10-301/601: Introduction
to Machine Learning
Lecture 20 — Exam 2
Review
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* Announcements:

Front Matter * Exam 2 on 7/19 (tomorrow!)
* Please show up to PH 100 (in-person) at 1:50

PM as the exam will begin promptly at 2 PM
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1. Marginal Computation: P(Yt = s; |x(")) (or P(Y|x(”)))

P(x®y)p(y) Ii=1P (xf:") ‘Yt) P(Ye|Ye-1)

(MY —
P(Y[xt™) P(x™) P(xM)
3 |Inference 2. Viterbi Decoding: ¥ = argmax P(Y|x(n))
Y
Questions for
HMMs 3. Evaluation: P(x("))
P(x™) = D P(x™]Y)P(Y)

Y € {all possible sequences}
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1. Marginal Computation: P(Y; = S; |x(")) (or P(Y|x(”)))

oy PP T P (x|7e) PCOEIYe)
P(Y|x™) = P(x™) - P(x™)

3 4 Inference 2. Viterbi Decoding: ¥ = argmax P(Y|x™)
Y

Questions for
HMMs

3. Evaluation: P(x("))

P(x™) = P(x™|Y)P(Y)
Y € {all possible sequences}
4. Minimum Bayes Risk (MBR) Decoding:
Y = argmin IEY’ (|x(n))['£(Y, Y )]

Y ~PaB
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Minimum

Bayes Risk
Decoding

Henry Chai - 7/18/22

* The learned parameters A and B induce a probability

distribution or belief over sequences of states PA’B(Y|x(”))

* Given a loss function, £(Y,Y"), find the sequence of states

that minimizes our expected loss under our current belief

Y = argmin E (] x(n))[f (Y,Y")]

Y ~PaB

= argmin Z Psp (Y’|x(")) (Y, Y"
Y —



Minimum

Bayes Risk
Decoding:
Example

Henry Chai - 7/18/22

“If £(Y,Y") is the 0-1 loss
LY,Y)=1—-1(Y =Y")

Y = argmin z PA,B(Yllx(n)) (1 — ﬂ(y = Y’))
Y v

= argmin — z PA,B(Y’|x(n)) 1(Y =Y
Y —

= argmax Py p (Y|x(”))
Y



Minimum

Bayes Risk
Decoding:
Example

Henry Chai - 7/18/22

“If £(Y,Y") is the Hamming loss

T
oYY = z 1—1(Y, = ¥))
t=1

Y, = argmax Psp (Ytlx(n))
Yi

- Computes the most likely state at each time step using

marginals



\CAELCEENR
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* HMMs are an instantiation of (dynamic) Bayesian

networks where certain parameters are shared

* Parameters can be set by MLE

* Because of their well-behaved graphical structure,

inference in HMMs is tractable via dynamic programming
* Forward-backward algorithm for computing marginal
distributions
* Viterbi algorithm for computing most probable

sequence of states



* Previously:

* (Unknown) Target function, c*: X - Y
* Classifier, h : X = Y
Probabilistic * Goal: find a classifier, h, that best approximates c*

Learning * Now:
* (Unknown) Target distribution, y ~ p*(Y|x)
* Distribution, p(Y|x)

* Goal: find a distribution, p, that best approximates p”*

Henry Chai - 7/18/22



Maximum
Likelihood

Estimation
(MLE)

Henry Chai - 7/18/22

* Insight: every valid probability distribution has a finite

amount of probability mass as it must sum/integrate to 1

* |dea: set the parameter(s) so that the likelihood of the

samples is maximized

* Intuition: assign as much of the (finite) probability mass

to the observed data at the expense of unobserved data

1.50 | —_ =05 ]
- Example: the 125 ) — =1 |
A=1.5
exponential 100
S
= 0.75
. . . DN
distribution
0.50 \
0.25
0.00 . . . .
0 1 2 3 4 5
T
Source: https://en.wikipedia.org/wiki/Exponential distribution#/media/File:Exponential probability density.svg 10



https://en.wikipedia.org/wiki/Exponential_distribution

Exponential

Distribution
MLE

Henry Chai - 7/18/22

* The pdf of the exponential distribution is

f(x|A) = e

* Given N iid samples {x(l) x(N)} the log-likelihood is

@) = Z log f (x™14) = Z log Ae =A™

N
= Z log A + log e~ ™ = logd— A4 z x ™)

n=1

- Taking the partial derivative and setting it equal to O gives

0f N
oL A

n=1

x (M

11



Exponential

Distribution
MLE

Henry Chai - 7/18/22

* The pdf of the exponential distribution is

f(x|A) = e

* Given N iid samples {x(l) x(N)} the log-likelihood is

@) = Z log f (x™14) = Z log Ae =A™

N
= Z log A + log e~ ™ = logd— A4 z x ™)

n=1

- Taking the partial derivative and setting it equal to O gives

N N

N N . N
T—Zx(")=0—>7=2x(")—>/1=
A yl N_ xm

n=1 n=1

12



Practice

Problem:
MLE
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* The pdf of the Gamma distribution is

F@af) = fs

* Given N iid samples {x(l), e x(N)}, what is the MLE of 57?

