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Front Matter

� Announcements:

� Exam 2 on 7/19 (tomorrow!) 

� Please show up to PH 100 (in-person) at 1:50 
PM as the exam will begin promptly at 2 PM
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1. Marginal Computation: 𝑃 𝑌! = 𝑠" 𝒙 # (or 𝑃 𝑌 𝒙 # )

2. Viterbi Decoding: &𝑌 = argmax
$

𝑃 𝑌 𝒙 #

3. Evaluation: 𝑃 𝒙 #

3 Inference 
Questions for 
HMMs
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2. Viterbi Decoding: &𝑌 = argmax
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3. Evaluation: 𝑃 𝒙 #
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Minimum 
Bayes Risk 
Decoding

� The learned parameters 𝐴 and 𝐵 induce a probability 

distribution or belief over sequences of states 𝑃:,< 𝑌 𝒙 #

� Given a loss function, ℓ 𝑌, 𝑌9 , find the sequence of states 
that minimizes our expected loss under our current belief

&𝑌 = argmin
$

𝔼
$!∼8",$ ⋅ 𝒙 # ℓ 𝑌, 𝑌9

&𝑌 = argmin
$

0
$!
𝑃:,< 𝑌′ 𝒙 # ℓ 𝑌, 𝑌9
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Minimum 
Bayes Risk 
Decoding: 
Example
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� If ℓ 𝑌, 𝑌9 is the 0-1 loss

ℓ 𝑌, 𝑌9 = 1 − 𝟙 𝑌 = 𝑌9

&𝑌 = argmin
$

0
$!
𝑃:,< 𝑌9 𝒙 # 1 − 𝟙 𝑌 = 𝑌9

&𝑌 = argmin
$

−0
$!
𝑃:,< 𝑌9 𝒙 # 𝟙 𝑌 = 𝑌9

&𝑌 = argmax
$

𝑃:,< 𝑌 𝒙 #



Minimum 
Bayes Risk 
Decoding: 
Example
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� If ℓ 𝑌, 𝑌9 is the Hamming loss

ℓ 𝑌, 𝑌9 =0
!%&

'

1 − 𝟙 𝑌! = 𝑌!9

&𝑌! = argmax
$%

𝑃:,< 𝑌! 𝒙 #

� Computes the most likely state at each time step using 
marginals



Key Takeaways

� HMMs are an instantiation of (dynamic) Bayesian 

networks where certain parameters are shared

� Parameters can be set by MLE

� Because of their well-behaved graphical structure, 
inference in HMMs is tractable via dynamic programming

� Forward-backward algorithm for computing marginal 
distributions

� Viterbi algorithm for computing most probable 

sequence of states
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Probabilistic 
Learning

� Previously: 
� (Unknown) Target function, 𝑐∗: 𝒳 → 𝒴

� Classifier, ℎ ∶ 𝒳 → 𝒴

� Goal: find a classifier, ℎ, that best approximates 𝑐∗

� Now:

� (Unknown) Target distribution, 𝑦 ∼ 𝑝∗ 𝑌 𝒙

� Distribution, 𝑝 𝑌 𝒙

� Goal: find a distribution, 𝑝, that best approximates 𝑝∗
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Maximum 
Likelihood 
Estimation 
(MLE)

� Insight: every valid probability distribution has a finite 

amount of probability mass as it must sum/integrate to 1

� Idea: set the parameter(s) so that the likelihood of the 
samples is maximized

� Intuition: assign as much of the (finite) probability mass 
to the observed data at the expense of unobserved data

� Example: the 
exponential 
distribution 

Henry Chai - 7/18/22 10Source: https://en.wikipedia.org/wiki/Exponential_distribution#/media/File:Exponential_probability_density.svg

https://en.wikipedia.org/wiki/Exponential_distribution


� The pdf of the exponential distribution is 
𝑓 𝑥|𝜆 = 𝜆𝑒(>?

� Given 𝑁 iid samples 𝑥 & , … , 𝑥 @ , the log-likelihood is

ℓ 𝜆 = 0
#%&

@

log 𝑓 𝑥 # |𝜆 = 0
#%&

@

log 𝜆𝑒(>? &

ℓ 𝜆 = 0
#%&

@

log 𝜆 + log 𝑒(>? & = 𝑁 log 𝜆 − 𝜆0
#%&

@

𝑥 #

� Taking the partial derivative and setting it equal to 0 gives

𝜕ℓ
𝜕𝜆

=
𝑁
𝜆
−0
#%&

@

𝑥 #

Exponential 
Distribution
MLE
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� The pdf of the exponential distribution is 
𝑓 𝑥|𝜆 = 𝜆𝑒(>?

� Given 𝑁 iid samples 𝑥 & , … , 𝑥 @ , the log-likelihood is

ℓ 𝜆 = 0
#%&

@

log 𝑓 𝑥 # |𝜆 = 0
#%&

@

log 𝜆𝑒(>? &

ℓ 𝜆 = 0
#%&

@

log 𝜆 + log 𝑒(>? & = 𝑁 log 𝜆 − 𝜆0
#%&

@

𝑥 #

� Taking the partial derivative and setting it equal to 0 gives

𝜕ℓ
𝜕𝜆

=
𝑁
Q𝜆
−0
#%&

@

𝑥 # = 0 →
𝑁
Q𝜆
= 0

#%&

@

𝑥 # → Q𝜆 =
𝑁

∑#%&@ 𝑥 #

Exponential 
Distribution
MLE
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� The pdf of the Gamma distribution is 

𝑓 𝑥|𝛼, 𝛽 =
𝛽A

Γ 𝛼
𝑥A(&𝑒(B?

� Given 𝑁 iid samples 𝑥 & , … , 𝑥 @ , what is the MLE of 𝛽?

ℓ 𝛼, 𝛽 = 0
#%&

@

log 𝑓 𝑥 # |𝛼, 𝛽 = 0
#%&

@

log
𝛽A

Γ 𝛼 𝑥A(&𝑒(B?

