
10-301/601: Introduction
to Machine Learning
Lecture 20 – Exam 2
Review
Henry Chai

7/18/22

Front Matter

� Announcements:

� Exam 2 on 7/19 (tomorrow!)

� Please show up to PH 100 (in-person) at 1:50
PM as the exam will begin promptly at 2 PM

Henry Chai - 7/18/22 2

1. Marginal Computation: 𝑃 𝑌! = 𝑠" 𝒙 # (or 𝑃 𝑌 𝒙 #)

2. Viterbi Decoding: &𝑌 = argmax
$

𝑃 𝑌 𝒙 #

3. Evaluation: 𝑃 𝒙 #

3 Inference
Questions for
HMMs

Henry Chai - 7/18/22 3

𝑃 𝑌 𝒙 # =
𝑃 𝒙 # |𝑌 𝑃(𝑌)

𝑃 𝒙 # =
∏!%&
' 𝑃 𝒙!

𝑌! 𝑃 𝑌! 𝑌!(&
𝑃 𝒙 #

𝑃 𝒙 # = 0
𝒴 ∈ +,, -.//01,2 /2342562/

𝑃 𝒙 # 𝒴 𝑃 𝒴

1. Marginal Computation: 𝑃 𝑌! = 𝑠" 𝒙 # (or 𝑃 𝑌 𝒙 #)

2. Viterbi Decoding: &𝑌 = argmax
$

𝑃 𝑌 𝒙 #

3. Evaluation: 𝑃 𝒙 #

4. Minimum Bayes Risk (MBR) Decoding:
&𝑌 = argmin

$
𝔼
$!∼8",$ ⋅ 𝒙 # ℓ 𝑌, 𝑌9

3 4 Inference
Questions for
HMMs

Henry Chai - 7/18/22 4

𝑃 𝑌 𝒙 # =
𝑃 𝒙 # |𝑌 𝑃(𝑌)

𝑃 𝒙 # =
∏!%&
' 𝑃 𝒙!

𝑌! 𝑃 𝑌! 𝑌!(&
𝑃 𝒙 #

𝑃 𝒙 # = 0
𝒴 ∈ +,, -.//01,2 /2342562/

𝑃 𝒙 # 𝒴 𝑃 𝒴

Minimum
Bayes Risk
Decoding

� The learned parameters 𝐴 and 𝐵 induce a probability

distribution or belief over sequences of states 𝑃:,< 𝑌 𝒙 #

� Given a loss function, ℓ 𝑌, 𝑌9 , find the sequence of states
that minimizes our expected loss under our current belief

&𝑌 = argmin
$

𝔼
$!∼8",$ ⋅ 𝒙 # ℓ 𝑌, 𝑌9

&𝑌 = argmin
$

0
$!
𝑃:,< 𝑌′ 𝒙 # ℓ 𝑌, 𝑌9

Henry Chai - 7/18/22 5

Minimum
Bayes Risk
Decoding:
Example

Henry Chai - 7/18/22 6

� If ℓ 𝑌, 𝑌9 is the 0-1 loss

ℓ 𝑌, 𝑌9 = 1 − 𝟙 𝑌 = 𝑌9

&𝑌 = argmin
$

0
$!
𝑃:,< 𝑌9 𝒙 # 1 − 𝟙 𝑌 = 𝑌9

&𝑌 = argmin
$

−0
$!
𝑃:,< 𝑌9 𝒙 # 𝟙 𝑌 = 𝑌9

&𝑌 = argmax
$

𝑃:,< 𝑌 𝒙 #

Minimum
Bayes Risk
Decoding:
Example

Henry Chai - 7/18/22 7

� If ℓ 𝑌, 𝑌9 is the Hamming loss

ℓ 𝑌, 𝑌9 =0
!%&

'

1 − 𝟙 𝑌! = 𝑌!9

&𝑌! = argmax
$%

𝑃:,< 𝑌! 𝒙 #

� Computes the most likely state at each time step using
marginals

Key Takeaways

� HMMs are an instantiation of (dynamic) Bayesian

networks where certain parameters are shared

� Parameters can be set by MLE

� Because of their well-behaved graphical structure,
inference in HMMs is tractable via dynamic programming

� Forward-backward algorithm for computing marginal
distributions

� Viterbi algorithm for computing most probable

sequence of states

Henry Chai - 7/18/22 8

Probabilistic
Learning

� Previously:
� (Unknown) Target function, 𝑐∗: 𝒳 → 𝒴

� Classifier, ℎ ∶ 𝒳 → 𝒴

� Goal: find a classifier, ℎ, that best approximates 𝑐∗

� Now:

� (Unknown) Target distribution, 𝑦 ∼ 𝑝∗ 𝑌 𝒙

� Distribution, 𝑝 𝑌 𝒙

� Goal: find a distribution, 𝑝, that best approximates 𝑝∗

Henry Chai - 7/18/22 9

Maximum
Likelihood
Estimation
(MLE)

� Insight: every valid probability distribution has a finite

amount of probability mass as it must sum/integrate to 1

� Idea: set the parameter(s) so that the likelihood of the
samples is maximized

� Intuition: assign as much of the (finite) probability mass
to the observed data at the expense of unobserved data

� Example: the
exponential
distribution

Henry Chai - 7/18/22 10Source: https://en.wikipedia.org/wiki/Exponential_distribution#/media/File:Exponential_probability_density.svg

https://en.wikipedia.org/wiki/Exponential_distribution

� The pdf of the exponential distribution is
𝑓 𝑥|𝜆 = 𝜆𝑒(>?

� Given 𝑁 iid samples 𝑥 & , … , 𝑥 @ , the log-likelihood is

ℓ 𝜆 = 0
#%&

@

log 𝑓 𝑥 # |𝜆 = 0
#%&

@

log 𝜆𝑒(>? &

ℓ 𝜆 = 0
#%&

@

log 𝜆 + log 𝑒(>? & = 𝑁 log 𝜆 − 𝜆0
#%&

@

𝑥 #

� Taking the partial derivative and setting it equal to 0 gives

𝜕ℓ
𝜕𝜆

=
𝑁
𝜆
−0
#%&

@

𝑥 #

Exponential
Distribution
MLE

Henry Chai - 7/18/22 11

� The pdf of the exponential distribution is
𝑓 𝑥|𝜆 = 𝜆𝑒(>?

� Given 𝑁 iid samples 𝑥 & , … , 𝑥 @ , the log-likelihood is

ℓ 𝜆 = 0
#%&

@

log 𝑓 𝑥 # |𝜆 = 0
#%&

@

log 𝜆𝑒(>? &

ℓ 𝜆 = 0
#%&

@

log 𝜆 + log 𝑒(>? & = 𝑁 log 𝜆 − 𝜆0
#%&

@

𝑥 #

� Taking the partial derivative and setting it equal to 0 gives

𝜕ℓ
𝜕𝜆

=
𝑁
Q𝜆
−0
#%&

@

𝑥 # = 0 →
𝑁
Q𝜆
= 0

#%&

@

𝑥 # → Q𝜆 =
𝑁

∑#%&@ 𝑥 #

Exponential
Distribution
MLE

Henry Chai - 7/18/22 12

� The pdf of the Gamma distribution is

𝑓 𝑥|𝛼, 𝛽 =
𝛽A

Γ 𝛼
𝑥A(&𝑒(B?