N N o
?(a,B) = Z logf(x(n)la”g) — z log F'B(‘a) x@—1p—Bx
n=1 n=1

xa—le—ﬁx

N
= Z alog B —logl'(a) + (a — 1) logx™ — gx(™
n=1
y N N
_=Zﬁ_x<n>_ﬂ_ £
J — b L
n=1 n=1

13



* Insight: sometimes we have prior information we want
to incorporate into parameter estimation

* ldea: use Bayes rule to reason about the posterior
distribution over the parameters

Maximum a - MLE finds § = argmax p(D|6)
0

Posteriori - MAP finds @ = argmax p(6|D)
6

= argmax p(D|6)p(6)/p(D)
= argmax p(D|60)p(6)
6

PN

likelihood prior

(MAP)
Estimation

= argmax logp(D|6) + logp(O)
6 — _/
~—

Henry Chai - 7/18/22 log-posterior

14



Coin

Flipping
MAP

Henry Chai - 7/18/22

* A Bernoulli random variable takes value 1 (or heads) with

probability ¢ and value O (or tails) with probability 1 — ¢

* The pmf of the Bernoulli distribution is

p(x|p) = dp*(1— )™

- Assume a Beta prior over the parameter ¢, which has pdf

¢* (1 — )Pt
B(a, )

f(@la,p) =

- where B(a, B) = fol d*1(1 — ¢p)B~1d¢ is a normalizing

constant to ensure the distribution integrates to 1

15



Coin

Flipping
MAP

Henry Chai - 7/18/22

- Given N iid samples {x(1), ..., x(M)}, the partial derivative of

the log-posterior is
¢ (a—1+Ny) (B—-1+Ny)

ap ¢ 1—¢

(a — 1+ N;)
+N0)+((X—1+N1)

—>43MAP=(IB_1

a — 1isa “pseudocount” of the number of 1’s (or heads)

you’ve “observed”

*f — lis a “pseudocount” of the number of 0’s (or tails)

you’ve “observed”

16



Building a
Probabilistic

Classifier

Henry Chai - 7/18/22

* Define a decision rule

- Given a test data point x’, predict its label ¥ using
the posterior distribution P(Y = y|X = x")

- Common choice: ¥ = argmaxP(Y = y|X = x')
y

- Model the posterior distribution

* Option 1 - Model P(Y|X) directly as some function
of X (tomorrow)

* Option 2 - Use Bayes’ rule (today!):

P(X|Y) P(Y)

PO o« P(X|Y) P(Y)

P(Y|X) =

17



2l X2 X3 X4 X5 Xe -~ >
0o o0 o0 0 0 6, »

0
1 0 0 0 0 0 0, O
: 1 1 0 0 0 0 6 9
How hard is ; 66
- 1 0 1 0 0 0 O, Og7
modelling
?
63 126
1 1 1 1 1 11— z 9, 1- z 6,
=1 i=64
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Naive Bayes

Assumption

Henry Chai - 7/18/22

- Assume features are conditionally independent given

the label:

D
Pexiv) = | [ PXaln)
d=1

* Pros:

* Significantly reduces computational complexity

* Also reduces model complexity, combats overfitting

* Cons:

* Is a strong, often illogical assumption

- We’ll see a relaxed version of this later in the

semester when we discuss Bayesian networks

19
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* Define a model and model parameters

- Make the Naive Bayes assumption
* Assume independent, identically distributed (iid) data
- Parameters:m = P(Y = 1),04, = P(Xg = 1|Y = y)

* Write down an objective function

* Maximize the log-likelihood

* Optimize the objective w.r.t. the model parameters

* Solve in closed form: take partial derivatives, set to O
and solve

20



Bernoulli

Naive
Bayes

Henry Chai - 7/18/22

* Binary label

- Y ~ Bernoulli(m)
g = Nr=1/

- 1T
- N = # of data points
* Ny—1 = # of data points with label 1

* Binary features

“XglY =y ~ Bernoulli(@d’y)

A~ Ny=y, x ;=1
Py — 4 d
ed,y _ /NY:y

* Ny—, = # of data points with label y

* Ny—y, x,=1 = # of data points with label y and
feature X; =1

21



Multinomial

Naive
Bayes

Henry Chai - 7/18/22

* Binary label

- Y ~ Bernoulli(m)
g = Nr=1/

Tl
- N = # of data points
* Ny—, = # of data points with label 1

* Discrete features (X4 can take on one of K possible values)

- XglY =y~ Categorical(@d,l,y, e 9d,1<—1,y)

& Ny=y, x ;=k
*Oary = /Ny,

* Ny—, = # of data points with label y

* Ny—y, x,=k = # of data points with label y and
feature X; =k

22



Gaussian

Naive
Bayes

Henry Chai - 7/18/22

* Binary label

Y ~ Bernoulli(r)
- = NY=1/N
- N = # of data points
* Ny—1 = # of data points with label 1

* Real-valued features

. Xdly — y ~ GﬂUSSian(,ud’y; O-c%y)

. =1 (n)
.ud,y _ Ny—y Zn;y(n)zy xd

2
L2 1 (n)
°dy ~ Ny, Ly (m =y (xd Hay )

* Ny_,, = # of data points with label y



Practice

Problem:
Naive Bayes

Henry Chai - 7/18/22

* Given a binary label and D discrete features, each of which can

take on K possible values, how many parameters would a

multinomial naive Bayes model need to learn?

