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10-301/601: Introduction 
to Machine Learning
Lecture 16 – Learning 
Theory (Infinite Case)



Front Matter

� Announcements
� HW5 released 6/22, due 7/6 (today!) at 1 PM

� HW6 released 7/6 (today!), due 7/13 at 1 PM

� Only one late day allowed on HW6

� Exam 2 on 7/19, two weeks from today (more details 
to follow)

� All topics between Lecture 7 (MLE & MAP) and 
today’s lecture are in-scope

� Exam 1 content may be referenced but will not 
be the primary focus of any question

� Recommended Readings
� Mitchell, Chapter 7.4
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Theorem 1: 
Finite, 
Realizable Case
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� For a finite hypothesis set ℋ s.t. 𝑐∗ ∈ ℋ and arbitrary 
distribution 𝑝∗, if the number of labelled training data 
points satisfies 

𝑀 ≥
1
𝜖
ln ℋ + ln

1
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ with 
/𝑅 ℎ = 0 have 𝑅 ℎ ≤ 𝜖

� Solving for 𝜖 gives... 



Theorem 2: 
Finite,  
Agnostic Case
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� For a finite hypothesis set ℋ and arbitrary distribution 
𝑝∗, if the number of labelled training data points satisfies 

𝑀 ≥
1
2𝜖" ln ℋ + ln

2
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ satisfy  

𝑅 ℎ − /𝑅 ℎ ≤ 𝜖

� Bound is inversely quadratic in 𝜖, e.g., halving 𝜖 means 

we need four times as many labelled training data points

� Solving for 𝜖 gives…
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� For a finite hypothesis set ℋ and arbitrary distribution 
𝑝∗, if the number of labelled training data points satisfies 

𝑀 ≥
1
2𝜖" ln ℋ + ln

2
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ satisfy  

𝑅 ℎ − /𝑅 ℎ ≤ 𝜖

� Bound is inversely quadratic in 𝜖, e.g., halving 𝜖 means 

we need four times as many labelled training data points

� Solving for 𝜖 gives…

What happens 
when ℋ = ∞?



The Union 
Bound…
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A B

𝑃 𝐴 ∪ 𝐵 ≤ 𝑃 𝐴 + 𝑃{𝐵}



B

𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃{𝐴 ∩ 𝐵}

The Union 
Bound is Bad!
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A

𝑃 𝐴 ∪ 𝐵 ≤ 𝑃 𝐴 + 𝑃{𝐵}



Intuition

� If two hypotheses ℎ#, ℎ" ∈ ℋ are 
very similar, then the events 

� “ℎ# is consistent with the first 𝑚
training data points” 

� “ℎ" is consistent with the first 𝑚
training data points”

� will overlap a lot! 
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Intuition
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� If two hypotheses ℎ#, ℎ" ∈ ℋ are 
very similar, then the events 

� “ℎ# is consistent with the first 𝑚
training data points” 

� “ℎ" is consistent with the first 𝑚
training data points”

� will overlap a lot! 



Labellings

� Given some finite set of data points 𝑆 = 𝒙 # , … , 𝒙 $

and some hypothesis ℎ ∈ ℋ, applying ℎ to each point in 

𝑆 results in a labelling

� ℎ 𝒙 # , … , ℎ 𝒙 $ is a vector of 𝑀 +1’s and -1’s 

� Given 𝑆 = 𝒙 # , … , 𝒙 $ , each hypothesis in ℋ
induces a labelling but not necessarily a unique labelling

� The set of labellings induced by ℋon 𝑆 is        

ℋ 𝑆 = ℎ 𝒙 # , … , ℎ 𝒙 $ ℎ ∈ ℋ

10



Example: Labellings

�ℋ = {ℎ#, ℎ", ℎ%}
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ℎ!ℎ"

ℎ#

𝒙 "

𝒙 #

𝒙 !

𝒙 $



ℋ = {ℎ#, ℎ", ℎ%}

ℎ# 𝒙 # , ℎ# 𝒙 " , ℎ# 𝒙 % , ℎ# 𝒙 (

� = −1,+1,−1,+1
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ℎ"

𝒙 "

𝒙 #

𝒙 !

𝒙 $

Example: Labellings



Example: Labellings
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ℎ!

𝒙 "

𝒙 #

𝒙 !