ℓ 𝛼, 𝛽 = 0
#%&

@

𝛼 log 𝛽 − log Γ 𝛼 + 𝛼 − 1 log 𝑥 # − 𝛽𝑥 #

𝜕ℓ
𝜕𝛽 = 0

#%&

@
𝛼
𝛽 − 𝑥

# =
𝑛𝛼
𝛽 −0

#%&

@

𝑥 #

→
𝑛𝛼
Q𝛽
−0
#%&

@

𝑥 # = 0 → Q𝛽 =
𝑛𝛼

∑#%&@ 𝑥 #

Practice 
Problem: 
MLE
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� Insight: sometimes we have prior information we want 
to incorporate into parameter estimation

� Idea: use Bayes rule to reason about the posterior
distribution over the parameters

� MLE finds &𝜃 = argmax
C

𝑝 𝒟 𝜃

� MAP finds &𝜃 = argmax
C

𝑝 𝜃 𝒟

MAP finds &𝜃 = argmax
C

𝑝 𝒟 𝜃 𝑝 𝜃 /𝑝 𝒟

MAP finds &𝜃 = argmax
C

𝑝 𝒟 𝜃 𝑝 𝜃 /𝑝 𝒟

MAP finds &𝜃. = argmax
C

log 𝑝 𝒟 𝜃 + log 𝑝 𝜃

Maximum a 
Posteriori 
(MAP) 
Estimation

Henry Chai - 7/18/22 14

likelihood prior

log-posterior



Coin 
Flipping
MAP
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� A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙? 1 − 𝜙 &(?

� Assume a Beta prior over the parameter 𝜙, which has pdf

𝑓 𝜙 𝛼, 𝛽 =
𝜙A(& 1 − 𝜙 B(&

Β 𝛼, 𝛽

� where Β 𝛼, 𝛽 = ∫D
&𝜙A(& 1 − 𝜙 B(&𝑑𝜙 is a normalizing 

constant to ensure the distribution integrates to 1



Coin 
Flipping
MAP
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� Given 𝑁 iid samples 𝑥 & , … , 𝑥 @ , the partial derivative of 
the log-posterior is
𝜕ℓ
𝜕𝜙

=
𝛼 − 1 + 𝑁&

𝜙
−

𝛽 − 1 + 𝑁D
1 − 𝜙

⋮

→ &𝜙E:8 =
𝛼 − 1 + 𝑁&

𝛽 − 1 + 𝑁D + 𝛼 − 1 + 𝑁&
�𝛼 − 1 is a “pseudocount” of the number of 1’s (or heads) 

you’ve “observed” 

�𝛽 − 1 is a “pseudocount” of the number of 0’s (or tails) 
you’ve “observed”



Building a 
Probabilistic 
Classifier
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� Define a decision rule
� Given a test data point 𝒙9, predict its label a𝑦 using 

the posterior distribution 𝑃 𝑌 = 𝑦 𝑋 = 𝒙′

� Common choice: a𝑦 = argmax
F

𝑃 𝑌 = 𝑦 𝑋 = 𝒙′

� Model the posterior distribution
� Option 1 - Model 𝑃 𝑌 𝑋 directly as some function 

of 𝑋 (tomorrow) 

� Option 2 - Use Bayes’ rule (today!):

𝑃 𝑌 𝑋 =
𝑃 𝑋 𝑌 𝑃 𝑌

𝑃 𝑋
∝ 𝑃 𝑋 𝑌 𝑃 𝑌



𝑥!
(“hat”)

𝑥"
(“cat”)

𝑥#
(“dog”)

𝑥$
(“fish”)

𝑥%
(“mom”)

𝑥&
(“dad”) 𝑃(𝑋|𝑌 = 1) 𝑃 𝑋 𝑌 = 0

0 0 0 0 0 0 𝜃! 𝜃"#
1 0 0 0 0 0 𝜃$ 𝜃"%
1 1 0 0 0 0 𝜃& 𝜃""
1 0 1 0 0 0 𝜃# 𝜃"'

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 1 1 1 1 1 1 −%
()!

"&

𝜃( 1 − %
()"#

!$"

𝜃(
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How hard is 
modelling 
𝑃 𝑋 𝑌 ?



Naïve Bayes 
Assumption

� Assume features are conditionally independent given 
the label:

𝑃 𝑋 𝑌 =d
Q%&

R

𝑃 𝑋Q 𝑌

� Pros:
� Significantly reduces computational complexity 

� Also reduces model complexity, combats overfitting

� Cons:

� Is a strong, often illogical assumption 

� We’ll see a relaxed version of this later in the 
semester when we discuss Bayesian networks
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Recipe 
for 
Naïve 
Bayes

� Define a model and model parameters
� Make the Naïve Bayes assumption
� Assume independent, identically distributed (iid) data
� Parameters: 𝜋 = 𝑃 𝑌 = 1 , 𝜃Q,F = 𝑃 𝑋Q = 1 𝑌 = 𝑦

� Write down an objective function
� Maximize the log-likelihood

� Optimize the objective w.r.t. the model parameters
� Solve in closed form: take partial derivatives, set to 0 

and solve

Henry Chai - 7/18/22 20



Bernoulli
Naïve 
Bayes

Henry Chai - 7/18/22 21

� Binary label
� 𝑌 ∼ Bernoulli 𝜋
� a𝜋 = i@'()

@
� 𝑁 = # of data points
� 𝑁$%& = # of data points with label 1

� Binary features
� 𝑋Q|𝑌 = 𝑦 ∼ Bernoulli 𝜃Q,F
� &𝜃Q,F = i@'(*, +,()

@'(*

� 𝑁$%F = # of data points with label 𝑦
� 𝑁$%F, S,%& = # of data points with label 𝑦 and 

feature 𝑋Q = 1



Multinomial
Naïve 
Bayes
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� Binary label
� 𝑌 ∼ Bernoulli 𝜋
� a𝜋 = i@'()

@
� 𝑁 = # of data points
� 𝑁$%& = # of data points with label 1

� Discrete features (𝑋Q can take on one of 𝐾 possible values)
� 𝑋Q|𝑌 = 𝑦 ∼ Categorical 𝜃Q,&,F, … , 𝜃Q,T(&,F
� &𝜃Q,U,F = i@'(*, +,(-

@'(*

� 𝑁$%F = # of data points with label 𝑦
� 𝑁$%F, S,%U = # of data points with label 𝑦 and 

feature 𝑋Q = 𝑘



Gaussian
Naïve 
Bayes
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� Binary label
� 𝑌 ∼ Bernoulli 𝜋
� a𝜋 = i@'()

@
� 𝑁 = # of data points
� 𝑁$%& = # of data points with label 1

� Real-valued features 
� 𝑋Q|𝑌 = 𝑦 ∼ Gaussian 𝜇Q,F, 𝜎Q,FV

� 𝜇̂Q,F =
&

@'(*
∑#:F & %F 𝑥Q

#

� ̂𝜎Q,FV = &
@'(*

∑#:F & %F 𝑥Q
# − 𝜇̂Q,F

V

� 𝑁$%F = # of data points with label 𝑦



Practice 
Problem: 
Naïve Bayes

� Given a binary label and 𝐷 discrete features, each of which can 

take on 𝐾 possible values, how many parameters would a 
multinomial naïve Bayes model need to learn?

2 𝐷 𝐾 − 1 + 1

� Given a binary label and 𝐷 real-valued features, how many 
parameters would a Gaussian naïve Bayes model need to learn?