2(D(K—1)) +1

* Given a binary label and D real-valued features, how many

parameters would a Gaussian naive Bayes model need to learn?

2(2D) + 1

24



Visualizing
Gaussian

Naive
Bayes
(2 classes,
equal
variances)

Henry Chai - 7/18/22

Classification with Naive Bayes

Figure courtesy of Matt Gormley

25



Visualizing
Gaussian

Naive
Bayes

(2 classes,
learned
variances)

Henry Chai - 7/18/22

Classification with Naive Bayes

Figure courtesy of Matt Gormley
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Bernoulli

Nalve
Bayes:
Making
Predictions

Henry Chai - 7/18/22

- Given a test data point x’ = [xg, ---»xz’)]T

P(Y=1|x") x P(Y =1D)P(x'|Y =1)

D !/
!/
=T ‘ ‘ 9d,1(1 - ed,l)
d=1

D

P(Y = 0|x') « (1 — ﬁ)l
f d

<
I
)

L0 otherwise

A

=1

0,4(1—84,)

D
Lif# 1_[ 9,4(1 - Ba.) 4>
d=1

1-x,

27



Setting the

EICINEES
via MAP

Henry Chai - 7/18/22

* Binary label

- Y ~ Bernoulli(m)
- ==ty
- N = # of data points
* Ny—1 = # of data points with label 1

* Binary features

cXqlY =y ~ Bernoulli(@d,y) and 6, , ~ Beta(a, )

A _ Ny—oy xy=1t(a-1)
ed,y — /Ny=y+(a—1)+(ﬁ—1)

* Ny—, = # of data points with label y

* Ny—y, x,=1 = # of data points with label y and
feature X; =1

- Common choice:a =2, = 2

28



Building a
Probabilistic

Classifier

Henry Chai - 7/18/22

* Define a decision rule

* Given a test data point x', predict its label ¥ using the
posterior distribution P(Y = y|X = x)

- Common choice: ¥ = argmaxP(Y = y|X = x')
y

- Model the posterior distribution

* Option 1 - Model P(Y|X) directly as some function of X
(termorrew today!)
* Option 2 - Use Bayes’ rule (teday! yesterday):

P(X|Y) P(Y)

PO o« P(X|Y) P(Y)

P(Y|X) =

29



Modelling the

Posterior

Henry Chai - 7/18/22

* Suppose we have binary labels y € {0,1} and D-dimensional

inputs x = [1, x4, ..., xp]" € RP+1

- Assume

1
1+ exp(—wTx)

P(Y = 1]x) = logit(w'x) =

_ exp(w'x)
exp(wTx) +1

* This implies two useful facts:

1
1. P(Y =0 =1—P(Y =1 =
( 1) ( 1) exp(wlx) +1
P(Y =1|x) P(Y =1|x)
2. = ! 1 =w'
Py =0 SPW X mlogp— s = wix

30



Why use the

Logistic
Function?

Henry Chai - 7/18/22

[

N\

R
3 0.5

\—r

=

o0

<

6 -4 -2 0
wlx

* Differentiable everywhere
- logit: R — [0, 1]
* The decision boundary is linear in x!

Source: https://en.wikipedia.org/wiki/Logistic_function#/media/File:Loqgistic-curve.svg

31
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Logistic
Regression

Decision
Boundary

Henry Chai - 7/18/22

Logistic Regression Distribution

Figure courtesy of Matt Gormley

32



Classification with Logistic Regression

_ogistic
Regression
Decision

Boundary

Henry Chai-7/18/22 Figure courtesy of Matt Gormley



Recipe

for
Logistic
Regression
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* Define a model and model parameters

- Assume independent, identically distributed (iid) data
- Assume P(Y = 1|X) = logit(w” x)

* Parameters: w = [wg, Wy, ..., Wp]|

* Write down an objective function

. Masimize t] tionalloalikalihood

* Minimize the negative conditional log-likelihood

* Optimize the objective w.r.t. the model parameters

© P77

34



* An iterative method for minimizing functions

* Requires the gradient to exist everywhere

Recall:
Gradient

Descent

- Good news: the negative conditional log-likelihood is convex!
(See HW/recitation)

Henry Chai - 7/18/22 35



Gradient

Descent

Henry Chai - 7/18/22

“Input: D = {(x("),y(n))}:ﬂ,n(o)
1. Initialize w® to all zeros and sett = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

N
O(ND){ Vyln (W) = z x®(P(Y = 1|x®, w®) — y@™)
n=1

b. Update w: witD « w® — Oy ¢ (w®)

c. Incrementt:t<t+1

- Qutput; w®

36



* Input: D = {(x("),y(n))}:ﬂmg%)p
1. Initialize w© to all zeros and sett = 0

2. While TERMINATION CRITERION is not satisfied
Stochastic a. Randomly sample a data point from D, (x(”),y(”))

Gradient b. Compute the pointwise gradient:
Descent Vol oo (WD) = xM(P(Y = 1[x™, w®) — y™)
c. Update w: wlE*D  y(® _ ng%)Dvwfx(n)’y(n) (W(t))

d. Incrementt:t < t+1

- Qutput: w)

Henry Chai - 7/18/22 37



Stochastic
Gradient

Descent vs.