� Given 𝑁 iid samples 𝑥 & , … , 𝑥 @ , what is the MLE of 𝛽?

ℓ 𝛼, 𝛽 = 0
#%&

@

log 𝑓 𝑥 # |𝛼, 𝛽 = 0
#%&

@

log
𝛽A

Γ 𝛼 𝑥A(&𝑒(B?

ℓ 𝛼, 𝛽 = 0
#%&

@

𝛼 log 𝛽 − log Γ 𝛼 + 𝛼 − 1 log 𝑥 # − 𝛽𝑥 #

𝜕ℓ
𝜕𝛽 = 0

#%&

@
𝛼
𝛽 − 𝑥

=
𝑛𝛼
𝛽 −0

#%&

@

𝑥 #

→
𝑛𝛼
Q𝛽
−0
#%&

@

𝑥 # = 0 → Q𝛽 =
𝑛𝛼

∑#%&@ 𝑥 #

Practice
Problem:
MLE

Henry Chai - 7/18/22 13

� Insight: sometimes we have prior information we want
to incorporate into parameter estimation

� Idea: use Bayes rule to reason about the posterior
distribution over the parameters

� MLE finds &𝜃 = argmax
C

𝑝 𝒟 𝜃

� MAP finds &𝜃 = argmax
C

𝑝 𝜃 𝒟

MAP finds &𝜃 = argmax
C

𝑝 𝒟 𝜃 𝑝 𝜃 /𝑝 𝒟

MAP finds &𝜃 = argmax
C

𝑝 𝒟 𝜃 𝑝 𝜃 /𝑝 𝒟

MAP finds &𝜃. = argmax
C

log 𝑝 𝒟 𝜃 + log 𝑝 𝜃

Maximum a
Posteriori
(MAP)
Estimation

Henry Chai - 7/18/22 14

likelihood prior

log-posterior

Coin
Flipping
MAP

Henry Chai - 7/18/22 15

� A Bernoulli random variable takes value 1 (or heads) with
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is
𝑝 𝑥|𝜙 = 𝜙? 1 − 𝜙 &(?

� Assume a Beta prior over the parameter 𝜙, which has pdf

𝑓 𝜙 𝛼, 𝛽 =
𝜙A(& 1 − 𝜙 B(&

Β 𝛼, 𝛽

� where Β 𝛼, 𝛽 = ∫D
&𝜙A(& 1 − 𝜙 B(&𝑑𝜙 is a normalizing

constant to ensure the distribution integrates to 1

Coin
Flipping
MAP

Henry Chai - 7/18/22 16

� Given 𝑁 iid samples 𝑥 & , … , 𝑥 @ , the partial derivative of
the log-posterior is
𝜕ℓ
𝜕𝜙

=
𝛼 − 1 + 𝑁&

𝜙
−

𝛽 − 1 + 𝑁D
1 − 𝜙

⋮

→ &𝜙E:8 =
𝛼 − 1 + 𝑁&

𝛽 − 1 + 𝑁D + 𝛼 − 1 + 𝑁&
�𝛼 − 1 is a “pseudocount” of the number of 1’s (or heads)

you’ve “observed”

�𝛽 − 1 is a “pseudocount” of the number of 0’s (or tails)
you’ve “observed”

Building a
Probabilistic
Classifier

Henry Chai - 7/18/22 17

� Define a decision rule
� Given a test data point 𝒙9, predict its label a𝑦 using

the posterior distribution 𝑃 𝑌 = 𝑦 𝑋 = 𝒙′

� Common choice: a𝑦 = argmax
F

𝑃 𝑌 = 𝑦 𝑋 = 𝒙′

� Model the posterior distribution
� Option 1 - Model 𝑃 𝑌 𝑋 directly as some function

of 𝑋 (tomorrow)

� Option 2 - Use Bayes’ rule (today!):

𝑃 𝑌 𝑋 =
𝑃 𝑋 𝑌 𝑃 𝑌

𝑃 𝑋
∝ 𝑃 𝑋 𝑌 𝑃 𝑌

𝑥!
(“hat”)

𝑥"
(“cat”)

𝑥#
(“dog”)

𝑥$
(“fish”)

𝑥%
(“mom”)

𝑥&
(“dad”) 𝑃(𝑋|𝑌 = 1) 𝑃 𝑋 𝑌 = 0

0 0 0 0 0 0 𝜃! 𝜃"#
1 0 0 0 0 0 𝜃$ 𝜃"%
1 1 0 0 0 0 𝜃& 𝜃""
1 0 1 0 0 0 𝜃# 𝜃"'

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 1 1 1 1 1 1 −%
()!

"&

𝜃(1 − %
()"#

!$"

𝜃(

Henry Chai - 7/18/22 18

How hard is
modelling
𝑃 𝑋 𝑌 ?

Naïve Bayes
Assumption

� Assume features are conditionally independent given
the label:

𝑃 𝑋 𝑌 =d
Q%&

R

𝑃 𝑋Q 𝑌

� Pros:
� Significantly reduces computational complexity

� Also reduces model complexity, combats overfitting

� Cons:

� Is a strong, often illogical assumption

� We’ll see a relaxed version of this later in the
semester when we discuss Bayesian networks

Henry Chai - 7/18/22 19

Recipe
for
Naïve
Bayes

� Define a model and model parameters
� Make the Naïve Bayes assumption
� Assume independent, identically distributed (iid) data
� Parameters: 𝜋 = 𝑃 𝑌 = 1 , 𝜃Q,F = 𝑃 𝑋Q = 1 𝑌 = 𝑦

� Write down an objective function
� Maximize the log-likelihood

� Optimize the objective w.r.t. the model parameters
� Solve in closed form: take partial derivatives, set to 0

and solve

Henry Chai - 7/18/22 20

Bernoulli
Naïve
Bayes

Henry Chai - 7/18/22 21

� Binary label
� 𝑌 ∼ Bernoulli 𝜋
� a𝜋 = i@'()

@
� 𝑁 = # of data points
� 𝑁$%& = # of data points with label 1

� Binary features
� 𝑋Q|𝑌 = 𝑦 ∼ Bernoulli 𝜃Q,F
� &𝜃Q,F = i@'(*, +,()

@'(*

� 𝑁$%F = # of data points with label 𝑦
� 𝑁$%F, S,%& = # of data points with label 𝑦 and

feature 𝑋Q = 1

Multinomial
Naïve
Bayes

Henry Chai - 7/18/22 22

� Binary label
� 𝑌 ∼ Bernoulli 𝜋
� a𝜋 = i@'()

@
� 𝑁 = # of data points
� 𝑁$%& = # of data points with label 1

� Discrete features (𝑋Q can take on one of 𝐾 possible values)
� 𝑋Q|𝑌 = 𝑦 ∼ Categorical 𝜃Q,&,F, … , 𝜃Q,T(&,F
� &𝜃Q,U,F = i@'(*, +,(-

@'(*

� 𝑁$%F = # of data points with label 𝑦
� 𝑁$%F, S,%U = # of data points with label 𝑦 and

feature 𝑋Q = 𝑘

Gaussian
Naïve
Bayes

Henry Chai - 7/18/22 23

� Binary label
� 𝑌 ∼ Bernoulli 𝜋
� a𝜋 = i@'()

@
� 𝑁 = # of data points
� 𝑁$%& = # of data points with label 1

� Real-valued features
� 𝑋Q|𝑌 = 𝑦 ∼ Gaussian 𝜇Q,F, 𝜎Q,FV

� 𝜇̂Q,F =
&

@'(*
∑#:F & %F 𝑥Q

#

� ̂𝜎Q,FV = &
@'(*

∑#:F & %F 𝑥Q
− 𝜇̂Q,F

V

� 𝑁$%F = # of data points with label 𝑦

Practice
Problem:
Naïve Bayes

� Given a binary label and 𝐷 discrete features, each of which can

take on 𝐾 possible values, how many parameters would a
multinomial naïve Bayes model need to learn?