𝒙 $

ℋ = {ℎ#, ℎ", ℎ%}

ℎ" 𝒙 # , ℎ" 𝒙 " , ℎ" 𝒙 % , ℎ" 𝒙 (

� = −1,+1,−1,+1



Example: Labellings
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ℎ#

𝒙 "

𝒙 #

𝒙 !

𝒙 $

ℋ = {ℎ#, ℎ", ℎ%}

ℎ% 𝒙 # , ℎ% 𝒙 " , ℎ% 𝒙 % , ℎ% 𝒙 (

� = +1,+1,−1,−1



Example: Labellings

ℋ = {ℎ#, ℎ", ℎ%}

ℋ 𝑆
= +1,+1,−1,−1 , −1,+1,−1,+1

ℋ 𝑆 = 2
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ℎ!ℎ"

ℎ#

𝒙 "

𝒙 #

𝒙 !

𝒙 $



Example: Labellings

ℋ = ℎ#, ℎ", ℎ%

ℋ 𝑆 =
+1,+1,−1,−1

ℋ 𝑆 = 1
�
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ℎ!ℎ"

ℎ#

𝒙 "

𝒙 #

𝒙 !

𝒙 $



� The growth function of ℋ is the maximum number of 

distinct labellings ℋ can induce on any set of 𝑀 data points:

𝑔ℋ 𝑀 = max
* ∶ * ,$

ℋ 𝑆

� 𝑔ℋ 𝑀 ≤ 2$ ∀ℋ and 𝑀

�ℋ shatters 𝑆 if ℋ 𝑆 = 2$

� If ∃ 𝑆 s.t. 𝑆 = 𝑀 and ℋ shatters 𝑆, then 𝑔ℋ 𝑀 = 2$

Growth 
Function
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Growth 
Function: 
Example

� 𝒙 - ∈ ℝ" andℋ = all 2-dimensional linear separators 

� What is 𝑔ℋ 3 ?
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� 𝒙 - ∈ ℝ" andℋ = all 2-dimensional linear separators 

� What is 𝑔ℋ 3 ?Growth 
Function: 
Example
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� 𝒙 - ∈ ℝ" andℋ = all 2-dimensional linear separators 

� What is 𝑔ℋ 3 ?Growth 
Function: 
Example
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Growth 
Function: 
Example

� 𝒙 - ∈ ℝ" andℋ = all 2-dimensional linear separators 

� What is 𝑔ℋ 3 ?
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ℋ 𝑆# = 6 ℋ 𝑆" = 8



Growth 
Function: 
Example

� 𝒙 - ∈ ℝ" andℋ = all 2-dimensional linear separators  

� 𝑔ℋ 3 = 8 = 2%
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ℋ 𝑆# = 6 ℋ 𝑆" = 8



Growth 
Function: 
Example

� 𝒙 - ∈ ℝ" andℋ = all 2-dimensional linear separators 

� What is 𝑔ℋ 4 ?
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Growth 
Function: 
Example

� 𝒙 - ∈ ℝ" andℋ = all 2-dimensional linear separators 

� What is 𝑔ℋ 4 ?
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Growth 
Function: 
Example

� 𝒙 - ∈ ℝ" andℋ = all 2-dimensional linear separators 

� What is 𝑔ℋ 4 ?
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ℋ 𝑆# = 14



Growth 
Function: 
Example

� 𝒙 - ∈ ℝ" andℋ = all 2-dimensional linear separators 

� What is 𝑔ℋ 4 ?
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ℋ 𝑆# = 14



Growth 
Function: 
Example

� 𝒙 - ∈ ℝ" andℋ = all 2-dimensional linear separators 

� What is 𝑔ℋ 4 ?
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ℋ 𝑆# = 14



Growth 
Function: 
Example

� 𝒙 - ∈ ℝ" andℋ = all 2-dimensional linear separators 

� What is 𝑔ℋ 4 ?
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ℋ 𝑆# = 14



Growth 
Function: 
Example

� 𝒙 - ∈ ℝ" andℋ = all 2-dimensional linear separators 

� 𝑔ℋ 4 = 14 < 2(
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ℋ 𝑆# = 14 ℋ 𝑆" = 14



Theorem 3: 
Vapnik-
Chervonenkis
(VC)-Bound
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� Infinite, realizable case: for any hypothesis set ℋ and 

distribution 𝑝∗, if the number of labelled training data 
points satisfies 

𝑀 ≥
2
𝜖
log" 2𝑔ℋ 2𝑀 + log"