Gradient
Descent

Henry Chai - 7/18/22

Gradient Descent

Stochastic Gradient Descent

38



Mini-batch
Stochastic
Gradient

Descent

Henry Chai - 7/18/22

* Input: D = {(x("),y("))}n 1,77,(\,?1);,

B

1. Initialize w® to all zeros and sett = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample B data points from D, {(x(b),y(b))}llj:l

b. Compute the gradient w.r.t. the sampled batch:

B
Tulymnyonye W) = 0 xO(P(r = 1x®,w) = y®)

b=1
c. Update w: w1  y(® _
d. Incrementt:t<t+1

- Qutput:; w®

his

A,

{(x(b) y(b))}b .

(W)

39



Logistic
Regression vs.

Naive Bayes

Henry Chai - 7/18/22

- Naive Bayes is a generative model

By modelling P(X|Y) and P(Y), we can generate

new data points:
1. Sample alabely ~ P(Y)
2. Sample features x; ~ P(X4|Y = y)

* Logistic regression is a discriminative model

- By modelling P(Y|X), we can only discriminate (or

distinguish) between classes.

40



Logistic
Regression vs.

Naive Bayes
(Ng and
Jordan, 2001)

Henry Chai - 7/18/22

* Naive Bayes and logistic regression form a generative-
discriminative model pair

 Recall that under certain conditions, the Gaussian Naive

Bayes (GNB) decision boundary is linear

* If the Naive Bayes assumption holds, then in the limit of
infinite training data, GNB and logistic regression learn

the same (linear) decision boundary!

* In general, Naive Bayes performs well when data is

scarce but logistic regression has lower asymptotic error.

Source: http://robotics.stanford.edu/~ang/papers/nipsoi-discriminativegenerative.pdf

41
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Linear

Models

Henry Chai - 7/18/22
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Linear

Models
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0.9
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0.1
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0.6

0.7

0.8

0.9
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Linear

Models
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0.9

0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
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Linear

Models?
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0.9

0.8

0.7 7

0.6

0.5

0.4

0.3

0.2

0.1

T
0.2

T
0.3

T
0.4

T
0.5

T
0.6

T
0.7

T
0.8

T
0.9

45



Linear

Models?

Henry Chai - 7/18/22

0.9

0.8

0.7 7

0.6

0.5

0.4

0.3

0.2

0.1
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Nonlinear

Models
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0.9

0.8

0.7 5
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0.2
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Linear

Models
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0.9

0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
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Nonlinear

Models?

Henry Chai - 7/18/22
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Feature

Transforms:
Tradeoffs

Henry Chai - 7/18/22

Low-Dimensional

High-Dimensional

Input Space Input Space
Training Error High Low
Generalization Good Bad

Overfitting

50



Regularization

Henry Chai - 7/18/22

* Constrain models to prevent them from overfitting

* Learning algorithms are optimization problems and

regularization imposes constraints on the optimization

51



Soft

Constraints

Henry Chai - 7/18/22

minimize p(w) = (Xw — y)T(Xw —-y)

subjectto w’w < C

Volp(@pap) X =20y 4p
. A V. ?
Vulp(@pyap) = —24c@pap @ 7

Volp(@pap) + 2Ac@pap = 0

Vo (Ep(@prap) + Ac(@prap) @pap) = 0

52



Soft

Constraints:
Solving for @y, 4p

Henry Chai - 7/18/22

minimize p(w) = (Xw — y)T(Xw —-y)

subjectto w’w < C

)

minimize 2V (w) = £p(w) + Acw” w

53



Ridge

Regression

Henry Chai - 7/18/22

minimize 2V (w) = #p(w) + AcwT w
Vo2V (w) = 2(XTXw — XTy + Ao w)
2(X"X@pap — X'y + Ac@pap) = 0
X'X+ Aclps1)@uap =Xy
Opyap = XX+ Aclpi) X"y

'~

Adding this positive (A = 0) diagonal

matrix can help if X' X is not invertible!

54



Setting A
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Average True Error over 1000 Trials

0.019

0.018

0.017

0.016

0.015

0.014

0.013

0.012

0.011

55



tp(w)

Ridge or L2

Other Regularizers

Henry Chai - 7/18/22

tp(w)

Lasso or L1

LO

56



* Then given X = andy =

M(C)LE for

: 1 M.
Linear *

, ® = argmax log P(y|X, w)
Regression w

w

Henry Chai - 7/18/22

_y(l) -
y(2)

Ly (N)_

* If we assume a linear model with additive Gaussian noise

y = w!'x+ ewheree ~N(0,06%) >y ~ Nw'x,0?)

the MLE of w is

1
= argmax log exp (— 702 Ko —y)'"Xw - )’))

= argmin Xw — y)' Xw —y) = XTX)"1xTy
w

57



* If we assume a linear model with additive Gaussian noise
y = w!'x+ ewheree ~N(0,06%) >y ~ Nw'x,0?)

and independent Gaussian priors on all the weights...

2 1
MAP for wg ~ N (0, %) - p(w) < exp (—272 (AwTw))

Linear
Regression

* ... then, the MAP of w is the ridge regression solution!

