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10-301/601: Introduction 
to Machine Learning
Lecture 15 – Learning 
Theory (Finite Case)



Front Matter

� Announcements
� HW5 released 6/22, due 7/6 (tomorrow) at 1 PM

� Exam 2 on 7/19, two weeks from today (more details 
to follow)

� All topics between Lecture 7 (MLE & MAP) and 
tomorrow’s lecture are in-scope

� Exam 1 content may be referenced but will not
be the primary focus of any question

� Recommended Readings

� Mitchell, Chapters 7.1-7.3
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What is 
Machine 
Learning
10-301/601?
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� Supervised Models
� Decision Trees
� KNN
� Naïve Bayes
� Perceptron
� Logistic Regression
� SVMs
� Linear Regression
� Neural Networks

� Unsupervised Models
� K-means 
� GMMs
� PCA

� Graphical Models
� Bayesian Networks
� HMMs

� Learning Theory

� Reinforcement Learning

� Important Concepts
� Feature Engineering 

and Kernels
� Regularization and 

Overfitting
� Experimental Design
� Ensemble Methods
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Statistical 
Learning 
Theory Model

1. Data points are generated iid from some unknown
distribution

𝒙 ! ∼ 𝑝∗ 𝒙

2. Labels are generated from some unknown function

𝑦 ! = 𝑐∗ 𝒙 !

3. The learning algorithm chooses the hypothesis (or 
classifier) with lowest training error rate from a 
specified hypothesis set, ℋ

4. Goal: return a hypothesis (or classifier) with low true
error rate
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Types of Error

� True error rate
� Actual quantity of interest in machine learning
� How well your hypothesis will perform on average across all 

possible data points

� Test error rate
� Used to evaluate hypothesis performance
� Good estimate of your hypothesis’s true error

� Validation error rate
� Used to set hypothesis hyperparameters
� Slightly “optimistic” estimate of your hypothesis’s true error

� Training error rate
� Used to set model parameters
� Very “optimistic” estimate of your hypothesis’s true error
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Types of Risk 
(a.k.a. Error)

� Expected risk of a hypothesis ℎ (a.k.a. true error)

𝑅 ℎ = 𝑃𝒙 ∼ %∗ 𝑐∗ 𝒙 ≠ ℎ 𝒙

� Empirical risk of a hypothesis ℎ (a.k.a. training error) 
,𝑅 ℎ = 𝑃𝒙 ∼𝒟 𝑐∗ 𝒙 ≠ ℎ 𝒙

,𝑅 ℎ =
1
𝑁/
!'(

)

𝟙 𝑐∗ 𝒙 ! ≠ ℎ 𝒙 !

,𝑅 ℎ =
1
𝑁
/
!'(

)

𝟙 𝑦 ! ≠ ℎ 𝒙 !

where 𝒟 = 𝒙 ! , 𝑦 !
!'(
)

is the training data set and 
𝒙 ∼ 𝒟 denotes a point sampled uniformly at random from 𝒟

Henry Chai - 7/5/22 7



Three 
Hypotheses of 
Interest

� The true function, 𝑐∗

� The expected risk minimizer, 
ℎ∗ = argmin

* ∈ℋ
𝑅 ℎ

� The empirical risk minimizer, 

,ℎ = argmin
* ∈ℋ

,𝑅 ℎ
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Key Question � Given a hypothesis with zero/low training error, what 

can we say about its true error? 
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PAC Learning

� PAC = Probably Approximately Correct

� PAC Criterion:

𝑃 𝑅 ℎ − ,𝑅 ℎ ≤ 𝜖 ≥ 1 − 𝛿 ∀ ℎ ∈ ℋ

for some 𝜖 (difference between expected and empirical 
risk) and 𝛿 (probability of “failure”) 

� We want the PAC criterion to be satisfied for 
ℋ with small values of ϵ and δ
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Sample 
Complexity