2 2𝐷 + 1
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Visualizing
Gaussian
Naïve 
Bayes
(2 classes, 
equal 
variances)

Figure courtesy of Matt Gormley 25Henry Chai - 7/18/22



Visualizing
Gaussian
Naïve 
Bayes
(2 classes, 
learned 
variances)

Figure courtesy of Matt Gormley 26Henry Chai - 7/18/22



Bernoulli
Naïve 
Bayes:
Making 
Predictions
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� Given a test data point 𝒙9 = 𝑥&9 , … , 𝑥R9 '

𝑃 𝑌 = 1 𝒙9 ∝ 𝑃 𝑌 = 1 𝑃 𝒙9 𝑌 = 1

𝑃 𝑌 = 1 𝑥9 = a𝜋d
Q%&

R

&𝜃Q,&
?,
!
1 − &𝜃Q,&

&(?,
!

𝑃 𝑌 = 0 𝒙9 ∝ 1 − a𝜋 d
Q%&

R

&𝜃Q,D
?,
!
1 − &𝜃Q,D

&(?,
!

a𝑦 =

1 if a𝜋d
Q%&

R

&𝜃Q,&
?,
!
1 − &𝜃Q,&

&(?,
!

>

1 − a𝜋 d
Q%&

R

&𝜃Q,D
?,
!
1 − &𝜃Q,D

&(?,
!

0 otherwise



Setting the 
Parameters
via MAP
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� Binary label
� 𝑌 ∼ Bernoulli 𝜋
� a𝜋 = i@'()

@
� 𝑁 = # of data points
� 𝑁$%& = # of data points with label 1

� Binary features
� 𝑋Q|𝑌 = 𝑦 ∼ Bernoulli 𝜃Q,F and 𝜃Q,F ∼ Beta 𝛼, 𝛽

� &𝜃Q,F = i@'(*, +,()X A(&
@'(*X A(& X B(&

� 𝑁$%F = # of data points with label 𝑦
� 𝑁$%F, S,%& = # of data points with label 𝑦 and 

feature 𝑋Q = 1
� Common choice: 𝛼 = 2, 𝛽 = 2



Building a 
Probabilistic 
Classifier

� Define a decision rule
� Given a test data point 𝒙9, predict its label a𝑦 using the 

posterior distribution 𝑃 𝑌 = 𝑦 𝑋 = 𝒙′

� Common choice: a𝑦 = argmax
F

𝑃 𝑌 = 𝑦 𝑋 = 𝒙′

� Model the posterior distribution
� Option 1 - Model 𝑃 𝑌 𝑋 directly as some function of 𝑋

(tomorrow today!) 

� Option 2 - Use Bayes’ rule (today! yesterday):

𝑃 𝑌 𝑋 =
𝑃 𝑋 𝑌 𝑃 𝑌

𝑃 𝑋
∝ 𝑃 𝑋 𝑌 𝑃 𝑌
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Modelling the 
Posterior

Henry Chai - 7/18/22 30

� Suppose we have binary labels 𝑦 ∈ {0,1} and 𝐷-dimensional 
inputs 𝒙 = 1, 𝑥&, … , 𝑥R ' ∈ ℝRX&

� Assume

𝑃 𝑌 = 1 𝒙 = logit 𝒘'𝒙 =
1

1 + exp −𝒘'𝒙

𝑃 𝑌 = 1 𝑋 = logit 𝒘'𝒙 =
exp 𝒘'𝒙

exp 𝒘'𝒙 + 1

� This implies two useful facts:

1. 𝑃 𝑌 = 0 𝒙 = 1 − 𝑃 𝑌 = 1 𝒙 =
1

exp 𝒘'𝒙 + 1

2.
𝑃 𝑌 = 1 𝒙
𝑃(𝑌 = 0|𝒙)

= exp 𝒘'𝒙 → log
𝑃 𝑌 = 1 𝒙
𝑃(𝑌 = 0|𝒙)

= 𝒘'𝒙



� Differentiable everywhere
� logit: ℝ → 0, 1
� The decision boundary is linear in 𝒙!  

31Henry Chai - 7/18/22 Source: https://en.wikipedia.org/wiki/Logistic_function#/media/File:Logistic-curve.svg

Why use the 
Logistic 
Function?

lo
gi
t
𝒘
'
𝒙

𝒘'𝒙

https://en.wikipedia.org/wiki/Logistic_function


Logistic 
Regression 
Decision 
Boundary

32Henry Chai - 7/18/22 Figure courtesy of Matt Gormley



Logistic 
Regression 
Decision 
Boundary

33Henry Chai - 7/18/22 Figure courtesy of Matt Gormley



� Define a model and model parameters
� Assume independent, identically distributed (iid) data 
� Assume 𝑃 𝑌 = 1 𝑋 = logit 𝒘'𝒙
� Parameters: 𝒘 = 𝑤D, 𝑤&, … , 𝑤R

� Write down an objective function
� Maximize the conditional log-likelihood
� Minimize the negative conditional log-likelihood

� Optimize the objective w.r.t. the model parameters
� ???

Recipe 
for 
Logistic
Regression

Henry Chai - 7/18/22 34



Recall:
Gradient 
Descent

35Henry Chai - 7/18/22

� An iterative method for minimizing functions 

� Requires the gradient to exist everywhere

� Good news: the negative conditional log-likelihood is convex! 
(See HW/recitation)



Gradient 
Descent

� Input: 𝒟 = 𝒙 # , 𝑦 #
#%&
@

, 𝜂 D

1. Initialize 𝒘 D to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

∇𝒘ℓ𝒟 𝒘 ! = 0
#%&

@

𝒙 # 𝑃 𝑌 = 1 𝒙 # , 𝒘(!) − 𝑦 #

b. Update 𝒘: 𝒘 !X& ← 𝒘 ! − 𝜂 D ∇𝒘ℓ𝒟 𝒘 !

c. Increment 𝑡: 𝑡 ← 𝑡 + 1

� Output: 𝒘 !

36

𝑂(𝑁𝐷)

Henry Chai - 7/18/22



Stochastic
Gradient 
Descent

37Henry Chai - 7/18/22

� Input: 𝒟 = 𝒙 # , 𝑦 #
#%&
@

, 𝜂[\R
D

1. Initialize 𝒘 D to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample a data point from 𝒟, 𝒙 # , 𝑦 #

b. Compute the pointwise gradient:

∇𝒘ℓ𝒙 & ,F & 𝒘 ! = 𝒙 # 𝑃 𝑌 = 1 𝒙 # , 𝒘 ! − 𝑦 #

c. Update 𝒘: 𝒘 !X& ← 𝒘 ! − 𝜂[\R
D ∇𝒘ℓ𝒙 & ,F & 𝒘 !

d. Increment 𝑡: 𝑡 ← 𝑡 + 1

� Output: 𝒘 !



