-of-bag (OOB) error, e.g., for classification
$$E_{OOB} = \frac{1}{N} \sum_{n=1}^N \llbracket \bar{t}^{(-n)}(\mathbf{x}^{(n)}) \neq y^{(n)} \rrbracket$$
 - E_{OOB} can be used for hyperparameter optimization!

Out-of-bag Error

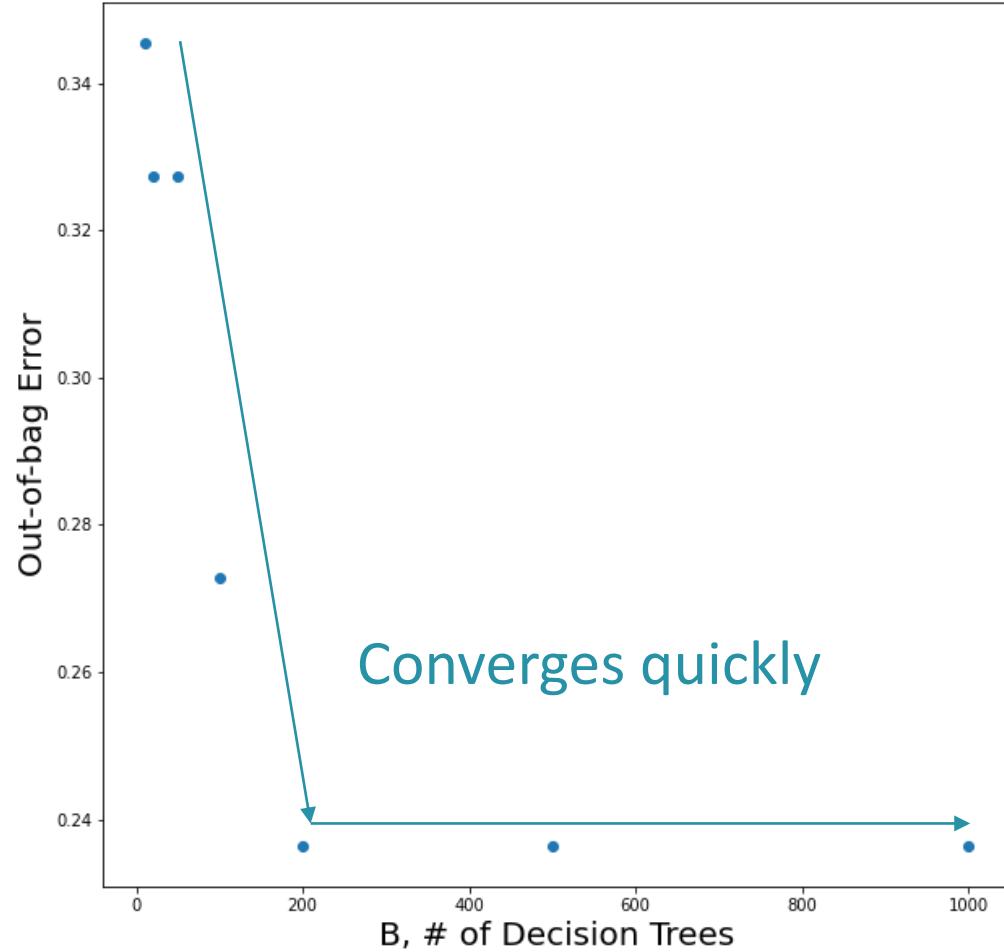
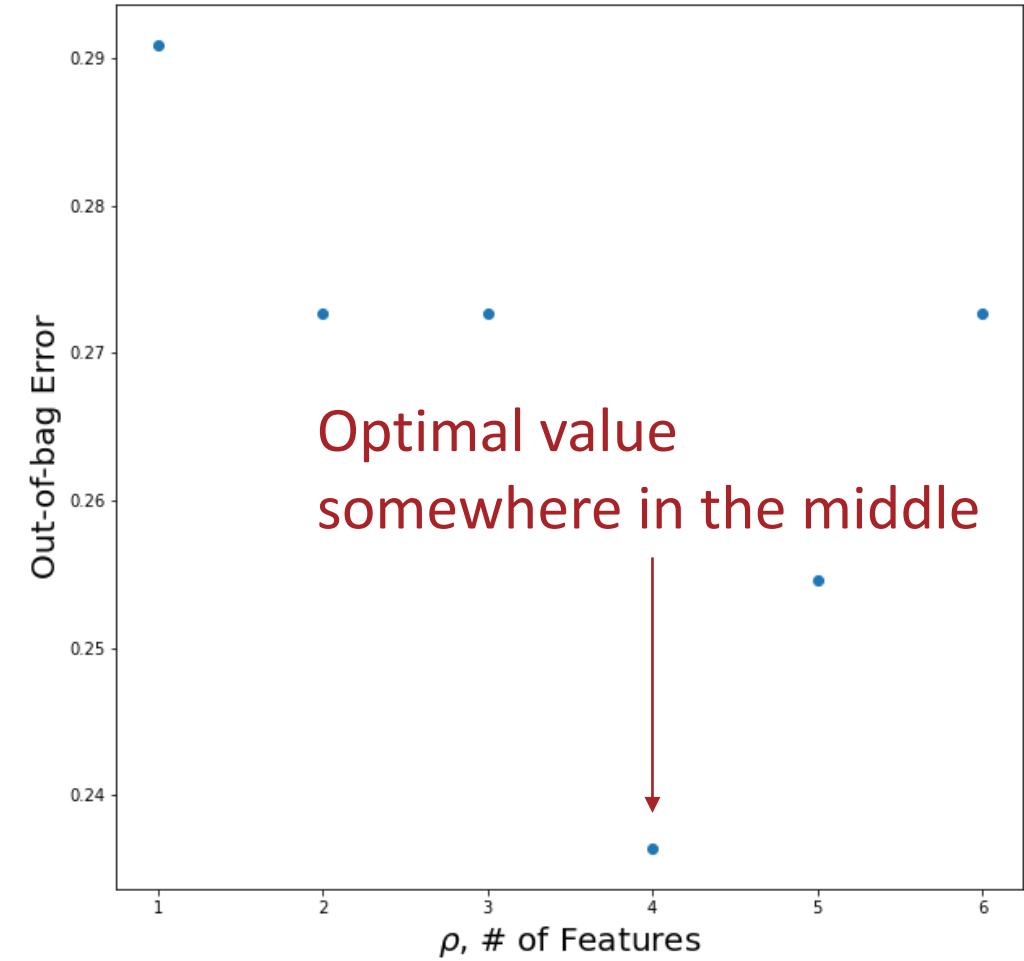