� The sample complexity of an algorithm/hypothesis set 

is the number of labelled training data points needed to 

satisfy the PAC criterion for some 𝛿 and 𝜖

� Four cases

� Realizable vs. Agnostic

� Realizable → 𝑐∗ ∈ ℋ

� Agnostic → 𝑐∗ might or might not be in ℋ

� Finite vs. Infinite

� Finite → ℋ < ∞

� Infinite → ℋ = ∞
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Theorem 1: 
Finite, 
Realizable Case
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� For a finite hypothesis set ℋ s.t. 𝑐∗ ∈ ℋ and arbitrary 
distribution 𝑝∗, if the number of labelled training data 
points satisfies 

𝑀 ≥
1
𝜖
ln ℋ + ln

1
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ with 
,𝑅 ℎ = 0 have 𝑅 ℎ ≤ 𝜖



Proof of
Theorem 1: 
Finite, 
Realizable Case

1. Assume there are 𝐾 “bad” hypotheses in ℋ, i.e., 
ℎ(, ℎ-, … , ℎ. that all have 𝑅 ℎ/ > 𝜖

2. Pick one bad hypothesis, ℎ/
A. Probability that ℎ/ correctly classifies the first 

training data point ≤ 1 − 𝜖

B. Probability that ℎ/ correctly classifies all 𝑀
training data points ≤ 1 − 𝜖 0

3. Probability that at least one bad hypothesis correctly 
classifies all 𝑀 training data points =

𝑃(ℎ( correctly classiSies all 𝑀 training data points ∪
ℎ- correctly classiSies all 𝑀 training data points ∪

⋮
∪ ℎ. correctly classiSies all 𝑀 training data points)
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Proof of
Theorem 1: 
Finite, 
Realizable Case

𝑃(ℎ( correctly classiSies all 𝑀 training data points ∪
ℎ- correctly classiSies all 𝑀 training data points ∪

⋮
∪ ℎ. correctly classiSies all 𝑀 training data points)

≤ /
/'(

.

𝑃 ℎ/ correctly classiSies all 𝑀 training data points

by the union bound: 𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃 𝐴 ∩ 𝐵
by the union bound: 𝑃 𝐴 ∪ 𝐵 ≤ 𝑃 𝐴 + 𝑃 𝐵 − 𝑃 𝐴 ∩ 𝐵
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Proof of
Theorem 1: 
Finite, 
Realizable Case

/
/'(

.

𝑃 ℎ/ correctly classiSies all 𝑀 training data points

≤ 𝑘 1 − 𝜖 0 ≤ ℋ 1 − 𝜖 0

because 𝑘 ≤ ℋ

3. Probability that at least one bad hypothesis correctly 
classifies all 𝑀 training data points ≤ ℋ 1 − 𝜖 0

4. Using the fact that 1 − 𝑥 ≤ exp −𝑥 ∀ 𝑥, 
ℋ 1− 𝜖 0 ≤ ℋ exp −𝜖 0 = ℋ exp −𝑀𝜖

5. Probability that at least one bad hypothesis correctly 
classifies all 𝑀 training data points ≤ ℋ exp −𝑀𝜖 , 
which we want to be low, i.e., ℋ exp −𝑀𝜖 ≤ 𝛿
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Proof of
Theorem 1: 
Finite, 
Realizable Case

ℋ exp −𝑀𝜖 ≤ 𝛿 → exp −𝑀𝜖 ≤
𝛿
ℋ

ℋ exp −𝑁𝜖 ≤ 𝛿 → −𝑀𝜖 ≤ log
𝛿
ℋ

ℋ exp −𝑁𝜖 ≤ 𝛿 → 𝑀 ≥
1
𝜖
− log

𝛿
ℋ

ℋ exp −𝑁𝜖 ≤ 𝛿 → 𝑀 ≥
1
𝜖
log

ℋ
𝛿

ℋ exp −𝑁𝜖 ≤ 𝛿 → 𝑀 ≥
1
𝜖
log ℋ + log

1
𝛿
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Proof of
Theorem 1: 
Finite, 
Realizable Case