2 𝐷 𝐾 − 1 + 1

� Given a binary label and 𝐷 real-valued features, how many
parameters would a Gaussian naïve Bayes model need to learn?

2 2𝐷 + 1

Henry Chai - 7/18/22 24

Visualizing
Gaussian
Naïve
Bayes
(2 classes,
equal
variances)

Figure courtesy of Matt Gormley 25Henry Chai - 7/18/22

Visualizing
Gaussian
Naïve
Bayes
(2 classes,
learned
variances)

Figure courtesy of Matt Gormley 26Henry Chai - 7/18/22

Bernoulli
Naïve
Bayes:
Making
Predictions

Henry Chai - 7/18/22 27

� Given a test data point 𝒙9 = 𝑥&9 , … , 𝑥R9 '

𝑃 𝑌 = 1 𝒙9 ∝ 𝑃 𝑌 = 1 𝑃 𝒙9 𝑌 = 1

𝑃 𝑌 = 1 𝑥9 = a𝜋d
Q%&

R

&𝜃Q,&
?,
!
1 − &𝜃Q,&

&(?,
!

𝑃 𝑌 = 0 𝒙9 ∝ 1 − a𝜋 d
Q%&

R

&𝜃Q,D
?,
!
1 − &𝜃Q,D

&(?,
!

a𝑦 =

1 if a𝜋d
Q%&

R

&𝜃Q,&
?,
!
1 − &𝜃Q,&

&(?,
!

>

1 − a𝜋 d
Q%&

R

&𝜃Q,D
?,
!
1 − &𝜃Q,D

&(?,
!

0 otherwise

Setting the
Parameters
via MAP

Henry Chai - 7/18/22 28

� Binary label
� 𝑌 ∼ Bernoulli 𝜋
� a𝜋 = i@'()

@
� 𝑁 = # of data points
� 𝑁$%& = # of data points with label 1

� Binary features
� 𝑋Q|𝑌 = 𝑦 ∼ Bernoulli 𝜃Q,F and 𝜃Q,F ∼ Beta 𝛼, 𝛽

� &𝜃Q,F = i@'(*, +,()X A(&
@'(*X A(& X B(&

� 𝑁$%F = # of data points with label 𝑦
� 𝑁$%F, S,%& = # of data points with label 𝑦 and

feature 𝑋Q = 1
� Common choice: 𝛼 = 2, 𝛽 = 2

Building a
Probabilistic
Classifier

� Define a decision rule
� Given a test data point 𝒙9, predict its label a𝑦 using the

posterior distribution 𝑃 𝑌 = 𝑦 𝑋 = 𝒙′

� Common choice: a𝑦 = argmax
F

𝑃 𝑌 = 𝑦 𝑋 = 𝒙′

� Model the posterior distribution
� Option 1 - Model 𝑃 𝑌 𝑋 directly as some function of 𝑋

(tomorrow today!)

� Option 2 - Use Bayes’ rule (today! yesterday):

𝑃 𝑌 𝑋 =
𝑃 𝑋 𝑌 𝑃 𝑌

𝑃 𝑋
∝ 𝑃 𝑋 𝑌 𝑃 𝑌

Henry Chai - 7/18/22 29

Modelling the
Posterior

Henry Chai - 7/18/22 30

� Suppose we have binary labels 𝑦 ∈ {0,1} and 𝐷-dimensional
inputs 𝒙 = 1, 𝑥&, … , 𝑥R ' ∈ ℝRX&

� Assume

𝑃 𝑌 = 1 𝒙 = logit 𝒘'𝒙 =
1

1 + exp −𝒘'𝒙

𝑃 𝑌 = 1 𝑋 = logit 𝒘'𝒙 =
exp 𝒘'𝒙

exp 𝒘'𝒙 + 1

� This implies two useful facts:

1. 𝑃 𝑌 = 0 𝒙 = 1 − 𝑃 𝑌 = 1 𝒙 =
1

exp 𝒘'𝒙 + 1

2.
𝑃 𝑌 = 1 𝒙
𝑃(𝑌 = 0|𝒙)

= exp 𝒘'𝒙 → log
𝑃 𝑌 = 1 𝒙
𝑃(𝑌 = 0|𝒙)

= 𝒘'𝒙

� Differentiable everywhere
� logit: ℝ → 0, 1
� The decision boundary is linear in 𝒙!

31Henry Chai - 7/18/22 Source: https://en.wikipedia.org/wiki/Logistic_function#/media/File:Logistic-curve.svg

Why use the
Logistic
Function?

lo
gi
t
𝒘
'
𝒙

𝒘'𝒙

https://en.wikipedia.org/wiki/Logistic_function

Logistic
Regression
Decision
Boundary

32Henry Chai - 7/18/22 Figure courtesy of Matt Gormley

Logistic
Regression
Decision
Boundary

33Henry Chai - 7/18/22 Figure courtesy of Matt Gormley

� Define a model and model parameters
� Assume independent, identically distributed (iid) data
� Assume 𝑃 𝑌 = 1 𝑋 = logit 𝒘'𝒙
� Parameters: 𝒘 = 𝑤D, 𝑤&, … , 𝑤R

� Write down an objective function
� Maximize the conditional log-likelihood
� Minimize the negative conditional log-likelihood

� Optimize the objective w.r.t. the model parameters
� ???

Recipe
for
Logistic
Regression

Henry Chai - 7/18/22 34

Recall:
Gradient
Descent

35Henry Chai - 7/18/22

� An iterative method for minimizing functions

� Requires the gradient to exist everywhere

� Good news: the negative conditional log-likelihood is convex!
(See HW/recitation)

Gradient
Descent

� Input: 𝒟 = 𝒙 # , 𝑦 #
#%&
@

, 𝜂 D

1. Initialize 𝒘 D to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

∇𝒘ℓ𝒟 𝒘 ! = 0
#%&

@

𝒙 # 𝑃 𝑌 = 1 𝒙 # , 𝒘(!) − 𝑦 #

b. Update 𝒘: 𝒘 !X& ← 𝒘 ! − 𝜂 D ∇𝒘ℓ𝒟 𝒘 !

c. Increment 𝑡: 𝑡 ← 𝑡 + 1

� Output: 𝒘 !