1
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ with 

𝑅 ℎ ≥ 𝜖 have /𝑅 ℎ > 0

�𝑀 appears on both sides of the inequality…



Theorem 3: 
Vapnik-
Chervonenkis
(VC)-Dimension

� 𝑑./ ℋ = the largest value of 𝑀 s.t. 𝑔ℋ 𝑀 = 2$, i.e., the 
greatest number of data points that can be shattered by ℋ

� If ℋ can shatter arbitrarily large finite sets, then 
𝑑./ ℋ = ∞

� 𝑔ℋ 𝑀 = 𝑂 𝑀0!" ℋ (Sauer-Shelah lemma)

� To prove that 𝑑./ ℋ = 𝐶, you need to show

1. ∃ some set of 𝐶 data points that ℋ can shatter and

2. ∄ a set of 𝐶 + 1 data points that ℋ can shatter 
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VC-Dimension: 
Example

32

� 𝑥 - ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., 

all hypotheses of the form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

� What is 𝑑./ ℋ ?
𝑎



VC-Dimension: 
Example
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� 𝑥 - ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., 

all hypotheses of the form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

� What is 𝑑./ ℋ ?
𝑎

𝑥 "



VC-Dimension: 
Example
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� 𝑥 - ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., 

all hypotheses of the form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

� What is 𝑑./ ℋ ?
𝑎

𝑥 "



VC-Dimension: 
Example
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� 𝑥 - ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., 

all hypotheses of the form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

� What is 𝑑./ ℋ ?
𝑎

𝑥 " 𝑥 !



VC-Dimension: 
Example
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� 𝑥 - ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., 

all hypotheses of the form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

� What is 𝑑./ ℋ ?

𝑥 " 𝑥 !

𝑎



VC-Dimension: 
Example
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� 𝑥 - ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., 

all hypotheses of the form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

� What is 𝑑./ ℋ ?

𝑥 " 𝑥 !

𝑎



VC-Dimension: 
Example
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� 𝑥 - ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., 

all hypotheses of the form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

� What is 𝑑./ ℋ ?

𝑥 " 𝑥 !

𝑎



VC-Dimension: 
Example
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� 𝑥 - ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., 

all hypotheses of the form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

� 𝑑./ ℋ = 1

𝑥 " 𝑥 !

𝑎



VC-Dimension: 
Example
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� 𝑥 - ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., 

all hypotheses of the form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

� What is 𝑔ℋ 𝑚 ?
𝑎



VC-Dimension: 
Example
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� 𝑥 - ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., 

all hypotheses of the form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

� What is 𝑔ℋ 𝑚 ?

…
𝑥 " 𝑥 ! 𝑥 # 𝑥 $ 𝑥 % 𝑥 & 𝑥 '(" 𝑥 '

𝑎



VC-Dimension: 
Example
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� 𝑥 - ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., 

all hypotheses of the form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

� 𝑔ℋ 𝑚 = 𝑚 + 1 = 𝑂 𝑚#

…
𝑥 " 𝑥 ! 𝑥 # 𝑥 $ 𝑥 % 𝑥 & 𝑥 '(" 𝑥 '

𝑎



� 𝑥 - ∈ ℝ and ℋ = all 1-dimensional positive intervals

VC-Dimension: 
Example
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𝑎 𝑏







� 𝑥 - ∈ ℝ and ℋ = all 1-dimensional positive intervals

� What are 𝑑./ ℋ and 𝑔ℋ 𝑚 ?

VC-Dimension: 
Example
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𝑎 𝑏

𝑥 " 𝑥 #𝑥 !



� 𝑥 - ∈ ℝ and ℋ = all 1-dimensional positive intervals

� What are 𝑑./ ℋ and 𝑔ℋ 𝑚 ?

VC-Dimension: 
Example
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𝑎 𝑏

…
𝑥 " 𝑥 ! 𝑥 # 𝑥 $ 𝑥 % 𝑥 & 𝑥 '(" 𝑥 '



� 𝑥 - ∈ ℝ and ℋ = all 1-dimensional positive intervals

� 𝑑./ ℋ = 2 and 𝑔ℋ 𝑚 = -4#
" + 1 = 𝑂 𝑚"

VC-Dimension: 
Example
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𝑎 𝑏

…
𝑥 " 𝑥 ! 𝑥 # 𝑥 $ 𝑥 % 𝑥 & 𝑥 '(" 𝑥 '



Growth 
Function: 
Example
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� 𝑥 - ∈ ℝ" and ℋ = all 2-dimensional positive convex sets 

ConvexConvex

Non-convex
Non-convex





Growth 
Function: 
Example
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…

𝑥 "

𝑥 !