Dpap = argmin Xw — ) Xw —y) + lo' w
w

= (XTX + Apy1)” XTy

Henry Chai - 7/18/22
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Combining Perceptrons

Henry Chai - 7/18/22 59



h(x) = OR AND(hl(x) —hy(%)), AND(=hy (%), hz(x)))

o KOS e
Network W ‘Y ”

h(x) = sign(sign(sign(w! x) — sign(wlx) — 1.5) +
Henry Chai - 7/18/22 Slgn(_SIgn(WIx) + Slgn(ng) T 15) + 15) 60



Multi-Layer

Perceptron
(MLP)

61



(Fully-Connected)

Feed Forward
Neural Network

62



1

Logistic, sigmoid, or soft step o(z) = =
e —e 7T
Hyperbolic tangent (tanh tanh(z) = ———
yp gent (tanh) (x) e
0 ifz<0
z ifz>0

Ot h e r Rectified linear unit (ReLU)”!

= max{0,2} = 21,9

)

= a®(z)

Gaussian Error Linear Unit (GELU)!!

Activation

Softplus(®! In(1 + ")

Functions

ale —1) ifz<0
T ifz >0
with parameter cx

Exponential linear unit (ELU)!

Leaky rectified linear unit (Leaky ReLU)'"! {Om” ifz <0

T ifz >0
{ ar ife<0
Parametric rectified linear unit (PReLU)!"?! z ifz>0

SHENERS]

with parameter cx

Henry Chai - 7/18/22 Source: https://en.wikipedia.org/wiki/Activation function



https://en.wikipedia.org/wiki/Activation_function

Practice
Problem:

Neural
Networks

Henry Chai - 7/18/22

* Consider the following 2-layer neural network:

- Assume we use a linear activation function 8(a) = Ka
for some constant K. Draw a 1-layer neural network
with the same input and output layers that is equivalent

to the one above

64



Practice
Problem:

Neural
Networks

Henry Chai - 7/18/22

* Consider the following 2-layer neural network:

* Now assume we use the tanh activation function. Can
you still draw a 1-layer neural network that is equivalent

to the one above? If so, draw it and if not, briefly justify

your answer.

* No, there is no way to recreate the nested tanh

functions using just one weighted sum .



(Fully-Connected)

Feed Forward
Neural Network

Henry Chai - 7/18/22

Input layer: Hidden layers: Output layer:
[=0 le{1,..,L—1} =1L

Layer [ has dimension D® — Layer [ has D + 1 nodes,

counting the bias node

66



(Fully-Connected)

Feed Forward
Neural Network

Henry Chai - 7/18/22

The weights between layer [ — 1 and layer [ are a matrix:
w® e rPP x (DUP+1)

w; . is the weight between node i in layer [ — 1 and

node j in layer [

67



Signal and

Outputs

Henry Chai - 7/18/22

Every node has an incoming signal and outgoing output

Layer [ — 1 Layer [

Node DD

sO =w®el-D gpd o® = [1,9(5(1))]T
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Forward
Propagation

for Making
Predictions

Henry Chai - 7/18/22

* Input: weights w W and a query data point x
- Initialize 09 = [1, x]7

*Forl=1,..,L

s = DD

co® = [1,9(5(1))]T

* Output: hW(l) @ (x) = o)
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Gradient
Descent

for Learning

Henry Chai - 7/18/22

* Input: D = {(x<n>,y<">)}:=1,n<0>

(1) (L)

* Initialize all weights W(o) o Wi to small, random

numbers and sett = 0 (?7??)

* While TERMINATION CRITERION is not satisfied (??7?)

*Forl=1,..,L
- Compute GO = V,otp (W(%), e ((tL))) (??7?)
l l

*Incrementt:t=t+1

* Output: W((tl)), e W((tL))
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Computing

Gradients:
Intuition

Henry Chai - 7/18/22

- A weight affects the prediction of the network (and

therefore the error) through downstream signals/outputs

* Use the chain rule!

- Any weight going into the same node will affect the

prediction through the same downstream path
* Compute derivatives starting from the last layer and

move “backwards”

- Store computed derivatives and reuse for efficiency

(dynamic programming)
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Back-

propagation

Henry Chai - 7/18/22

“Input: W, . W and D = {(x(n),y(n))}:ﬂ

* Initialize: ¢p = 0and G =0 O WWvi=1, .., L
‘Forn=1,..,N

- Run forward propagation with x(™ to get oV, ..., o0&
* (Optional) Increment £5: £p = 9 + (O(L) — y("))z
- Initialize: §&) = 2 (ojEL) — y(”)) (1 — (O?))z)
‘Forl=L-1,..,1
- Compute 0 = WD g+ (1-0® ©oW)
- Increment G©: GO = O 4 §WU-D'

- Output: G, ..., GW), the gradients of £ wrt W@, . W@
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Non-convexity

Henry Chai - 7/18/22

- Gradient descent is not guaranteed to find a global
minimum on non-convex surfaces
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Stochastic
Gradient

Descent for
Neural
Networks

Henry Chai - 7/18/22

* Input: D = {(x(n)’y(n))}:=1'77§(();)p

1. Initialize all weights W((Ol)), e ((OL)) to small, random

numbersandsett = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample a data point from D, (x("),y("))

b. Compute the pointwise gradient,

O =v, we(o®,y™) v

c. Update W®: w9 « w® — 50 ¢y
d. Incrementt:t «<t+1

¢ Output: VVt(l), ey ]/Vt(L) 74



Mini-batch
Stochastic
Gradient

Descent for
Neural
Networks

Henry Chai - 7/18/22

* Input: D = {(x("),y(”))}gzl,nl(\%,B

1. Initialize all weights W((Ol)), ) ((OL)) to small, random

numbersandsett = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample B data points from D, {(x(b),y(b))}izl

b. Compute the gradient w.r.t. the sampled batch,
B
1
6O =~ z v, we(0®,y®) v
b=1

c. Update W: Wt(ﬂ — Wt(l) — 771(\/(1)1);G(l) V1
d. Incrementt:t < t+1

¢ Output: Vl/t(l), cee VVt(L) 75



Mini-batch
Stochastic
Gradient

Descent with
Momentum for
Neural
Networks

Henry Chai - 7/18/22

1.