Stochastic
Gradient 
Descent vs. 
Gradient 
Descent

38Henry Chai - 7/18/22

Gradient Descent Stochastic Gradient Descent



Mini-batch
Stochastic
Gradient 
Descent

39Henry Chai - 7/18/22

� Input: 𝒟 = 𝒙 # , 𝑦 #
#%&
@

, 𝜂E<
D , 𝐵

1. Initialize 𝒘 D to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 ^ , 𝑦 ^
^%&
<

b. Compute the gradient w.r.t. the sampled batch:

∇𝒘ℓ 𝒙 . ,F .
.()
$ 𝒘 ! = 0

^%&

<

𝒙 ^ 𝑃 𝑌 = 1 𝒙 ^ , 𝒘 − 𝑦 ^

c. Update 𝒘: 𝒘 !X& ← 𝒘 ! − 𝜂E<
D ∇𝒘ℓ 𝒙 . ,F .

.()
$ 𝒘 !

d. Increment 𝑡: 𝑡 ← 𝑡 + 1

� Output: 𝒘 !



Logistic 
Regression vs. 
Naïve Bayes

� Naïve Bayes is a generative model

� By modelling 𝑃 𝑋 𝑌 and 𝑃 𝑌 , we can generate
new data points:

1. Sample a label 𝑦 ∼ 𝑃 𝑌

2. Sample features 𝑥Q ∼ 𝑃 𝑋Q 𝑌 = 𝑦

� Logistic regression is a discriminative model

� By modelling 𝑃 𝑌 𝑋 , we can only discriminate (or 
distinguish) between classes.
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Logistic 
Regression vs. 
Naïve Bayes
(Ng and 
Jordan, 2001)

� Naïve Bayes and logistic regression form a generative-

discriminative model pair

� Recall that under certain conditions, the Gaussian Naïve 
Bayes (GNB) decision boundary is linear 

� If the Naïve Bayes assumption holds, then in the limit of 
infinite training data, GNB and logistic regression learn 
the same (linear) decision boundary!

� In general, Naïve Bayes performs well when data is 

scarce but logistic regression has lower asymptotic error.

Henry Chai - 7/18/22 41Source: http://robotics.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf

http://robotics.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf


Linear 
Models
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Linear 
Models
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Linear 
Models
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Linear 
Models?

Henry Chai - 7/18/22
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Linear 
Models?
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Nonlinear 
Models
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Linear 
Models
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Nonlinear 
Models?
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Feature 
Transforms: 
Tradeoffs

Low-Dimensional 
Input Space

High-Dimensional 
Input Space

Training Error High Low
Generalization Good Bad 

Overfitting
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Regularization

Henry Chai - 7/18/22

� Constrain models to prevent them from overfitting

� Learning algorithms are optimization problems and 
regularization imposes constraints on the optimization

51



0,0

�𝝎E:8∇𝝎ℓ𝒟 �𝝎E:8

∇𝝎ℓ𝒟 �𝝎E:8 ∝ −2�𝝎E:8

∇𝝎ℓ𝒟 �𝝎E:8 = −2𝜆` �𝝎E:8

∇𝝎ℓ𝒟 �𝝎E:8 + 2𝜆` �𝝎E:8 = 0

∇𝝎 ℓ𝒟 �𝝎E:8 + 𝜆` �𝝎E:8
'�𝝎E:8 = 0

Henry Chai - 7/18/22

Soft 
Constraints

subject to 𝝎'𝝎 ≤ 𝐶

minimize ℓ𝒟 𝝎 = Χ𝝎 − 𝒚 ' Χ𝝎 − 𝒚

𝝎'𝝎 = 𝐶

�𝝎

ℓ𝒟 𝝎

52



minimize ℓ𝒟:a\ 𝝎 = ℓ𝒟 𝝎 + 𝜆`𝝎'𝝎

⇕

Henry Chai - 7/18/22

Soft 
Constraints: 
Solving for %𝝎!"#

subject to 𝝎'𝝎 ≤ 𝐶

minimize ℓ𝒟 𝝎 = Χ𝝎 − 𝒚 ' Χ𝝎 − 𝒚

53



∇𝝎ℓ𝒟:a\ 𝝎 = 2 Χ'Χ𝝎 − Χ'𝒚 + 𝜆`𝝎

2 Χ'Χ�𝝎E:8 − Χ'𝒚 + 𝜆` �𝝎E:8 = 0

Χ'Χ + 𝜆`𝐼RX& �𝝎E:8 = Χ'𝒚

�𝝎E:8 = Χ'Χ + 𝜆`𝐼RX& (&Χ'𝒚

Henry Chai - 7/18/22

Ridge 
Regression

Adding this positive (𝜆` ≥ 0) diagonal 

matrix can help if Χ'Χ is not invertible!

minimize ℓ𝒟:a\ 𝝎 = ℓ𝒟 𝝎 + 𝜆`𝝎'𝝎
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Setting 𝜆
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Other Regularizers

Henry Chai - 7/18/22

0,0

Ridge or 𝐿2 Lasso or 𝐿1 𝐿0

�𝝎

ℓ𝒟 𝝎

0,0

�𝝎

ℓ𝒟 𝝎

0,0

�𝝎

ℓ𝒟 𝝎
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M(C)LE for 
Linear 
Regression 

Henry Chai - 7/18/22

�𝝎 = argmax
𝝎

log 𝑃 𝒚 𝑋,𝝎

= argmax
𝝎

log exp −
1
2𝜎V 𝑋𝝎 − 𝒚 ' 𝑋𝝎 − 𝒚

= argmin
𝝎

𝑋𝝎 − 𝒚 ' 𝑋𝝎 − 𝒚 = 𝑋'𝑋 (&𝑋'𝒚

� If we assume a linear model with additive Gaussian noise 

𝑦 = 𝝎'𝒙 + 𝜖 where 𝜖 ~ 𝑁 0, 𝜎V → 𝑦 ∼ 𝑁 𝝎'𝒙, 𝜎V

� Then given 𝛸 =
1 𝒙 &

1 𝒙 V

⋮ ⋮
1 𝒙 @

and 𝒚 =

𝑦 &

𝑦 V

⋮
𝑦 @

the MLE of 𝝎 is
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MAP for 
Linear 
Regression 

Henry Chai - 7/18/22

� If we assume a linear model with additive Gaussian noise 

𝑦 = 𝝎'𝒙 + 𝜖 where 𝜖 ~ 𝑁 0, 𝜎V → 𝑦 ∼ 𝑁 𝝎'𝒙, 𝜎V

and independent Gaussian priors on all the weights…

𝜔Q ~ 𝑁 0,
𝜎V

𝜆
→ 𝑝 𝝎 ∝ exp −

1
2𝜎V

𝜆𝝎'𝝎

� … then, the MAP of 𝝎 is the ridge regression solution!