36

𝑂(𝑁𝐷)

Henry Chai - 7/18/22

Stochastic
Gradient
Descent

37Henry Chai - 7/18/22

� Input: 𝒟 = 𝒙 # , 𝑦 #
#%&
@

, 𝜂[\R
D

1. Initialize 𝒘 D to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample a data point from 𝒟, 𝒙 # , 𝑦 #

b. Compute the pointwise gradient:

∇𝒘ℓ𝒙 & ,F & 𝒘 ! = 𝒙 # 𝑃 𝑌 = 1 𝒙 # , 𝒘 ! − 𝑦 #

c. Update 𝒘: 𝒘 !X& ← 𝒘 ! − 𝜂[\R
D ∇𝒘ℓ𝒙 & ,F & 𝒘 !

d. Increment 𝑡: 𝑡 ← 𝑡 + 1

� Output: 𝒘 !

Stochastic
Gradient
Descent vs.
Gradient
Descent

38Henry Chai - 7/18/22

Gradient Descent Stochastic Gradient Descent

Mini-batch
Stochastic
Gradient
Descent

39Henry Chai - 7/18/22

� Input: 𝒟 = 𝒙 # , 𝑦 #
#%&
@

, 𝜂E<
D , 𝐵

1. Initialize 𝒘 D to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 ^ , 𝑦 ^
^%&
<

b. Compute the gradient w.r.t. the sampled batch:

∇𝒘ℓ 𝒙 . ,F .
.()
$ 𝒘 ! = 0

^%&

<

𝒙 ^ 𝑃 𝑌 = 1 𝒙 ^ , 𝒘 − 𝑦 ^

c. Update 𝒘: 𝒘 !X& ← 𝒘 ! − 𝜂E<
D ∇𝒘ℓ 𝒙 . ,F .

.()
$ 𝒘 !

d. Increment 𝑡: 𝑡 ← 𝑡 + 1

� Output: 𝒘 !

Logistic
Regression vs.
Naïve Bayes

� Naïve Bayes is a generative model

� By modelling 𝑃 𝑋 𝑌 and 𝑃 𝑌 , we can generate
new data points:

1. Sample a label 𝑦 ∼ 𝑃 𝑌

2. Sample features 𝑥Q ∼ 𝑃 𝑋Q 𝑌 = 𝑦

� Logistic regression is a discriminative model

� By modelling 𝑃 𝑌 𝑋 , we can only discriminate (or
distinguish) between classes.

Henry Chai - 7/18/22 40

Logistic
Regression vs.
Naïve Bayes
(Ng and
Jordan, 2001)

� Naïve Bayes and logistic regression form a generative-

discriminative model pair

� Recall that under certain conditions, the Gaussian Naïve
Bayes (GNB) decision boundary is linear

� If the Naïve Bayes assumption holds, then in the limit of
infinite training data, GNB and logistic regression learn
the same (linear) decision boundary!

� In general, Naïve Bayes performs well when data is

scarce but logistic regression has lower asymptotic error.

Henry Chai - 7/18/22 41Source: http://robotics.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf

http://robotics.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf

Linear
Models

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-

-

-

-

-

-

-

-- -

--

Henry Chai - 7/18/22 42

Linear
Models

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-

-

-

-

-

-

-

-- -

--

Henry Chai - 7/18/22 43

Linear
Models

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-

-

-

-

-

-- -

--

-

-

Henry Chai - 7/18/22 44

Linear
Models?

Henry Chai - 7/18/22

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-

-

-

--
-

-

--

-

-

-

-

-

-

-

-

-

45

Linear
Models?

Henry Chai - 7/18/22

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-

-

-

--
-

-

--

-

-

-

-

-

-

-

-

-

46

Nonlinear
Models

Henry Chai - 7/18/22

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-

-

-

--
-

-

--

-

-

-

-

-

-

-

-

-

47

Linear
Models

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-

-

-

-

-

-- -

--

-

-

Henry Chai - 7/18/22 48

Nonlinear
Models?

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-

-

-

-

-

-- -

--

-

-

Henry Chai - 7/18/22 49

Feature
Transforms:
Tradeoffs

Low-Dimensional
Input Space

High-Dimensional
Input Space

Training Error High Low
Generalization Good Bad

Overfitting

Henry Chai - 7/18/22 50

Regularization

Henry Chai - 7/18/22

� Constrain models to prevent them from overfitting

� Learning algorithms are optimization problems and
regularization imposes constraints on the optimization

51

0,0

�𝝎E:8∇𝝎ℓ𝒟 �𝝎E:8

∇𝝎ℓ𝒟 �𝝎E:8 ∝ −2�𝝎E:8

∇𝝎ℓ𝒟 �𝝎E:8 = −2𝜆` �𝝎E:8

∇𝝎ℓ𝒟 �𝝎E:8 + 2𝜆` �𝝎E:8 = 0

∇𝝎 ℓ𝒟 �𝝎E:8 + 𝜆` �𝝎E:8
'�𝝎E:8 = 0

Henry Chai - 7/18/22

Soft
Constraints

subject to 𝝎'𝝎 ≤ 𝐶

minimize ℓ𝒟 𝝎 = Χ𝝎 − 𝒚 ' Χ𝝎 − 𝒚

𝝎'𝝎 = 𝐶

�𝝎

ℓ𝒟 𝝎

52

minimize ℓ𝒟:a\ 𝝎 = ℓ𝒟 𝝎 + 𝜆`𝝎'𝝎

⇕

Henry Chai - 7/18/22

Soft
Constraints:
Solving for %𝝎!"#

subject to 𝝎'𝝎 ≤ 𝐶

minimize ℓ𝒟 𝝎 = Χ𝝎 − 𝒚 ' Χ𝝎 − 𝒚

53

∇𝝎ℓ𝒟:a\ 𝝎 = 2 Χ'Χ𝝎 − Χ'𝒚 + 𝜆`𝝎

2 Χ'Χ�𝝎E:8 − Χ'𝒚 + 𝜆` �𝝎E:8 = 0

Χ'Χ + 𝜆`𝐼RX& �𝝎E:8 = Χ'𝒚

�𝝎E:8 = Χ'Χ + 𝜆`𝐼RX& (&Χ'𝒚

Henry Chai - 7/18/22

Ridge
Regression

Adding this positive (𝜆` ≥ 0) diagonal

matrix can help if Χ'Χ is not invertible!