* Output: Wt(l), )

* Input: D = {(x™, y("))}n 1,171(\,?1)3,3,,8

W(l) .. W(L) to small, random

Initialize all weights

(0)’ (0)

numbers and sett = 0, Gfll) =0OWWOvI=1,..L

a. Randomly sample B data points from D, {(x(b) y(b))}

While TERMINATION CRITERION is not satisfied

b. Compute the gradient w.r.t. the sampled batch,

Z v, we(o®,y®) v

O =

. Update W®: W « W —

d. Incrementt:t < t+1

W, (L)

(86 + 6P v

b=1
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* Input: D = {(x(”) y(”))}n 1,171(\,?1)3,3,6

1. Initialize all weights W((o))' . W((o)) to small, random

numbers and sett = 0, SEQ =0OWWOvI=1,..L
2. While TERMINATION CRITERION is not satisfied

Mini-batch
Stochastic
Gradient

a. Randomly sample B data points from D, {(x(b),y(b))}llj:l

: b. Compute the gradient w.r.t. the sampled batch,
Descent with

Ada ptive G(l) Z V (z)e(o(L),y(b)) VI

Gradients for
Neural c. Update SW: s = 5(1_)1 160060 vi
(0)

Networks d. Update WO: W « w® - "EV’DB ocPvi
/S +€

e. Incrementt:t<t+1

Henry Chai - 7/18/22 . Output; ]/Vt(l), e Vl/t(L) 77



* Run mini-batch gradient descent (with momentum &
adaptive gradients) multiple times, each time starting

Random with a different, random initialization for the weights.

Restarts - Compute the training error of each run at termination
and return the set of weights that achieves the lowest

training error.

78
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* For non-convex surfaces, the gradient’s magnitude is
often not a good metric for proximity to a minimum

Terminating
Gradient

Descent

Henry Chai - 7/18/22 79



Terminating
Gradient

Descent
llEa rlyH

Henry Chai - 7/18/22

* For non-convex surfaces, the gradient’s magnitude is
often not a good metric for proximity to a minimum

* Combine multiple termination criteria e.g. only stop if

enough iterations have passed and the improvement in
error is small

- Alternatively, terminate early by using a validation data
set: if the validation error starts to increase, just stop!

* Early stopping asks like regularization by limiting

how much of the hypothesis set is explored
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Neural
Networks and

Regularization

Henry Chai - 7/18/22

* Minimize £5¢ (W(l), L@ Ac)

= (WD, ., wD) + 20w, .,

e.g. L2 regularization
L dd-1 4

AW, .., wh) = Z Z Z <l>

W(L))
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MLPs as
Universal

Approximators

Henry Chai - 7/18/22

* Theorem: any function that can be decomposed into

perceptrons can be modelled exactly using a 3-layer MLP

- Any smooth decision boundary can be approximated to an

arbitrary precision using a finite number of perceptrons

* Theorem: Any smooth decision boundary can be

approximated to an arbitrary precision using a 3-layer MLP
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* Theorem: Any bounded, continuous function can be
NNs as approximated to an arbitrary precision using a 2-layer
Universal (1 hidden layer) feed-forward NN if the activation
Approximators function, 8, is continuous, bounded and non-constant.
(Cybenko, 1989
& Hornik, 1991)

- What about unbounded or discontinuous functions?

* Use more layers!

) Source: https://citeseerx.ist.psu.edu/viewdoc/download:isessionid=F21A09B7475DFB9487990020839A39D2?d0i=10.1.1.441.7873&rep=rep1&type=pdf
Henry Chai - 7/18/22 ) 83
https://doi.org/10.1016/0893-6080%2891%2990009-T



https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=F21A09B7475DFB9487990020839A39D2?doi=10.1.1.441.7873&rep=rep1&type=pdf
https://doi.org/10.1016/0893-6080%2891%2990009-T

NNs as
Universal

Approximators
(Cybenko, 1988)

Henry Chai - 7/18/22

* Theorem: Any function can be approximated to an
arbitrary precision using a 3-layer (2 hidden layers)
feed-forward NN if the activation function, 8, is

continuous, bounded and non-constant.

Source: G. Cybenko. Continuous valued neural networks with two hidden layers are sufficient. Technical report,

Dept. of Computer Science, Tufts University, Medford, MA, 1988.
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Practice

Problem:
Deep Learning

Henry Chai - 7/18/22

- Consider two models: 1) a deep neural network with
nonlinear activation functions and 2) logistic regression
with some fixed nonlinear feature transformation.
Briefly describe one scenario where you would prefer

model 2) to model 1).