�𝝎E:8 = argmin
𝝎

𝑋𝝎 − 𝒚 ' 𝑋𝝎 − 𝒚 + 𝜆𝝎'𝝎

�𝝎E:8 = 𝑋𝑻𝑋 + 𝜆𝐼RX&
(&𝑋'𝒚
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Combining Perceptrons

ℎV

ℎ&

59Henry Chai - 7/18/22

ℎ&

ℎV



Building a 
Network

ℎ! 𝒙

ℎ" 𝒙

−1.5

1

−1

60Henry Chai - 7/18/22

ℎ 𝒙 = 𝑂𝑅 𝐴𝑁𝐷 ℎ& 𝒙 ,¬ℎV 𝒙 ,𝐴𝑁𝐷 ¬ℎ& 𝒙 ,ℎV 𝒙

ℎ! 𝒙

ℎ" 𝒙

1

−1

1

−1.5
1.5

1

1

1

ℎ 𝒙
𝑥!

𝑥'

1

⋮

𝑤!,)

𝑤!,'

𝑤",'

𝑤",!

𝑤",)
𝑤!,!

𝑔 𝑥⃗ = sign sign −sign 𝒘&'𝒙 + sign 𝒘V'𝒙 −1.5 + 1.5
ℎ 𝒙 = sign sign sign 𝒘&'𝒙 − sign 𝒘V'𝒙 −1.5 +



Multi-Layer 
Perceptron 
(MLP)

1

61Henry Chai - 7/18/22

1

ℎ 𝒙
𝑥!

𝑥'

1

⋮ ⋮ ⋮

⋯



𝜃

𝜃

𝜃
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𝜃

1

𝜃 ℎ 𝒙
𝑥!

𝑥'

1

⋯

⋮ ⋮ ⋮

1

(Fully-Connected) 
Feed Forward 
Neural Network



Other 
Activation 
Functions

Henry Chai - 7/18/22 63Source: https://en.wikipedia.org/wiki/Activation_function

https://en.wikipedia.org/wiki/Activation_function


Practice 
Problem: 
Neural 
Networks

� Consider the following 2-layer neural network:

� Assume we use a linear activation function 𝜃 𝑎 = 𝐾𝑎

for some constant 𝐾. Draw a 1-layer neural network 

with the same input and output layers that is equivalent 

to the one above

Henry Chai - 7/18/22 64

𝐾𝑎𝑏 + 𝑎

𝐾𝑏"

𝐾𝑐 𝑏 + 𝑑

𝐾𝑐𝑒



Practice 
Problem: 
Neural 
Networks

� Consider the following 2-layer neural network:

� Now assume we use the tanh activation function. Can 

you still draw a 1-layer neural network that is equivalent 

to the one above? If so, draw it and if not, briefly justify 

your answer. 

� No, there is no way to recreate the nested tanh 

functions using just one weighted sumHenry Chai - 7/18/22 65



𝜃

𝜃

𝜃

66Henry Chai - 7/18/22

𝜃

1

𝜃 ℎ 𝒙
𝑥!

𝑥'

1

⋮ ⋮ ⋮

⋯

Input layer: 

𝑙 = 0
Hidden layers: 

𝑙 ∈ 1,… , 𝐿 − 1
Output layer:

𝑙 = 𝐿

Layer 𝑙 has dimension 𝐷(q) → Layer 𝑙 has 𝐷(q) + 1 nodes, 

counting the bias node  

𝐷(&) 𝐷(r(&)𝐷(D)

1

(Fully-Connected) 
Feed Forward 
Neural Network



𝜃

𝜃

𝜃
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𝜃

1

𝜃 ℎ 𝒙
𝑥!

𝑥'

1

⋮ ⋮ ⋮

⋯

𝐷(&) 𝐷(r(&)𝐷(D)

The weights between layer 𝑙 − 1 and layer 𝑙 are a matrix: 

𝑊 q ∈ ℝR / × R /0) X&

𝑤",t
q is the weight between node 𝑖 in layer 𝑙 − 1 and 

node 𝑗 in layer 𝑙

1

(Fully-Connected) 
Feed Forward 
Neural Network
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𝜃

𝜃

𝜃

⋮

Layer 𝑙 − 1 Layer 𝑙
Every node has an incoming signal and outgoing output

𝑤",D
q

𝑤",&
q

𝑤",R /0)
q

Node 0

Node 1

Node 𝐷 q(&

Node 𝑗

𝑠"
q 𝑜"

q

Signal and 
Outputs

1

𝒔 q = 𝑊 q 𝒐 q(& and 𝒐 q = 1, 𝜃 𝒔 q '



Forward 
Propagation 
for Making 
Predictions

� Input: weights 𝑊 & , … ,𝑊 r and a query data point 𝒙

� Initialize 𝒐 D = 1, 𝒙 '

� For 𝑙 = 1,… , 𝐿

� 𝒔 q = 𝑊 q 𝒐 q(&

� 𝒐 q = 1, 𝜃 𝒔 q '

� Output: ℎu ) ,…,u 1 𝒙 = 𝒐 r

69Henry Chai - 7/18/22



Gradient 
Descent 
for Learning

� Input: 𝒟 = 𝒙 # , 𝑦 #
#%&
@

, 𝜂 D

� Initialize all weights 𝑊 D
& , … ,𝑊 D

r to small, random 

numbers and set 𝑡 = 0 (???)

� While TERMINATION CRITERION is not satisfied (???)

� For 𝑙 = 1,… , 𝐿

� Compute 𝐺 q = ∇u / ℓ𝒟 𝑊 !
& , … ,𝑊 !

r (???)

� Update 𝑊 q : 𝑊 !X&
q = 𝑊 !

q − 𝜂D𝐺 q

� Increment 𝑡: 𝑡 = 𝑡 + 1

� Output: 𝑊 !
& , … ,𝑊 !

r

70Henry Chai - 7/18/22



Computing 
Gradients:
Intuition

� A weight affects the prediction of the network (and 

therefore the error) through downstream signals/outputs

� Use the chain rule!