minimize ℓ𝒟:a\ 𝝎 = ℓ𝒟 𝝎 + 𝜆`𝝎'𝝎

54

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

�

A
ve
ra
ge

T
ru
e
E
rr
or

ov
er

10
00

T
ri
al
s

Henry Chai - 7/18/22

Setting 𝜆

55

Other Regularizers

Henry Chai - 7/18/22

0,0

Ridge or 𝐿2 Lasso or 𝐿1 𝐿0

�𝝎

ℓ𝒟 𝝎

0,0

�𝝎

ℓ𝒟 𝝎

0,0

�𝝎

ℓ𝒟 𝝎

56

M(C)LE for
Linear
Regression

Henry Chai - 7/18/22

�𝝎 = argmax
𝝎

log 𝑃 𝒚 𝑋,𝝎

= argmax
𝝎

log exp −
1
2𝜎V 𝑋𝝎 − 𝒚 ' 𝑋𝝎 − 𝒚

= argmin
𝝎

𝑋𝝎 − 𝒚 ' 𝑋𝝎 − 𝒚 = 𝑋'𝑋 (&𝑋'𝒚

� If we assume a linear model with additive Gaussian noise

𝑦 = 𝝎'𝒙 + 𝜖 where 𝜖 ~ 𝑁 0, 𝜎V → 𝑦 ∼ 𝑁 𝝎'𝒙, 𝜎V

� Then given 𝛸 =
1 𝒙 &

1 𝒙 V

⋮ ⋮
1 𝒙 @

and 𝒚 =

𝑦 &

𝑦 V

⋮
𝑦 @

the MLE of 𝝎 is

57

MAP for
Linear
Regression

Henry Chai - 7/18/22

� If we assume a linear model with additive Gaussian noise

𝑦 = 𝝎'𝒙 + 𝜖 where 𝜖 ~ 𝑁 0, 𝜎V → 𝑦 ∼ 𝑁 𝝎'𝒙, 𝜎V

and independent Gaussian priors on all the weights…

𝜔Q ~ 𝑁 0,
𝜎V

𝜆
→ 𝑝 𝝎 ∝ exp −

1
2𝜎V

𝜆𝝎'𝝎

� … then, the MAP of 𝝎 is the ridge regression solution!

�𝝎E:8 = argmin
𝝎

𝑋𝝎 − 𝒚 ' 𝑋𝝎 − 𝒚 + 𝜆𝝎'𝝎

�𝝎E:8 = 𝑋𝑻𝑋 + 𝜆𝐼RX&
(&𝑋'𝒚

58

Combining Perceptrons

ℎV

ℎ&

59Henry Chai - 7/18/22

ℎ&

ℎV

Building a
Network

ℎ! 𝒙

ℎ" 𝒙

−1.5

1

−1

60Henry Chai - 7/18/22

ℎ 𝒙 = 𝑂𝑅 𝐴𝑁𝐷 ℎ& 𝒙 ,¬ℎV 𝒙 ,𝐴𝑁𝐷 ¬ℎ& 𝒙 ,ℎV 𝒙

ℎ! 𝒙

ℎ" 𝒙

1

−1

1

−1.5
1.5

1

1

1

ℎ 𝒙
𝑥!

𝑥'

1

⋮

𝑤!,)

𝑤!,'

𝑤",'

𝑤",!

𝑤",)
𝑤!,!

𝑔 𝑥⃗ = sign sign −sign 𝒘&'𝒙 + sign 𝒘V'𝒙 −1.5 + 1.5
ℎ 𝒙 = sign sign sign 𝒘&'𝒙 − sign 𝒘V'𝒙 −1.5 +

Multi-Layer
Perceptron
(MLP)

1

61Henry Chai - 7/18/22

1

ℎ 𝒙
𝑥!

𝑥'

1

⋮ ⋮ ⋮

⋯

𝜃

𝜃

𝜃

62Henry Chai - 7/18/22

𝜃

1

𝜃 ℎ 𝒙
𝑥!

𝑥'

1

⋯

⋮ ⋮ ⋮

1

(Fully-Connected)
Feed Forward
Neural Network

Other
Activation
Functions

Henry Chai - 7/18/22 63Source: https://en.wikipedia.org/wiki/Activation_function

https://en.wikipedia.org/wiki/Activation_function

Practice
Problem:
Neural
Networks

� Consider the following 2-layer neural network:

� Assume we use a linear activation function 𝜃 𝑎 = 𝐾𝑎

for some constant 𝐾. Draw a 1-layer neural network

with the same input and output layers that is equivalent

to the one above

Henry Chai - 7/18/22 64

𝐾𝑎𝑏 + 𝑎

𝐾𝑏"

𝐾𝑐 𝑏 + 𝑑

𝐾𝑐𝑒

Practice
Problem:
Neural
Networks

� Consider the following 2-layer neural network:

� Now assume we use the tanh activation function. Can

you still draw a 1-layer neural network that is equivalent

to the one above? If so, draw it and if not, briefly justify

your answer.

� No, there is no way to recreate the nested tanh

functions using just one weighted sumHenry Chai - 7/18/22 65

𝜃

𝜃

𝜃

66Henry Chai - 7/18/22

𝜃

1

𝜃 ℎ 𝒙
𝑥!

𝑥'

1

⋮ ⋮ ⋮

⋯

Input layer:

𝑙 = 0
Hidden layers:

𝑙 ∈ 1,… , 𝐿 − 1
Output layer:

𝑙 = 𝐿

Layer 𝑙 has dimension 𝐷(q) → Layer 𝑙 has 𝐷(q) + 1 nodes,

counting the bias node

𝐷(&) 𝐷(r(&)𝐷(D)

1

(Fully-Connected)
Feed Forward
Neural Network

𝜃

𝜃

𝜃

67Henry Chai - 7/18/22

𝜃

1

𝜃 ℎ 𝒙
𝑥!

𝑥'

1

⋮ ⋮ ⋮

⋯

𝐷(&) 𝐷(r(&)𝐷(D)

The weights between layer 𝑙 − 1 and layer 𝑙 are a matrix:

𝑊 q ∈ ℝR / × R /0) X&

𝑤",t
q is the weight between node 𝑖 in layer 𝑙 − 1 and

node 𝑗 in layer 𝑙

1

(Fully-Connected)
Feed Forward
Neural Network

Henry Chai - 7/18/22 68

𝜃

𝜃

𝜃

⋮

Layer 𝑙 − 1 Layer 𝑙
Every node has an incoming signal and outgoing output

𝑤",D
q

𝑤",&
q

𝑤",R /0)
q

Node 0

Node 1

Node 𝐷 q(&

Node 𝑗

𝑠"
q 𝑜"

q

Signal and
Outputs

1

𝒔 q = 𝑊 q 𝒐 q(& and 𝒐 q = 1, 𝜃 𝒔 q '

Forward
Propagation
for Making
Predictions

� Input: weights 𝑊 & , … ,𝑊 r and a query data point 𝒙

� Initialize 𝒐 D = 1, 𝒙 '

� For 𝑙 = 1,… , 𝐿

� 𝒔 q = 𝑊 q 𝒐 q(&

� 𝒐 q = 1, 𝜃 𝒔 q '

� Output: ℎu) ,…,u 1 𝒙 = 𝒐 r

69Henry Chai - 7/18/22

Gradient
Descent
for Learning

� Input: 𝒟 = 𝒙 # , 𝑦 #
#%&
@

, 𝜂 D

� Initialize all weights 𝑊 D
& , … ,𝑊 D

r to small, random

numbers and set 𝑡 = 0 (???)

� While TERMINATION CRITERION is not satisfied (???)

� For 𝑙 = 1,… , 𝐿

� Compute 𝐺 q = ∇u / ℓ𝒟 𝑊 !
& , … ,𝑊 !

r (???)

� Update 𝑊 q : 𝑊 !X&
q = 𝑊 !

q − 𝜂D𝐺 q

� Increment 𝑡: 𝑡 = 𝑡 + 1

� Output: 𝑊 !
& , … ,𝑊 !

r

70Henry Chai - 7/18/22

Computing
Gradients:
Intuition

� A weight affects the prediction of the network (and

therefore the error) through downstream signals/outputs

� Use the chain rule!