* If you don’t have enough training data, using a deep
neural network to learn the nonlinear features could
result in overfitting so you should prefer using fixed
nonlinear features. Conversely, given enough training

data, learning the nonlinear features could be better.
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* Neural networks are frequently applied to inputs with
some inherent spatial structure, e.g., images

* Idea: use the first few layers to identify relevant macro-

: features, e.g., edges
Convolutional S EH8

Neural * Insight: for spatially-structured inputs, many useful
macro-features are shift or location-invariant, e.g., an

Networks

edge in the upper left corner of a picture looks like an
edge in the center

- Strategy: learn a filter for macro-feature detection in a
small window and apply it over the entire image

Henry Chai - 7/18/22 86



Convolutional
Filters

Henry Chai - 7/18/22

Operation

Kernel w

Image result g(x,y)

0 0 O
Identity 0 1 0
0 0 0
1 0 -1
0 0 O
-1 0 1
0 1 0
Edge detection 1 -4 1
0 1 0

Source: https://en.wikipedia.org/wiki/Kernel (image processing)
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Convolutional

Filters

Henry Chai - 7/18/22

* Images can be represented as matrices, where each

element corresponds to a pixel

- A filter is just a small matrix that is convolved with

same-sized sections of the image matrix

0—~e==esag££_\\
oltl21211l6 14T 0l-1]/-1]0
ol214t4(2]0] — 21-5]-5]-2
1131310 2121-1]3

0 1 0
1120310 1lo0|-50
ol1l1]olo0
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* Convolutions can be represented by a feed forward neural

network where:

1. Nodes in the input layer are only connected to

some nodes in the next layer but not all nodes.

2. Many of the weights have the same value.

Convolutional

Filters

- Many fewer weights than a fully connected layer!

* Convolution weights are learned using gradient descent/

Henry Chai - 7/18/22 backpropagation, not prespecified 8



- What if relevant features exist at the border of our image?

- Add zeros around the image to allow for the filter to be
applied “everywhere” e.g. a padding of 1 with a 3x3 filter

preserves image size and allows every pixel to be the center

Convolutional olololo]o]o]o]o

- . - 0Ol10JO]JO0O]10101010O0 0 2 | 2 0

Filters: Padding
o101 1212[11010 - 11011-11-11011
010121414 ([21010 21-2|1-5|-5|-21|2

k 1 -4 1 o

Ol1011|313[11010 1 2 |-21-1 1
olol1|2]3]|1|0]0 0[1]0 1|-1lol-5]0]1
Ool0JO0O]1T11101010O0 O121-110 0
010010 ]0O0]0O0]107]10O0

Henry Chai - 7/18/22 90



- Combine multiple adjacent nodes into a single node

— T —
pooling 2|3

0(-1|-1|0
-2|1-5|-5|-2 max 010
2 |-21-1|3
-1101(-5]|0

Downsampling:

Poolin
5 * Reduces the dimensionality of the input to subsequent

layers and thus, the number of weights to be learned

* Protects the network from (slightly) noisy inputs

Henry Chai - 7/18/22



Downsampling:

Stride

Henry Chai - 7/18/22

* Only apply the convolution to some subset of the image

e.g., every other column and row = a stride of 2

0(0|]0(0]|0|O
112121
0 0 2(-2|1
0[2(414|2|0 0 1
* = (0|1]|1
0[1(3]|3[|1/0 1|-2
1120
0(1(2|3(1|0
0O[{0(1]1]0|O0

* Reduces the dimensionality of the input to subsequent

layers and thus, the number of weights to be learned

* Many relevant macro-features will tend to span large
portions of the image, so taking strides with the

convolution tends not to miss out on too much
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Key Question

Henry Chai - 7/18/22

* Given a hypothesis with zero/low training error, what

can we say about its true error?
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PAC Learning

Henry Chai - 7/18/22

* PAC = Probably Approximately Correct

* PAC Criterion:
P(|R(h) —R(W)| <e)=1-6VheH
for some € (difference between expected and empirical

risk) and 6 (probability of “failure”)

* We want the PAC criterion to be satisfied for

H with small values of € and 6
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Sample

Complexity

Henry Chai - 7/18/22

* The sample complexity of an algorithm/hypothesis set

is the number of labelled training data points needed to

satisfy the PAC criterion for some § and €

* Four cases

* Realizable vs. Agnostic

* Realizable » c* € H

* Agnostic = ¢* might or might not be in H
* Finite vs. Infinite

* Finite » |H| < o

* Infinite = |H| = oo
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Theorem 1:

Finite,
Realizable Case

Henry Chai - 7/18/22

* For a finite hypothesis set H s.t. ¢* € H and arbitrary
distribution p*, if the number of labelled training data
points satisfies

M > %(ln(l?[l) +1n (%))

then with probability at least 1 — 6, all h € H with
R(h) =0haveR(h) <€
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* For a finite hypothesis set H s.t. ¢* € H and arbitrary
distribution p*, given a training data set S s.t. |[S| = M,

Statistical all h € 7 with R(h) = 0 have
Learning 1 1
R(h) < M(ln(l?—[l) +1n (E))

Theory
Corollary with probability at least 1 — 6.