� Any weight going into the same node will affect the 
prediction through the same downstream path

� Compute derivatives starting from the last layer and 
move “backwards”

� Store computed derivatives and reuse for efficiency 

(dynamic programming)

Henry Chai - 7/18/22 71



Back-
propagation

Henry Chai - 7/18/22 72

� Input: 𝑊 & , … ,𝑊 r and 𝒟 = 𝒙 # , 𝑦 #
#%&
@

� Initialize: ℓ𝒟 = 0 and 𝐺 q = 0⊙𝑊 q ∀ 𝑙 = 1,… , 𝐿

� For 𝑛 = 1,… ,𝑁
� Run forward propagation with 𝒙 # to get 𝒐 & , … , 𝒐 r

� (Optional) Increment ℓ𝒟: ℓ𝒟 = ℓ𝒟 + 𝑜 r − 𝑦 # V

� Initialize: 𝜹 r = 2 𝑜&
r − 𝑦 # 1 − 𝑜&

r V

� For 𝑙 = 𝐿 − 1,… , 1

� Compute 𝜹 q = 𝑊 qX& '
𝜹 qX& ⊙ 1− 𝒐 q ⊙𝒐 q

� Increment 𝐺 q : 𝐺 q = 𝐺 q + 𝜹 q 𝒐 q(& '

� Output: 𝐺 & , … , 𝐺 r , the gradients of ℓ𝒟 w.r.t 𝑊 & , … ,𝑊 r



Non-convexity

� Gradient descent is not guaranteed to find a global 
minimum on non-convex surfaces

Henry Chai - 7/18/22 73



Stochastic
Gradient 
Descent for 
Neural 
Networks

74Henry Chai - 7/18/22

� Input: 𝒟 = 𝒙 # , 𝑦 #
#%&
@

, 𝜂[\R
D

1. Initialize all weights 𝑊 D
& , … ,𝑊 D

r to small, random         

numbers and set 𝑡 = 0𝐺(&
q = 0 ∗𝑊 q ∀ 𝑙 = 1,… , 𝐿

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample a data point from 𝒟, 𝒙 # , 𝑦 #

b. Compute the pointwise gradient,

𝐺 q = ∇u / 𝑒 𝒐 r , 𝑦 # ∀ 𝑙0
^%&

<

c. Update 𝑊 q : 𝑊!X&
q ← 𝑊!

q − 𝜂[\R
D 𝐺 q ∀ 𝑙

d. Increment 𝑡: 𝑡 ← 𝑡 + 1

� Output: 𝑊!
& , … ,𝑊!

r



Mini-batch
Stochastic
Gradient 
Descent for 
Neural 
Networks

75Henry Chai - 7/18/22

� Input: 𝒟 = 𝒙 # , 𝑦 #
#%&
@

, 𝜂E<
D , 𝐵

1. Initialize all weights 𝑊 D
& , … ,𝑊 D

r to small, random         

numbers and set 𝑡 = 0 𝐺(&
q = 0 ∗𝑊 q ∀ 𝑙 = 1,… , 𝐿

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 ^ , 𝑦 ^
^%&
<

b. Compute the gradient w.r.t. the sampled batch,

𝐺 q =
1
𝐵
0
^%&

<

∇u / 𝑒 𝒐 r , 𝑦 ^ ∀ 𝑙

c. Update 𝑊 q : 𝑊!X&
q ← 𝑊!

q − 𝜂E<
D 𝐺 q ∀ 𝑙

d. Increment 𝑡: 𝑡 ← 𝑡 + 1

� Output: 𝑊!
& , … ,𝑊!

r



Mini-batch
Stochastic
Gradient 
Descent with 
Momentum for 
Neural 
Networks

76Henry Chai - 7/18/22

� Input: 𝒟 = 𝒙 # , 𝑦 #
#%&
@

, 𝜂E<
D , 𝐵, 𝛽

1. Initialize all weights 𝑊 D
& , … ,𝑊 D

r to small, random         

numbers and set 𝑡 = 0, 𝐺(&
q = 0⊙𝑊 q ∀ 𝑙 = 1,… , 𝐿

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 ^ , 𝑦 ^
^%&
<

b. Compute the gradient w.r.t. the sampled batch,

𝐺!
q =

1
𝐵0
^%&

<

∇u / 𝑒 𝒐 r , 𝑦 ^ ∀ 𝑙

c. Update 𝑊 q : 𝑊!X&
q ← 𝑊!

q − 𝜂E<
D 𝛽𝐺!(&

q + 𝐺!
q ∀ 𝑙

d. Increment 𝑡: 𝑡 ← 𝑡 + 1

� Output: 𝑊!
& , … ,𝑊!

r



Mini-batch
Stochastic
Gradient 
Descent with 
Adaptive 
Gradients for 
Neural 
Networks

77Henry Chai - 7/18/22

� Input: 𝒟 = 𝒙 # , 𝑦 #
#%&
@

, 𝜂E<
D , 𝐵, 𝜖

1. Initialize all weights 𝑊 D
& , … ,𝑊 D

r to small, random         

numbers and set 𝑡 = 0, 𝑆(&
q = 0⊙𝑊 q ∀ 𝑙 = 1,… , 𝐿

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 ^ , 𝑦 ^
^%&
<

b. Compute the gradient w.r.t. the sampled batch,

𝐺!
q =

1
𝐵
0
^%&

<

∇u / 𝑒 𝒐 r , 𝑦 ^ ∀ 𝑙

c. Update 𝑆 q : 𝑆!
q = 𝑆!(&

q + 𝐺!
q ⊙𝐺!

q ∀ 𝑙

d. Update 𝑊 q : 𝑊!X&
q ← 𝑊!

q − w2$
3

[%
/ Xx

⊙𝐺!
q ∀ 𝑙

e. Increment 𝑡: 𝑡 ← 𝑡 + 1

� Output: 𝑊!
& , … ,𝑊!

r



Random 
Restarts

� Run mini-batch gradient descent (with momentum & 

adaptive gradients) multiple times, each time starting 
with a different, random initialization for the weights.

� Compute the training error of each run at termination 

and return the set of weights that achieves the lowest 
training error.
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Terminating 
Gradient 
Descent

� For non-convex surfaces, the gradient’s magnitude is 
often not a good metric for proximity to a minimum

Henry Chai - 7/18/22 79



Terminating 
Gradient 
Descent
“Early”

Henry Chai - 7/18/22 80

� For non-convex surfaces, the gradient’s magnitude is 
often not a good metric for proximity to a minimum

� Combine multiple termination criteria e.g. only stop if 
enough iterations have passed and the improvement in 
error is small

� Alternatively, terminate early by using a validation data 
set: if the validation error starts to increase, just stop!

