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* Announcements
* HWS5 released 6/22, due 7/6 (today!) at 1 PM
* HW6 released 7/6 (today!), due 7/13 at 1 PM
* Only one late day allowed on HW®6

- Exam 2 on 7/19, two weeks from today (more details
to follow)

Front Matter

* All topics between Lecture 7 (MLE & MAP) and
today’s lecture are in-scope

* Exam 1 content may be referenced but will not

be the primary focus of any question

- Recommended Readings
* Mitchell, Chapter 7.4




* For a finite hypothesis set H s.t. ¢* € H and arbitrary
distribution p*, if the number of labelled training data

points satisfies
Theorem 1:

Finite, M= %(ln(lﬂ‘l) + In (%))

Realizable Case

then with probability at least 1 — 6, all h € H with
R(h) =0haveR(h) <€

* Solving for € gives...
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Theorem 2:

Finite,
Agnostic Case

Henry Chai - 7/5/22

* For a finite hypothesis set H and arbitrary distribution

p*, if the number of labelled training data points satisfies

M > 2—12(1n(|}[|) + In (;))

then with probability at least 1 — §, all h € H satisfy
IR(h) —R(h)| <€

* Bound is inversely quadratic in €, e.g., halving € means

we need four times as many labelled training data points

* Solving for € gives...



* For a finite hypothesis set H and arbitrary distribution

p*, if the number of labelled training data points satisfies

What happens = Z_;(m(l}[l) Hin @)

when ? then with probability at least 1 — §, all h € H satisfy
IR(h) —R(h)| <€

* Bound is inversely quadratic in €, e.g., halving € means

we need four times as many labelled training data points

* Solving for € gives...
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P{A U B} < P{4} + P{B)

The Union

Bound...




P{A U B} < P{4} + P{B)

P{AU B} = P{A} + P{B} — P{A N B}

The Union

Bound is Bad!




Intuition

If two hypotheses h{, h, € H are
very similar, then the events

* “hq is consistent with the first m
training data points”

* “h, is consistent with the first m
training data points”

will overlap a lot!
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Labellings

- Given some finite set of data points S = (x(l), ., x(M))

and some hypothesis h € H, applying h to each point in

S results in a labelling

. (h(x(l)), . h(x(M))) is a vector of M +1’s and -1’s

* Given § = (x(l), ...,x(M)), each hypothesis in H

induces a labelling but not necessarily a unique labelling

* The set of labellings induced by Hon S is
3(S) = {(A(xD), .., (x™)) | h € 3¢}
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Example: Labellings

H = {h1; h2' h3}




Example: Labellings

H = {hli h2' h3}

(hl(x(l)), hy (x@), by (x®), hl(x(‘”))
=(—1,+1,-1,+1)
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Example: Labellings

H = {hli h2' h3}
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Example: Labellings
H = {h1; h2'h3}

H(S)
={(+1,+1,-1,-1),(-1,+1,—-1,+1)}

|H (S| =2



Example: Labellings
H = {hl! hz,hg}

H(S) =
{(+1,+1,-1,—-1)}

[H S| =1



Growth

Function

* The growth function of H is the maximum number of

distinct labellings H can induce on any set of M data points:

guM) = cmax,  |H(S)]

c gy (M) < 2M VY H and M

- I shatters S if |H(S)| = 2M

*1f3 S s.t. |S| = M and H shatters S, then g4r(M) = 2M
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Growth

Function:
Example

- x(M € R? and H = all 2-dimensional linear separators

* What is g#(3)?
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Growth

Function:
Example

- x(M € R? and H = all 2-dimensional linear separators
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Growth

Function:
Example

- xM) € R2 and H = all 2-dimensional linear separators

* What is g#(3)?