6. Given 𝑀 ≥ (
1
log ℋ + log (

2
labelled training 

data points, the probability that ∃ a bad hypothesis 
ℎ/ ∈ ℋ with 𝑅 ℎ/ > 𝜖 and ,𝑅 ℎ/ = 0 is ≤ 𝛿

⇕

Given 𝑀 ≥ (
1
log ℋ + log (

2
labelled training data 

points, the probability that all hypotheses ℎ/ ∈ ℋ with 
𝑅 ℎ/ > 𝜖 have ,𝑅 ℎ/ > 0 is ≥ 1 − 𝛿
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Proof of
Theorem 1: 
Finite, 
Realizable Case

6. Given 𝑀 ≥ (
1
log ℋ + log (

2
labelled training 

data points, the probability that all hypotheses ℎ/ ∈
ℋ with 𝑅 ℎ/ > 𝜖 have ,𝑅 ℎ/ > 0 is ≥ 1 − 𝛿

⇕

Given 𝑀 ≥ (
1
log ℋ + log (

2
labelled training data 

points, the probability that all hypotheses ℎ/ ∈ ℋ with 
,𝑅 ℎ/ = 0 have 𝑅 ℎ/ ≤ 𝜖 is ≥ 1 − 𝛿

(proof by contrapositive) 
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Aside: Proof by 
Contrapositive

� The contrapositive of a statement 𝐴 ⇒ 𝐵 is ¬𝐵 ⇒ ¬𝐴

� A statement and its contrapositive are logically equivalent, 
i.e., 𝐴 ⇒ 𝐵 means that ¬𝐵 ⇒ ¬𝐴

� Example: “it’s raining ⇒ Henry brings am umbrella”

is the same as saying 

“Henry didn’t bring an umbrella ⇒ it’s not raining ” 
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Theorem 1: 
Finite, 
Realizable Case
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� For a finite hypothesis set ℋ s.t. 𝑐∗ ∈ ℋ and arbitrary 
distribution 𝑝∗, if the number of labelled training data 
points satisfies 

𝑀 ≥
1
𝜖
ln ℋ + ln

1
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ with 
,𝑅 ℎ = 0 have 𝑅 ℎ ≤ 𝜖

� Solving for 𝜖 gives... 



Statistical 
Learning 
Theory 
Corollary
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� For a finite hypothesis set ℋ s.t. 𝑐∗ ∈ ℋ and arbitrary 

distribution 𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, 
all ℎ ∈ ℋ with ,𝑅 ℎ = 0 have

𝑅 ℎ ≤
1
𝑀

ln ℋ + ln
1
𝛿

with probability at least 1 − 𝛿.



Theorem 2: 
Finite,  
Agnostic Case
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� For a finite hypothesis set ℋ and arbitrary distribution 
𝑝∗, if the number of labelled training data points satisfies 

𝑀 ≥
1
2𝜖- ln ℋ + ln

2
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ satisfy  

𝑅 ℎ − ,𝑅 ℎ ≤ 𝜖

� Bound is inversely quadratic in 𝜖, e.g., halving 𝜖 means 

we need four times as many labelled training data points

� Solving for 𝜖 gives…



Statistical 
Learning 
Theory 
Corollary
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� For a finite hypothesis set ℋ and arbitrary distribution 

𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, all ℎ ∈ ℋ
have

𝑅 ℎ ≤ ,𝑅 ℎ +
1
2𝑀

ln ℋ + ln
2
𝛿

with probability at least 1 − 𝛿.
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� For a finite hypothesis set ℋ and arbitrary distribution 

𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, all ℎ ∈ ℋ
have

𝑅 ℎ ≤ ,𝑅 ℎ +
1
2𝑀

ln ℋ + ln
2
𝛿

with probability at least 1 − 𝛿.

What happens 
when ℋ = ∞?



Key Takeaways

� Statistical learning theory model

� Expected vs. empirical risk of a hypothesis  

� Four possible cases of interest 

� realizable vs. agnostic

� finite vs. infinite

� Sample complexity bounds and statistical learning 
theory corollaries for finite hypothesis sets 
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