� Any weight going into the same node will affect the
prediction through the same downstream path

� Compute derivatives starting from the last layer and
move “backwards”

� Store computed derivatives and reuse for efficiency

(dynamic programming)

Henry Chai - 7/18/22 71

Back-
propagation

Henry Chai - 7/18/22 72

� Input: 𝑊 & , … ,𝑊 r and 𝒟 = 𝒙 # , 𝑦 #
#%&
@

� Initialize: ℓ𝒟 = 0 and 𝐺 q = 0⊙𝑊 q ∀ 𝑙 = 1,… , 𝐿

� For 𝑛 = 1,… ,𝑁
� Run forward propagation with 𝒙 # to get 𝒐 & , … , 𝒐 r

� (Optional) Increment ℓ𝒟: ℓ𝒟 = ℓ𝒟 + 𝑜 r − 𝑦 # V

� Initialize: 𝜹 r = 2 𝑜&
r − 𝑦 # 1 − 𝑜&

r V

� For 𝑙 = 𝐿 − 1,… , 1

� Compute 𝜹 q = 𝑊 qX& '
𝜹 qX& ⊙ 1− 𝒐 q ⊙𝒐 q

� Increment 𝐺 q : 𝐺 q = 𝐺 q + 𝜹 q 𝒐 q(& '

� Output: 𝐺 & , … , 𝐺 r , the gradients of ℓ𝒟 w.r.t 𝑊 & , … ,𝑊 r

Non-convexity

� Gradient descent is not guaranteed to find a global
minimum on non-convex surfaces

Henry Chai - 7/18/22 73

Stochastic
Gradient
Descent for
Neural
Networks

74Henry Chai - 7/18/22

� Input: 𝒟 = 𝒙 # , 𝑦 #
#%&
@

, 𝜂[\R
D

1. Initialize all weights 𝑊 D
& , … ,𝑊 D

r to small, random

numbers and set 𝑡 = 0𝐺(&
q = 0 ∗𝑊 q ∀ 𝑙 = 1,… , 𝐿

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample a data point from 𝒟, 𝒙 # , 𝑦 #

b. Compute the pointwise gradient,

𝐺 q = ∇u / 𝑒 𝒐 r , 𝑦 # ∀ 𝑙0
^%&

<

c. Update 𝑊 q : 𝑊!X&
q ← 𝑊!

q − 𝜂[\R
D 𝐺 q ∀ 𝑙

d. Increment 𝑡: 𝑡 ← 𝑡 + 1

� Output: 𝑊!
& , … ,𝑊!

r

Mini-batch
Stochastic
Gradient
Descent for
Neural
Networks

75Henry Chai - 7/18/22

� Input: 𝒟 = 𝒙 # , 𝑦 #
#%&
@

, 𝜂E<
D , 𝐵

1. Initialize all weights 𝑊 D
& , … ,𝑊 D

r to small, random

numbers and set 𝑡 = 0 𝐺(&
q = 0 ∗𝑊 q ∀ 𝑙 = 1,… , 𝐿

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 ^ , 𝑦 ^
^%&
<

b. Compute the gradient w.r.t. the sampled batch,

𝐺 q =
1
𝐵
0
^%&

<

∇u / 𝑒 𝒐 r , 𝑦 ^ ∀ 𝑙

c. Update 𝑊 q : 𝑊!X&
q ← 𝑊!

q − 𝜂E<
D 𝐺 q ∀ 𝑙

d. Increment 𝑡: 𝑡 ← 𝑡 + 1

� Output: 𝑊!
& , … ,𝑊!

r

Mini-batch
Stochastic
Gradient
Descent with
Momentum for
Neural
Networks

76Henry Chai - 7/18/22

� Input: 𝒟 = 𝒙 # , 𝑦 #
#%&
@

, 𝜂E<
D , 𝐵, 𝛽

1. Initialize all weights 𝑊 D
& , … ,𝑊 D

r to small, random

numbers and set 𝑡 = 0, 𝐺(&
q = 0⊙𝑊 q ∀ 𝑙 = 1,… , 𝐿

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 ^ , 𝑦 ^
^%&
<

b. Compute the gradient w.r.t. the sampled batch,

𝐺!
q =

1
𝐵0
^%&

<

∇u / 𝑒 𝒐 r , 𝑦 ^ ∀ 𝑙

c. Update 𝑊 q : 𝑊!X&
q ← 𝑊!

q − 𝜂E<
D 𝛽𝐺!(&

q + 𝐺!
q ∀ 𝑙

d. Increment 𝑡: 𝑡 ← 𝑡 + 1

� Output: 𝑊!
& , … ,𝑊!

r

Mini-batch
Stochastic
Gradient
Descent with
Adaptive
Gradients for
Neural
Networks

77Henry Chai - 7/18/22

� Input: 𝒟 = 𝒙 # , 𝑦 #
#%&
@

, 𝜂E<
D , 𝐵, 𝜖

1. Initialize all weights 𝑊 D
& , … ,𝑊 D

r to small, random

numbers and set 𝑡 = 0, 𝑆(&
q = 0⊙𝑊 q ∀ 𝑙 = 1,… , 𝐿

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 ^ , 𝑦 ^
^%&
<

b. Compute the gradient w.r.t. the sampled batch,

𝐺!
q =

1
𝐵
0
^%&

<

∇u / 𝑒 𝒐 r , 𝑦 ^ ∀ 𝑙

c. Update 𝑆 q : 𝑆!
q = 𝑆!(&

q + 𝐺!
q ⊙𝐺!

q ∀ 𝑙

d. Update 𝑊 q : 𝑊!X&
q ← 𝑊!

q − w2$
3

[%
/ Xx

⊙𝐺!
q ∀ 𝑙

e. Increment 𝑡: 𝑡 ← 𝑡 + 1

� Output: 𝑊!
& , … ,𝑊!

r

Random
Restarts

� Run mini-batch gradient descent (with momentum &

adaptive gradients) multiple times, each time starting
with a different, random initialization for the weights.

� Compute the training error of each run at termination

and return the set of weights that achieves the lowest
training error.

Henry Chai - 7/18/22 78

Terminating
Gradient
Descent

� For non-convex surfaces, the gradient’s magnitude is
often not a good metric for proximity to a minimum

Henry Chai - 7/18/22 79

Terminating
Gradient
Descent
“Early”

Henry Chai - 7/18/22 80

� For non-convex surfaces, the gradient’s magnitude is
often not a good metric for proximity to a minimum

� Combine multiple termination criteria e.g. only stop if
enough iterations have passed and the improvement in
error is small

� Alternatively, terminate early by using a validation data
set: if the validation error starts to increase, just stop!