Henry Chai - 7/18/22



Theorem 2:

Finite,
Agnostic Case

Henry Chai - 7/18/22

* For a finite hypothesis set H and arbitrary distribution

p*, if the number of labelled training data points satisfies

M > 2—12(1n(|}[|) + In (;))

then with probability at least 1 — §, all h € H satisfy
IR(h) —R(h)| <€

* Bound is inversely quadratic in €, e.g., halving € means

we need four times as many labelled training data points

* Solving for € gives...
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Statistical
Learning

Theory
Corollary

Henry Chai - 7/18/22

* For a finite hypothesis set H and arbitrary distribution
p*, given a training dataset Ss.t. |S| =M, allh e H

have

R(R) < R(R) + w % (ln(l}[l) +1In (%))

with probability at least 1 — 6.
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Labellings

Henry Chai - 7/18/22

- Given some finite set of data points S = (x(l), ., x(M))

and some hypothesis h € H, applying h to each point in

S results in a labelling

. (h(x(l)), . h(x(M))) is a vector of M +1’s and -1’s

* Given § = (x(l), ...,x(M)), each hypothesis in H

induces a labelling but not necessarily a unique labelling

* The set of labellings induced by Hon S is
3(S) = {(A(xD), .., (x™)) | h € 3¢}
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Growth

Function

Henry Chai - 7/18/22

* The growth function of H is the maximum number of

distinct labellings H can induce on any set of M data points:

guM) = cmax,  |H(S)]

c gy (M) < 2M VY H and M

- I shatters S if |H(S)| = 2M

*1f3 S s.t. |S| = M and H shatters S, then g4r(M) = 2M
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- xM) € R2 and H = all 2-dimensional linear separators

Growth 19(3) =8=27
Function:
Example °
® o o o
o

[H(SDI =6 [H(S2)| =8

Henry Chai - 7/18/22
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- xM) € R2 and H = all 2-dimensional linear separators

Growth (g (H) =14 <21
Function: R
Example 0
® ® o ®
o o

|H (S| =14 |H(S2)| = 14

Henry Chai - 7/18/22
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Theorem 3:
Vapnik-

Chervonenkis
(VC)-Bound

Henry Chai - 7/18/22

* Infinite, realizable case: for any hypothesis set H and

distribution p*, if the number of labelled training data
points satisfies

M > é(logz(zg:}c(ZM ) +log, (%»

then with probability at least 1 — 6, all h € H with
R(h) = e have R(h) > 0

- M appears on both sides of the inequality...

104



Theorem 3:
Vapnik-

Chervonenkis
(VC)-Dimension

Henry Chai - 7/18/22

* dyc(H) = the largest value of M s.t. gor (M) = 2M, i.e., the

greatest number of data points that can be shattered by H

* If H can shatter arbitrarily large finite sets, then
dyc(H) = o

* 9 (M) = O(MdVC(}[)) (Sauer-Shelah lemma)

* To prove that dy-(H) = C, you need to show

1. 3 some set of C data points that H can shatter and
2. Aasetof C + 1data points that H can shatter
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- x(M) € R and H = all 1-dimensional positive intervals

VC-Dimension: « .

Example

Henry Chai - 7/18/22 106



- x(M € R and H = all 1-dimensional positive intervals

VC-Dimension: «

x| @

Example

a b
* What are dy(H) and g¢r(m)?

Henry Chai - 7/18/22 107



- x(M € R and H = all 1-dimensional positive intervals

VC-Dimension: —eo—o—0o—0o—0o—0— 09 >
Example XD x@ B W G| x© oD

a b
* dyc(H) = 2 and gg(m) = (m;d) + 1 = 0(m?)

Henry Chai - 7/18/22 108



Theorem 3:
Vapnik-

Chervonenkis
(VC)-Bound

Henry Chai - 7/18/22

* Infinite, realizable case: for any hypothesis set H and

distribution p*, if the number of labelled training data
points satisfies

w-o(b{acoovs(l) )

then with probability at least 1 — 6, all h € H with
R(h) =0haveR(h) <€
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* Infinite, realizable case: for any hypothesis set H and

distribution p*, given a training data set S s.t. |[S| = M,

Statis’FicaI all h € 7 with R(h) = 0 have

Learning

Theory 1 i .
Theory R0 =0 3 (e o8 g 205) + s (3)

with probability at least 1 — 6.

Henry Chai - 7/18/22 110



* Infinite, agnostic case: for any hypothesis set H and

distribution p*, if the number of labelled training data

Theorem 4: points satisfies

Vapnik-

Chervonenkis M=0 (6—12 (dvc(?f) + log (%)))
(VC)-Bound

then with probability at least 1 — 6, all h € H have
IR(h) —R(h)| <€

Henry Chai - 7/18/22
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Statistical
Learning

Theory
Corollary

Henry Chai - 7/18/22

* Infinite, agnostic case: for any hypothesis set H and

distribution p*, given a training data set S s.t. |S| = M,
all h € H have

R(h) <R(h)+0 . %(dvc(}[) + log (%))

with probability at least 1 — 6.
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Increases as
dyc(H) increases

Approximation " |
Generalization ) 1 1
Tradeoff R(’”f ‘Sﬁh)i() VM(dw@f)“"g(s)))

Decreases as
dyc(H) increases

Henry Chai - 7/18/22 113