� Early stopping asks like regularization by limiting 
how much of the hypothesis set is explored



Neural 
Networks and 

Regularization

� Minimize ℓ𝒟:a\ 𝑊 & , … ,𝑊 r , 𝜆`

e.g. L2 regularization

Henry Chai - 7/18/22 81

= ℓ𝒟 𝑊 & , … ,𝑊 r + 𝜆`Ω 𝑊 & , … ,𝑊 r

Ω 𝑊 & , … ,𝑊 r =0
q%&

r

0
t%D
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� Theorem: any function that can be decomposed into 

perceptrons can be modelled exactly using a 3-layer MLP

� Any smooth decision boundary can be approximated to an 
arbitrary precision using a finite number of perceptrons

� Theorem: Any smooth decision boundary can be 
approximated to an arbitrary precision using a 3-layer MLP

MLPs as 
Universal 
Approximators
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NNs as 
Universal 
Approximators
(Cybenko, 1989 
& Hornik, 1991)
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� Theorem: Any bounded, continuous function can be 

approximated to an arbitrary precision using a 2-layer  
(1 hidden layer) feed-forward NN if the activation 
function, 𝜃, is continuous, bounded and non-constant.

� What about unbounded or discontinuous functions?

� Use more layers!

Source: https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=F21A09B7475DFB9487990020839A39D2?doi=10.1.1.441.7873&rep=rep1&type=pdf
Source: https://doi.org/10.1016/0893-6080%2891%2990009-T

https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=F21A09B7475DFB9487990020839A39D2?doi=10.1.1.441.7873&rep=rep1&type=pdf
https://doi.org/10.1016/0893-6080%2891%2990009-T


NNs as 
Universal 
Approximators
(Cybenko, 1988)

Henry Chai - 7/18/22 84Source:  G. Cybenko. Continuous valued neural networks with two hidden layers are sufficient. Technical report, 
Dept. of Computer Science, Tufts University, Medford, MA, 1988.

� Theorem: Any function can be approximated to an 

arbitrary precision using a 3-layer (2 hidden layers) 
feed-forward NN if the activation function, 𝜃, is 
continuous, bounded and non-constant.



Practice 
Problem: 
Deep Learning

� Consider two models: 1) a deep neural network with 

nonlinear activation functions and 2) logistic regression 

with some fixed nonlinear feature transformation. 

Briefly describe one scenario where you would prefer 

model 2) to model 1).

� If you don’t have enough training data, using a deep 

neural network to learn the nonlinear features could 

result in overfitting so you should prefer using fixed 

nonlinear features. Conversely, given enough training 

data, learning the nonlinear features could be better. 
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Convolutional 
Neural 
Networks

� Neural networks are frequently applied to inputs with 
some inherent spatial structure, e.g., images

� Idea: use the first few layers to identify relevant macro-
features, e.g., edges

� Insight: for spatially-structured inputs, many useful 
macro-features are shift or location-invariant, e.g., an 
edge in the upper left corner of a picture looks like an 
edge in the center

� Strategy: learn a filter for macro-feature detection in a 
small window and apply it over the entire image
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Convolutional 
Filters

Henry Chai - 7/18/22 87Source: https://en.wikipedia.org/wiki/Kernel_(image_processing)

https://en.wikipedia.org/wiki/Kernel_(image_processing)


� Images can be represented as matrices, where each 

element corresponds to a pixel

� A filter is just a small matrix that is convolved with 
same-sized sections of the image matrix

Convolutional 
Filters
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Convolutional 
Filters
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� Convolutions can be represented by a feed forward neural 

network where:

1. Nodes in the input layer are only connected to 
some nodes in the next layer but not all nodes.

2. Many of the weights have the same value.

� Many fewer weights than a fully connected layer!

� Convolution weights are learned using gradient descent/ 
backpropagation, not prespecified



� What if relevant features exist at the border of our image?

� Add zeros around the image to allow for the filter to be 
applied “everywhere” e.g. a padding of 1 with a 3x3 filter 
preserves image size and allows every pixel to be the center

0 0 0 0 0 0 0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0 0 0 0 0 0 0

Convolutional 
Filters: Padding
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=
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0 1 3 3 1 0
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1 -4 1

0 1 0
∗

0 1 2 2 1 0
1 0 -1 -1 0 1
2 -2 -5 -5 -2 2
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1 -1 0 -5 0 1
0 2 -1 0 2 0
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0 -1 -1 0

-2 -5 -5 -2

2 -2 -1 3

-1 0 -5 0

0 0

2 3
𝑚𝑎𝑥
pooling

Downsampling: 
Pooling

� Combine multiple adjacent nodes into a single node

� Reduces the dimensionality of the input to subsequent 
layers and thus, the number of weights to be learned

� Protects the network from (slightly) noisy inputs



� Only apply the convolution to some subset of the image 

e.g., every other column and row = a stride of 2

� Reduces the dimensionality of the input to subsequent 

layers and thus, the number of weights to be learned

� Many relevant macro-features will tend to span large 

portions of the image, so taking strides with the 
convolution tends not to miss out on too much
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Downsampling: 
Stride

=
0 1

1 -2
∗

-2 -2 1

0 1 1

1 2 0

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0



Key Question � Given a hypothesis with zero/low training error, what 

can we say about its true error? 
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PAC Learning

� PAC = Probably Approximately Correct

� PAC Criterion:

𝑃 𝑅 ℎ − &𝑅 ℎ ≤ 𝜖 ≥ 1 − 𝛿 ∀ ℎ ∈ ℋ

for some 𝜖 (difference between expected and empirical 
risk) and 𝛿 (probability of “failure”) 

� We want the PAC criterion to be satisfied for 
ℋ with small values of ϵ and δ
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Sample 
Complexity

� The sample complexity of an algorithm/hypothesis set 

is the number of labelled training data points needed to 

satisfy the PAC criterion for some 𝛿 and 𝜖

� Four cases

� Realizable vs. Agnostic

� Realizable → 𝑐∗ ∈ ℋ

� Agnostic → 𝑐∗ might or might not be in ℋ

� Finite vs. Infinite

� Finite → ℋ < ∞

� Infinite → ℋ = ∞
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Theorem 1: 
Finite, 
Realizable Case

Henry Chai - 7/18/22 96

� For a finite hypothesis set ℋ s.t. 𝑐∗ ∈ ℋ and arbitrary 
distribution 𝑝∗, if the number of labelled training data 
points satisfies 

𝑀 ≥
1
𝜖
ln ℋ + ln

1
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ with 
&𝑅 ℎ = 0 have 𝑅 ℎ ≤ 𝜖



Statistical 
Learning 
Theory 
Corollary
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� For a finite hypothesis set ℋ s.t. 𝑐∗ ∈ ℋ and arbitrary 

distribution 𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, 
all ℎ ∈ ℋ with &𝑅 ℎ = 0 have

𝑅 ℎ ≤
1
𝑀

ln ℋ + ln
1
𝛿

with probability at least 1 − 𝛿.