� Early stopping asks like regularization by limiting
how much of the hypothesis set is explored

Neural
Networks and

Regularization

� Minimize ℓ𝒟:a\ 𝑊 & , … ,𝑊 r , 𝜆`

e.g. L2 regularization

Henry Chai - 7/18/22 81

= ℓ𝒟 𝑊 & , … ,𝑊 r + 𝜆`Ω 𝑊 & , … ,𝑊 r

Ω 𝑊 & , … ,𝑊 r =0
q%&

r

0
t%D

Q /0)

0
"%&

Q /

𝑤",t
q V

� Theorem: any function that can be decomposed into

perceptrons can be modelled exactly using a 3-layer MLP

� Any smooth decision boundary can be approximated to an
arbitrary precision using a finite number of perceptrons

� Theorem: Any smooth decision boundary can be
approximated to an arbitrary precision using a 3-layer MLP

MLPs as
Universal
Approximators

Henry Chai - 7/18/22 82

NNs as
Universal
Approximators
(Cybenko, 1989
& Hornik, 1991)

Henry Chai - 7/18/22 83

� Theorem: Any bounded, continuous function can be

approximated to an arbitrary precision using a 2-layer
(1 hidden layer) feed-forward NN if the activation
function, 𝜃, is continuous, bounded and non-constant.

� What about unbounded or discontinuous functions?

� Use more layers!

Source: https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=F21A09B7475DFB9487990020839A39D2?doi=10.1.1.441.7873&rep=rep1&type=pdf
Source: https://doi.org/10.1016/0893-6080%2891%2990009-T

https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=F21A09B7475DFB9487990020839A39D2?doi=10.1.1.441.7873&rep=rep1&type=pdf
https://doi.org/10.1016/0893-6080%2891%2990009-T

NNs as
Universal
Approximators
(Cybenko, 1988)

Henry Chai - 7/18/22 84Source: G. Cybenko. Continuous valued neural networks with two hidden layers are sufficient. Technical report,
Dept. of Computer Science, Tufts University, Medford, MA, 1988.

� Theorem: Any function can be approximated to an

arbitrary precision using a 3-layer (2 hidden layers)
feed-forward NN if the activation function, 𝜃, is
continuous, bounded and non-constant.

Practice
Problem:
Deep Learning

� Consider two models: 1) a deep neural network with

nonlinear activation functions and 2) logistic regression

with some fixed nonlinear feature transformation.

Briefly describe one scenario where you would prefer

model 2) to model 1).

� If you don’t have enough training data, using a deep

neural network to learn the nonlinear features could

result in overfitting so you should prefer using fixed

nonlinear features. Conversely, given enough training

data, learning the nonlinear features could be better.

Henry Chai - 7/18/22 85

Convolutional
Neural
Networks

� Neural networks are frequently applied to inputs with
some inherent spatial structure, e.g., images

� Idea: use the first few layers to identify relevant macro-
features, e.g., edges

� Insight: for spatially-structured inputs, many useful
macro-features are shift or location-invariant, e.g., an
edge in the upper left corner of a picture looks like an
edge in the center

� Strategy: learn a filter for macro-feature detection in a
small window and apply it over the entire image

Henry Chai - 7/18/22 86

Convolutional
Filters

Henry Chai - 7/18/22 87Source: https://en.wikipedia.org/wiki/Kernel_(image_processing)

https://en.wikipedia.org/wiki/Kernel_(image_processing)

� Images can be represented as matrices, where each

element corresponds to a pixel

� A filter is just a small matrix that is convolved with
same-sized sections of the image matrix

Convolutional
Filters

Henry Chai - 7/18/22 88

0 -1 -1 0

-2 -5 -5 -2

2 -2 -1 3

-1 0 -5 0

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

0	|	1	|	0

0	|	1	|	0

1	|	-4	|	1

=
0 1 0

1 -4 1

0 1 0
∗

0 -1 -1 0

-2 -5 -5 -2

2 -2 -1 3

-1 0 -5 0

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

Convolutional
Filters

Henry Chai - 7/18/22 89

� Convolutions can be represented by a feed forward neural

network where:

1. Nodes in the input layer are only connected to
some nodes in the next layer but not all nodes.

2. Many of the weights have the same value.

� Many fewer weights than a fully connected layer!

� Convolution weights are learned using gradient descent/
backpropagation, not prespecified

� What if relevant features exist at the border of our image?

� Add zeros around the image to allow for the filter to be
applied “everywhere” e.g. a padding of 1 with a 3x3 filter
preserves image size and allows every pixel to be the center

0 0 0 0 0 0 0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0 0 0 0 0 0 0

Convolutional
Filters: Padding

Henry Chai - 7/18/22 90

=

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

0 1 0

1 -4 1

0 1 0
∗

0 1 2 2 1 0
1 0 -1 -1 0 1
2 -2 -5 -5 -2 2
1 2 -2 -1 3 1
1 -1 0 -5 0 1
0 2 -1 0 2 0

Henry Chai - 7/18/22 91

0 -1 -1 0

-2 -5 -5 -2

2 -2 -1 3

-1 0 -5 0

0 0

2 3
𝑚𝑎𝑥
pooling

Downsampling:
Pooling

� Combine multiple adjacent nodes into a single node

� Reduces the dimensionality of the input to subsequent
layers and thus, the number of weights to be learned

� Protects the network from (slightly) noisy inputs

� Only apply the convolution to some subset of the image

e.g., every other column and row = a stride of 2

� Reduces the dimensionality of the input to subsequent

layers and thus, the number of weights to be learned

� Many relevant macro-features will tend to span large

portions of the image, so taking strides with the
convolution tends not to miss out on too much

Henry Chai - 7/18/22 92

Downsampling:
Stride

=
0 1

1 -2
∗

-2 -2 1

0 1 1

1 2 0

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

Key Question � Given a hypothesis with zero/low training error, what

can we say about its true error?

Henry Chai - 7/18/22 93

PAC Learning

� PAC = Probably Approximately Correct

� PAC Criterion:

𝑃 𝑅 ℎ − &𝑅 ℎ ≤ 𝜖 ≥ 1 − 𝛿 ∀ ℎ ∈ ℋ

for some 𝜖 (difference between expected and empirical
risk) and 𝛿 (probability of “failure”)

� We want the PAC criterion to be satisfied for
ℋ with small values of ϵ and δ

Henry Chai - 7/18/22 94

Sample
Complexity

� The sample complexity of an algorithm/hypothesis set

is the number of labelled training data points needed to

satisfy the PAC criterion for some 𝛿 and 𝜖

� Four cases

� Realizable vs. Agnostic

� Realizable → 𝑐∗ ∈ ℋ

� Agnostic → 𝑐∗ might or might not be in ℋ

� Finite vs. Infinite

� Finite → ℋ < ∞

� Infinite → ℋ = ∞
Henry Chai - 7/18/22 95

Theorem 1:
Finite,
Realizable Case

Henry Chai - 7/18/22 96

� For a finite hypothesis set ℋ s.t. 𝑐∗ ∈ ℋ and arbitrary
distribution 𝑝∗, if the number of labelled training data
points satisfies

𝑀 ≥
1
𝜖
ln ℋ + ln

1
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ with
&𝑅 ℎ = 0 have 𝑅 ℎ ≤ 𝜖

Statistical
Learning
Theory
Corollary

Henry Chai - 7/18/22 97

� For a finite hypothesis set ℋ s.t. 𝑐∗ ∈ ℋ and arbitrary

distribution 𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀,
all ℎ ∈ ℋ with &𝑅 ℎ = 0 have

𝑅 ℎ ≤
1
𝑀

ln ℋ + ln
1
𝛿

with probability at least 1 − 𝛿.