- Suppose we want to compare different numbers of trees in our random forest B_1, \dots, B_K
- For $k = 1, 2, \dots, K$
 - Train a random forest on D_{train} with B_k trees
 - Compute E_{OOB} for each random forest and find the best number of trees, B_{k^*}
 - Evaluate the random forest with B_{k^*} trees on D_{test}

Out-of-bag Error



- Suppose we want to compare different numbers of trees in our random forest B_1, \dots, B_K
- For $k = 1, 2, \dots, K$
 - Train a random forest on D_{train} with B_k trees
 - Compute E_{OOB} for each random forest and find the best number of trees, B_{k^*}
 - Evaluate the random forest with B_{k^*} trees on D_{test}

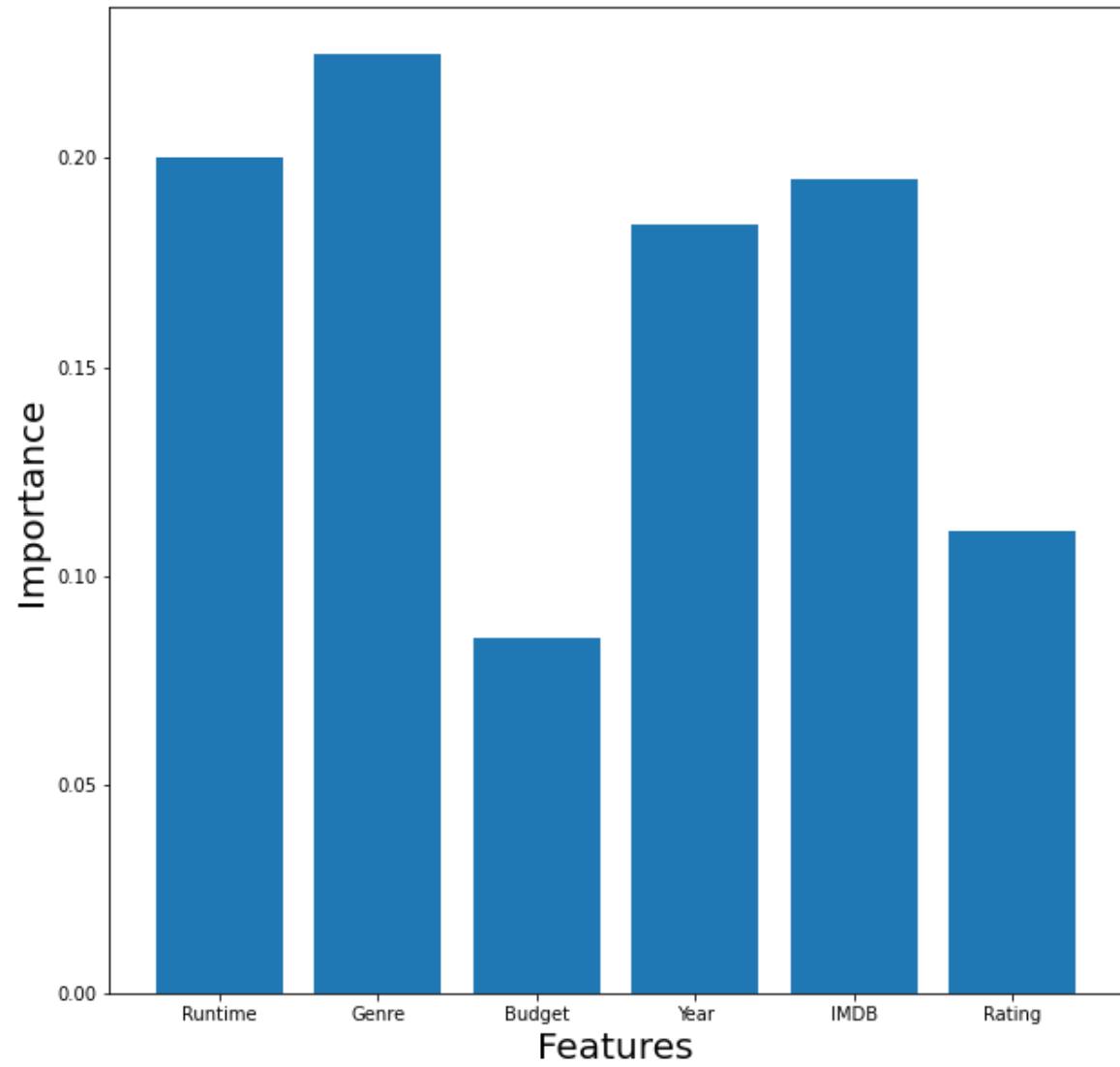


Setting Hyperparameters

Feature Importance

- Some of the interpretability of decision trees gets lost when switching to random forests
- Random forests allow for the computation of “feature importance”, a way of ranking features based on how useful they are at predicting the target
- Initialize each feature’s importance to zero
- Each time a feature is chosen to be split on, add the reduction in Gini impurity (weighted by the number of data points in the split) to its importance

Feature Importance



Key Takeaways

- Ensemble methods employ a “wisdom of crowds” philosophy
 - Can reduce the variance of high variance methods
- Random forests = bagging + split-feature randomization
 - Aggregate multiple decision trees together
 - Bootstrapping and split-feature randomization increase diversity in the decision trees
 - Use out-of-bag errors for hyperparameter optimization
 - Use feature importance to identify useful attributes