Theorem 2: 
Finite,  
Agnostic Case
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� For a finite hypothesis set ℋ and arbitrary distribution 
𝑝∗, if the number of labelled training data points satisfies 

𝑀 ≥
1
2𝜖V ln ℋ + ln

2
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ satisfy  

𝑅 ℎ − &𝑅 ℎ ≤ 𝜖

� Bound is inversely quadratic in 𝜖, e.g., halving 𝜖 means 

we need four times as many labelled training data points

� Solving for 𝜖 gives…



Statistical 
Learning 
Theory 
Corollary
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� For a finite hypothesis set ℋ and arbitrary distribution 

𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, all ℎ ∈ ℋ
have

𝑅 ℎ ≤ &𝑅 ℎ +
1
2𝑀

ln ℋ + ln
2
𝛿

with probability at least 1 − 𝛿.



Labellings

� Given some finite set of data points 𝑆 = 𝒙 & , … , 𝒙 E

and some hypothesis ℎ ∈ ℋ, applying ℎ to each point in 

𝑆 results in a labelling

� ℎ 𝒙 & , … , ℎ 𝒙 E is a vector of 𝑀 +1’s and -1’s 

� Given 𝑆 = 𝒙 & , … , 𝒙 E , each hypothesis in ℋ
induces a labelling but not necessarily a unique labelling

� The set of labellings induced by ℋon 𝑆 is        

ℋ 𝑆 = ℎ 𝒙 & , … , ℎ 𝒙 E ℎ ∈ ℋ
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� The growth function of ℋ is the maximum number of 

distinct labellings ℋ can induce on any set of 𝑀 data points:

𝑔ℋ 𝑀 = max
[ ∶ [ %E

ℋ 𝑆

� 𝑔ℋ 𝑀 ≤ 2E ∀ℋ and 𝑀

�ℋ shatters 𝑆 if ℋ 𝑆 = 2E

� If ∃ 𝑆 s.t. 𝑆 = 𝑀 and ℋ shatters 𝑆, then 𝑔ℋ 𝑀 = 2E

Growth 
Function
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Growth 
Function: 
Example

� 𝒙 � ∈ ℝV andℋ = all 2-dimensional linear separators  

� 𝑔ℋ 3 = 8 = 2�

102

ℋ 𝑆& = 6 ℋ 𝑆V = 8
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Growth 
Function: 
Example

� 𝒙 � ∈ ℝV andℋ = all 2-dimensional linear separators 

� 𝑔ℋ 4 = 14 < 2�
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ℋ 𝑆& = 14 ℋ 𝑆V = 14
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Theorem 3: 
Vapnik-
Chervonenkis
(VC)-Bound

104

� Infinite, realizable case: for any hypothesis set ℋ and 

distribution 𝑝∗, if the number of labelled training data 
points satisfies 

𝑀 ≥
2
𝜖
logV 2𝑔ℋ 2𝑀 + logV

1
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ with 

𝑅 ℎ ≥ 𝜖 have &𝑅 ℎ > 0

�𝑀 appears on both sides of the inequality…
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Theorem 3: 
Vapnik-
Chervonenkis
(VC)-Dimension

� 𝑑�` ℋ = the largest value of 𝑀 s.t. 𝑔ℋ 𝑀 = 2E, i.e., the 
greatest number of data points that can be shattered by ℋ

� If ℋ can shatter arbitrarily large finite sets, then 
𝑑�` ℋ = ∞

� 𝑔ℋ 𝑀 = 𝑂 𝑀Q45 ℋ (Sauer-Shelah lemma)

� To prove that 𝑑�` ℋ = 𝐶, you need to show

1. ∃ some set of 𝐶 data points that ℋ can shatter and

2. ∄ a set of 𝐶 + 1 data points that ℋ can shatter 
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� 𝑥 � ∈ ℝ and ℋ = all 1-dimensional positive intervals

VC-Dimension: 
Example

106

𝑎 𝑏
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� 𝑥 � ∈ ℝ and ℋ = all 1-dimensional positive intervals

� What are 𝑑�` ℋ and 𝑔ℋ 𝑚 ?

VC-Dimension: 
Example

107

𝑎 𝑏

𝑥 ! 𝑥 #𝑥 "
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� 𝑥 � ∈ ℝ and ℋ = all 1-dimensional positive intervals

� 𝑑�` ℋ = 2 and 𝑔ℋ 𝑚 = �X&
V + 1 = 𝑂 𝑚V

VC-Dimension: 
Example

108

𝑎 𝑏

…
𝑥 ! 𝑥 " 𝑥 # 𝑥 $ 𝑥 % 𝑥 & 𝑥 *+! 𝑥 *
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Theorem 3: 
Vapnik-
Chervonenkis
(VC)-Bound

109

� Infinite, realizable case: for any hypothesis set ℋ and 
distribution 𝑝∗, if the number of labelled training data 
points satisfies 

𝑀 = 𝑂
1
𝜖
𝑑�` ℋ log

1
𝜖
+ log

1
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ with 
&𝑅 ℎ = 0 have 𝑅 ℎ ≤ 𝜖
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Statistical 
Learning 
Theory 
Corollary

110

� Infinite, realizable case: for any hypothesis set ℋ and 

distribution 𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, 
all ℎ ∈ ℋ with &𝑅 ℎ = 0 have

𝑅 ℎ ≤ 𝑂
1
𝑀

𝑑�` ℋ log
𝑀

𝑑�` ℋ
+ log

1
𝛿

with probability at least 1 − 𝛿.
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Theorem 4: 
Vapnik-
Chervonenkis
(VC)-Bound

111

� Infinite, agnostic case: for any hypothesis set ℋ and 

distribution 𝑝∗, if the number of labelled training data 
points satisfies 

𝑀 = 𝑂
1
𝜖V

𝑑�` ℋ + log
1
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ have 

𝑅 ℎ − &𝑅 ℎ ≤ 𝜖
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Statistical 
Learning 
Theory 
Corollary

112

� Infinite, agnostic case: for any hypothesis set ℋ and 
distribution 𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, 
all ℎ ∈ ℋ have 

𝑅 ℎ ≤ &𝑅 ℎ + 𝑂
1
𝑀

𝑑�` ℋ + log
1
𝛿

with probability at least 1 − 𝛿.
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Approximation 
Generalization 
Tradeoff

Agnostic case: for any hypothesis class ℋ and 

distribution 𝐷, given a training data set 𝑆 𝑆 = 𝑚, all ℎ ∈
ℋ have 

𝑅 ℎ ≤ &𝑅 ℎ + 𝑂
1
𝑀

𝑑�` ℋ + log
1
𝛿

with probability at least 1 − 𝛿.

Increases as 
𝑑�` ℋ increases

Decreases as 
𝑑�` ℋ increases
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