Theorem 2:
Finite,
Agnostic Case

Henry Chai - 7/18/22 98

� For a finite hypothesis set ℋ and arbitrary distribution
𝑝∗, if the number of labelled training data points satisfies

𝑀 ≥
1
2𝜖V ln ℋ + ln

2
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ satisfy

𝑅 ℎ − &𝑅 ℎ ≤ 𝜖

� Bound is inversely quadratic in 𝜖, e.g., halving 𝜖 means

we need four times as many labelled training data points

� Solving for 𝜖 gives…

Statistical
Learning
Theory
Corollary

Henry Chai - 7/18/22 99

� For a finite hypothesis set ℋ and arbitrary distribution

𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, all ℎ ∈ ℋ
have

𝑅 ℎ ≤ &𝑅 ℎ +
1
2𝑀

ln ℋ + ln
2
𝛿

with probability at least 1 − 𝛿.

Labellings

� Given some finite set of data points 𝑆 = 𝒙 & , … , 𝒙 E

and some hypothesis ℎ ∈ ℋ, applying ℎ to each point in

𝑆 results in a labelling

� ℎ 𝒙 & , … , ℎ 𝒙 E is a vector of 𝑀 +1’s and -1’s

� Given 𝑆 = 𝒙 & , … , 𝒙 E , each hypothesis in ℋ
induces a labelling but not necessarily a unique labelling

� The set of labellings induced by ℋon 𝑆 is

ℋ 𝑆 = ℎ 𝒙 & , … , ℎ 𝒙 E ℎ ∈ ℋ

100Henry Chai - 7/18/22

� The growth function of ℋ is the maximum number of

distinct labellings ℋ can induce on any set of 𝑀 data points:

𝑔ℋ 𝑀 = max
[∶ [%E

ℋ 𝑆

� 𝑔ℋ 𝑀 ≤ 2E ∀ℋ and 𝑀

�ℋ shatters 𝑆 if ℋ 𝑆 = 2E

� If ∃ 𝑆 s.t. 𝑆 = 𝑀 and ℋ shatters 𝑆, then 𝑔ℋ 𝑀 = 2E

Growth
Function

101Henry Chai - 7/18/22

Growth
Function:
Example

� 𝒙 � ∈ ℝV andℋ = all 2-dimensional linear separators

� 𝑔ℋ 3 = 8 = 2�

102

ℋ 𝑆& = 6 ℋ 𝑆V = 8

Henry Chai - 7/18/22

Growth
Function:
Example

� 𝒙 � ∈ ℝV andℋ = all 2-dimensional linear separators

� 𝑔ℋ 4 = 14 < 2�

103

ℋ 𝑆& = 14 ℋ 𝑆V = 14

Henry Chai - 7/18/22

Theorem 3:
Vapnik-
Chervonenkis
(VC)-Bound

104

� Infinite, realizable case: for any hypothesis set ℋ and

distribution 𝑝∗, if the number of labelled training data
points satisfies

𝑀 ≥
2
𝜖
logV 2𝑔ℋ 2𝑀 + logV

1
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ with

𝑅 ℎ ≥ 𝜖 have &𝑅 ℎ > 0

�𝑀 appears on both sides of the inequality…

Henry Chai - 7/18/22

Theorem 3:
Vapnik-
Chervonenkis
(VC)-Dimension

� 𝑑�` ℋ = the largest value of 𝑀 s.t. 𝑔ℋ 𝑀 = 2E, i.e., the
greatest number of data points that can be shattered by ℋ

� If ℋ can shatter arbitrarily large finite sets, then
𝑑�` ℋ = ∞

� 𝑔ℋ 𝑀 = 𝑂 𝑀Q45 ℋ (Sauer-Shelah lemma)

� To prove that 𝑑�` ℋ = 𝐶, you need to show

1. ∃ some set of 𝐶 data points that ℋ can shatter and

2. ∄ a set of 𝐶 + 1 data points that ℋ can shatter

105Henry Chai - 7/18/22

� 𝑥 � ∈ ℝ and ℋ = all 1-dimensional positive intervals

VC-Dimension:
Example

106

𝑎 𝑏

Henry Chai - 7/18/22

� 𝑥 � ∈ ℝ and ℋ = all 1-dimensional positive intervals

� What are 𝑑�` ℋ and 𝑔ℋ 𝑚 ?

VC-Dimension:
Example

107

𝑎 𝑏

𝑥 ! 𝑥 #𝑥 "

Henry Chai - 7/18/22

� 𝑥 � ∈ ℝ and ℋ = all 1-dimensional positive intervals

� 𝑑�` ℋ = 2 and 𝑔ℋ 𝑚 = �X&
V + 1 = 𝑂 𝑚V

VC-Dimension:
Example

108

𝑎 𝑏

…
𝑥 ! 𝑥 " 𝑥 # 𝑥 $ 𝑥 % 𝑥 & 𝑥 *+! 𝑥 *

Henry Chai - 7/18/22

Theorem 3:
Vapnik-
Chervonenkis
(VC)-Bound

109

� Infinite, realizable case: for any hypothesis set ℋ and
distribution 𝑝∗, if the number of labelled training data
points satisfies

𝑀 = 𝑂
1
𝜖
𝑑�` ℋ log

1
𝜖
+ log

1
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ with
&𝑅 ℎ = 0 have 𝑅 ℎ ≤ 𝜖

Henry Chai - 7/18/22

Statistical
Learning
Theory
Corollary

110

� Infinite, realizable case: for any hypothesis set ℋ and

distribution 𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀,
all ℎ ∈ ℋ with &𝑅 ℎ = 0 have

𝑅 ℎ ≤ 𝑂
1
𝑀

𝑑�` ℋ log
𝑀

𝑑�` ℋ
+ log

1
𝛿

with probability at least 1 − 𝛿.

Henry Chai - 7/18/22

Theorem 4:
Vapnik-
Chervonenkis
(VC)-Bound

111

� Infinite, agnostic case: for any hypothesis set ℋ and

distribution 𝑝∗, if the number of labelled training data
points satisfies

𝑀 = 𝑂
1
𝜖V

𝑑�` ℋ + log
1
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ have

𝑅 ℎ − &𝑅 ℎ ≤ 𝜖

Henry Chai - 7/18/22

Statistical
Learning
Theory
Corollary

112

� Infinite, agnostic case: for any hypothesis set ℋ and
distribution 𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀,
all ℎ ∈ ℋ have

𝑅 ℎ ≤ &𝑅 ℎ + 𝑂
1
𝑀

𝑑�` ℋ + log
1
𝛿

with probability at least 1 − 𝛿.

Henry Chai - 7/18/22

113

Approximation
Generalization
Tradeoff

Agnostic case: for any hypothesis class ℋ and

distribution 𝐷, given a training data set 𝑆 𝑆 = 𝑚, all ℎ ∈
ℋ have

𝑅 ℎ ≤ &𝑅 ℎ + 𝑂
1
𝑀

𝑑�` ℋ + log
1
𝛿

with probability at least 1 − 𝛿.

Increases as
𝑑�` ℋ increases

Decreases as
𝑑�` ℋ increases

Henry Chai - 7/18/22