𝑥 #

𝑥 '

𝑥 $

𝑥 %

𝑥 &

� 𝑥 - ∈ ℝ" and ℋ = all 2-dimensional positive convex sets 

� What are 𝑑./ ℋ and 𝑔ℋ 𝑀 ?



� 𝑥 - ∈ ℝ" and ℋ = all 2-dimensional positive convex sets 

� What are 𝑑./ ℋ and 𝑔ℋ 𝑀 ?

Growth 
Function: 
Example
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…

𝑥 "

𝑥 !

𝑥 #

𝑥 '

𝑥 $

𝑥 %

𝑥 &



� 𝑥 - ∈ ℝ" and ℋ = all 2-dimensional positive convex sets 

� What are 𝑑./ ℋ and 𝑔ℋ 𝑀 ?

Growth 
Function: 
Example
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…

𝑥 "

𝑥 !

𝑥 #

𝑥 '

𝑥 $

𝑥 %

𝑥 &



� 𝑥 - ∈ ℝ" and ℋ = all 2-dimensional positive convex sets 

� 𝑑./ ℋ = ∞ and 𝑔ℋ 𝑀 = 2$ = 𝑂 𝑀5

Growth 
Function: 
Example

54

…

𝑥 "

𝑥 !

𝑥 #

𝑥 '

𝑥 $

𝑥 %

𝑥 &



Theorem 3: 
Vapnik-
Chervonenkis
(VC)-Bound
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� Infinite, realizable case: for any hypothesis set ℋ and 
distribution 𝑝∗, if the number of labelled training data 
points satisfies 

𝑀 = 𝑂
1
𝜖
𝑑./ ℋ log

1
𝜖
+ log

1
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ with 
/𝑅 ℎ = 0 have 𝑅 ℎ ≤ 𝜖



Statistical 
Learning 
Theory 
Corollary
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� Infinite, realizable case: for any hypothesis set ℋ and 

distribution 𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, 
all ℎ ∈ ℋ with /𝑅 ℎ = 0 have

𝑅 ℎ ≤ 𝑂
1
𝑀

𝑑./ ℋ log
𝑀

𝑑./ ℋ
+ log

1
𝛿

with probability at least 1 − 𝛿.



Theorem 4: 
Vapnik-
Chervonenkis
(VC)-Bound

57

� Infinite, agnostic case: for any hypothesis set ℋ and 

distribution 𝑝∗, if the number of labelled training data 
points satisfies 

𝑀 = 𝑂
1
𝜖"

𝑑./ ℋ + log
1
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ have 

𝑅 ℎ − /𝑅 ℎ ≤ 𝜖



Statistical 
Learning 
Theory 
Corollary
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� Infinite, agnostic case: for any hypothesis set ℋ and 
distribution 𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, 
all ℎ ∈ ℋ have 

𝑅 ℎ ≤ /𝑅 ℎ + 𝑂
1
𝑀

𝑑./ ℋ + log
1
𝛿

with probability at least 1 − 𝛿.



Agnostic case: for any hypothesis class ℋ and 

distribution 𝐷, given a training data set 𝑆 𝑆 = 𝑚, all ℎ ∈
ℋ have 

𝑅 ℎ ≤ /𝑅 ℎ + 𝑂
1
𝑀

𝑑./ ℋ + log
1
𝛿

with probability at least 1 − 𝛿.
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Approximation 
Generalization 
Tradeoff

How well does ℎ
approximate 𝑐∗?

How well does 
ℎ generalize?



Agnostic case: for any hypothesis class ℋ and 

distribution 𝐷, given a training data set 𝑆 𝑆 = 𝑚, all ℎ ∈
ℋ have 

𝑅 ℎ ≤ /𝑅 ℎ + 𝑂
1
𝑀

𝑑./ ℋ + log
1
𝛿

with probability at least 1 − 𝛿.
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Approximation 
Generalization 
Tradeoff

Increases as 
𝑑./ ℋ increases

Decreases as 
𝑑./ ℋ increases



Key Takeaways

� For infinite hypothesis sets, use the VC-dimension (or 

the growth function) as a measure of complexity

� Computing 𝑑./ ℋ and 𝑔ℋ 𝑀

� Connection between VC-dimension and the growth 
function (Sauer-Shelah lemma)

� Sample complexity and statistical learning theory 
style bounds using 𝑑./ ℋ
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