[H(SDI =6 [H(S2)| =8
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Growth

Function:
Example

- xM) € R2 and H = all 2-dimensional linear separators

gy (3)=8=2°

[H(SDI =6 [H(S2)| =8
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Growth

Function:
Example

- x(M € R? and H = all 2-dimensional linear separators

* What is g+ (4)?
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Growth

Function:
Example

- xM) € R2 and H = all 2-dimensional linear separators

* What is g+ (4)?
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Growth

Function:
Example

- xM) € R2 and H = all 2-dimensional linear separators

- gy(4) =14 < 2%

|H (S| =14 |H(S2)| = 14
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Theorem 3:
Vapnik-

Chervonenkis
(VC)-Bound

* Infinite, realizable case: for any hypothesis set H and

distribution p*, if the number of labelled training data
points satisfies

M > é(logz(zg:}c(ZM ) +log, (%»

then with probability at least 1 — 6, all h € H with
R(h) = e have R(h) > 0

- M appears on both sides of the inequality...

30



Theorem 3:
Vapnik-

Chervonenkis
(VC)-Dimension

* dyc(H) = the largest value of M s.t. gor (M) = 2M, i.e., the

greatest number of data points that can be shattered by H

* If H can shatter arbitrarily large finite sets, then
dyc(H) = o

* 9 (M) = O(MdVC(}[)) (Sauer-Shelah lemma)

* To prove that dy-(H) = C, you need to show

1. 3 some set of C data points that H can shatter and
2. Aasetof C + 1data points that H can shatter
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VC-Dimension:

Example

- x(M € R and A = all 1-dimensional positive rays, i.e.,

all hypotheses of the form h(x; a) = sign(x — a)

* What is dvc(}[)?
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VC-Dimension:

Example

- x(M € R and A = all 1-dimensional positive rays, i.e.,

all hypotheses of the form h(x; a) = sign(x — a)

X+

* What is dvc(}[)?
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VC-Dimension:

Example
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X+
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VC-Dimension:

Example

- x(M € R and A = all 1-dimensional positive rays, i.e.,

all hypotheses of the form h(x; a) = sign(x — a)

xD @

* What is dvc(}[)?
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VC-Dimension:

Example

- x(M € R and A = all 1-dimensional positive rays, i.e.,

all hypotheses of the form h(x; a) = sign(x — a)

xD @

* What is dvc(}[)?
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VC-Dimension:

Example

- x(M € R and A = all 1-dimensional positive rays, i.e.,

all hypotheses of the form h(x; a) = sign(x — a)

x| @

* What is dvc(}[)?
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VC-Dimension:

Example

- x(M € R and H = all 1-dimensional positive rays, i.e.,

all hypotheses of the form h(x; a) = sign(x — a)

* What is dvc(}[)?
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VC-Dimension:

Example

- x(M € R and H = all 1-dimensional positive rays, i.e.,

all hypotheses of the form h(x; a) = sign(x — a)

“dyc(H) =1
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VC-Dimension:

Example

- x(M € R and A = all 1-dimensional positive rays, i.e.,

all hypotheses of the form h(x; a) = sign(x — a)

* What is g¢r(m)?
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VC-Dimension:

Example

- x(M € R and A = all 1-dimensional positive rays, i.e.,

all hypotheses of the form h(x; a) = sign(x — a)

'Rl >
xD @ B @ L6 | 46 £ (m=1) ,(m)

* What is g¢r(m)?
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VC-Dimension:

Example

- x(M € R and A = all 1-dimensional positive rays, i.e.,

all hypotheses of the form h(x; a) = sign(x — a)

'Rl >
xD @ B @ L6 | 46 £ (m=1) ,(m)

a

*gyr(m) =m+1=0(0m")
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VC-Dimension:

Example

- x(M) € R and H = all 1-dimensional positive intervals
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[ A When survey is active, respond at pollev.com/301601polls

Lecture 16 Polls

0 done

£ 0 underwav
Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app




[ & When poll is active, respond at pollev.com/301601polls

What are djy ¢(H) and g;(m) for 1-dimensional positive
intervals?

land m +1
2and m + 1
2a,nd%(m2—|—m—|—2)
3and%(m2—|—m—|—2)

hare software, share the entire screen. Get help at pollev.com/app



VC-Dimension:

Example

- x(M € R and H = all 1-dimensional positive intervals

x| @

a b
* What are dy(H) and g¢r(m)?
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VC-Dimension:

Example

- x(M) € R and H = all 1-dimensional positive intervals

—eo—o—0o—0o—0o—0— 09 >
YD @ B @ 6| .6 x(m=1)| ,(m)
a b

* What are dy(H) and g¢r(m)?
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VC-Dimension:

Example

- x(M € R and H = all 1-dimensional positive intervals

—eo—o—0o—0o—0o—0— 09 >
YD @ B @ 6| .6 x(m=1)| ,(m)
a b

* dyc(H) = 2 and gg(m) = (m;d) + 1 = 0(m?)
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Growth

Function:
Example

- x(M € R2 and H = all 2-dimensional positive convex sets
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[ & When poll is active, respond at pollev.com/301601polls

What are dy () and g3 (m ) for 2-dimensional positive
convex sets?

2 and %(m2 + m + 2)
3and%(m3 — m + 6)
oo and %(m2 +m + 2)

oo and 2™

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app




Growth

Function:
Example

- x(M € R2 and H = all 2-dimensional positive convex sets

- What are dvc(}[) and g}[(M)? (1)
X

(™) £@

£®

(6 @

£
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Growth

Function:
Example

- x(M € R2 and H = all 2-dimensional positive convex sets

* What are dy(H) and g4 (M)?

eH

(™) £@

£®

(6 @

£
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- x(M € R2 and H = all 2-dimensional positive convex sets

* What are dy(H) and g4 (M)?

»@
Growth - o
. x(m x 2
Function:
Example
x3)
»(6) @

£
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- x(M € R2 and H = all 2-dimensional positive convex sets

* dyc(H) = o0 and gz (M) = 2" = 0(M)

eH

Growth

(M) £@

Function:
Example

£®

(6 @

£
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Theorem 3:
Vapnik-

Chervonenkis
(VC)-Bound

* Infinite, realizable case: for any hypothesis set H and

distribution p*, if the number of labelled training data
points satisfies

w-o(b{acoovs(l) )

then with probability at least 1 — 6, all h € H with
R(h) =0haveR(h) <€
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Statistical
Learning

Theory
Corollary

* Infinite, realizable case: for any hypothesis set H and
distribution p*, given a training data set S s.t. |[S| = M,
all h € H with R(h) = 0 have

R(h) <0 (% (dvc (3) log ( dvcﬂz}[)) + log @))

with probability at least 1 — 6.
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Theorem 4:
Vapnik-

Chervonenkis
(VC)-Bound

* Infinite, agnostic case: for any hypothesis set H and

distribution p*, if the number of labelled training data

points satisfies

v = 0/ (drco0) +108(3)

then with probability at least 1 — 6, all h € H have
IR(h) —R(h)| <€
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Statistical
Learning

Theory
Corollary

* Infinite, agnostic case: for any hypothesis set H and

distribution p*, given a training data set S s.t. |S| = M,
all h € H have

R(h) <R(h)+0 . %(dvc(}[) + log (%))

with probability at least 1 — 6.
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Approximation

Generalization
Tradeoff

R(h) <R(h)+0

N
4 A

How well does h
approximate c*?

How well does
h generalize?

N J/
Y

N

L (4,000 + 1o @)))
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Approximation

Generalization
Tradeoff

Increases as
dyc(H) incr

eases
J/

N
N

R(h) <R(h)+0 (
\

N
4 A

Decreases as
dyc(H) increases

—(dye(r) + tog

)
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* For infinite hypothesis sets, use the VC-dimension (or

the growth function) as a measure of complexity
* Computing dy(H) and g4 (M)
Key IE keaways - Connection between VC-dimension and the growth

function (Sauer-Shelah lemma)

- Sample complexity and statistical learning theory

style bounds using dy(H)
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