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Front Matter
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* Announcements

* HWS5 released 6/22, due 7/6 (tomorrow) at 1 PM

- Exam 2 on 7/19, two weeks from today (more details
to follow)

- All topics between Lecture 7 (MLE & MAP) and
tomorrow’s lecture are in-scope

* Exam 1 content may be referenced but will not
be the primary focus of any question

- Recommended Readings

* Mitchell, Chapters 7.1-7.3



* Supervised Models
* Decision Trees

* KNN

* Naive Bayes

What is * Perceptron
Machine

* Logistic Regression
* SVMs

Lea'FH'i'Hg * Linear Regression
10'301/601? * Neural Networks

* Unsupervised Models
* K-means

* GMMs
* PCA
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* Graphical Models

* Bayesian Networks
* HMMs

° Learning Theory
* Reinforcement Learning

* Important Concepts

* Feature Engineering
and Kernels

° Regularization and
Overfitting

* Experimental Design
* Ensemble Methods
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Statistical

Learning
Theory Model
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Data points are generated iid from some unknown
distribution

x™ ~ p*(x)

Labels are generated from some unknown function
y™ = c*(x("))

. The learning algorithm chooses the hypothesis (or

classifier) with lowest training error rate from a
specified hypothesis set, H

Goal: return a hypothesis (or classifier) with low true
error rate



* True error rate
* Actual quantity of interest in machine learning

* How well your hypothesis will perform on average across all
possible data points

* Test error rate
* Used to evaluate hypothesis performance

Types of Error

* Good estimate of your hypothesis’s true error

- Validation error rate
- Used to set hypothesis hyperparameters

* Slightly “optimistic” estimate of your hypothesis’s true error

* Training error rate
* Used to set model parameters

* Very “optimistic” estimate of your hypothesis’s true error
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Types of Risk

(a.k.a. Error)
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* Expected risk of a hypothesis h (a.k.a. true error)
R(h) = Py p(c*(x) # h(x))

* Empirical risk of a hypothesis h (a.k.a. training error)
R(h) = Py .p(c*(x) # h(x))

. %Z 1(c*(x™) # A(x™))
= %ZN: 1 (y(n) + h(x(")))

where D = {(x(”),y(”))}zzl is the training data set and
x ~ D denotes a point sampled uniformly at random from D



* The true function, c*

Three

* The expected risk minimizer,
HypOtheseS of h* = argmin R (h)

Interest nent
- The empirical risk minimizer,

h = argmin R(h)
heXH
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[ & When poll is active, respond at pollev.com/301601polls
5 Text 301601POLLS to 37607 once to join

Which of the following statements must be true?
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None of the above

h
h

|
R

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



Key Question
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* Given a hypothesis with zero/low training error, what

can we say about its true error?

10



PAC Learning
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* PAC = Probably Approximately Correct

* PAC Criterion:
P(|R(h) —R(W)| <e)=1-6VheH
for some € (difference between expected and empirical

risk) and 6 (probability of “failure”)

* We want the PAC criterion to be satisfied for

H with small values of € and 6
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Sample

Complexity

Henry Chai - 7/5/22

* The sample complexity of an algorithm/hypothesis set

is the number of labelled training data points needed to

satisfy the PAC criterion for some § and €

* Four cases

* Realizable vs. Agnostic

* Realizable » c* € H

* Agnostic = ¢* might or might not be in H
* Finite vs. Infinite

* Finite » |H| < o

* Infinite = |H| = oo
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Theorem 1:

Finite,
Realizable Case
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* For a finite hypothesis set H s.t. ¢* € H and arbitrary
distribution p*, if the number of labelled training data
points satisfies

M > %(ln(l?[l) +1n (%))

then with probability at least 1 — 6, all h € H with
R(h) =0haveR(h) <€
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Proof of
Theorem 1:

Finite,
Realizable Case
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1. Assume there are K “bad” hypotheses in H, i.e.,
hy, hy, ..., hg that all have R(hy) > €

2. Pick one bad hypothesis, hy,

A. Probability that hj correctly classifies the first
training datapoint< 1 —¢

B. Probability that h;, correctly classifies all M
training data points < (1 — )M

3. Probability that at least one bad hypothesis correctly
classifies all M training data points =

P(h4 correctly classifies all M training data points U
h, correctly classifies all M training data points U

U hg correctly classifies all M training data points)
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Proof of
Theorem 1:

Finite,
Realizable Case
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P(h4 correctly classifies all M training data points U
h, correctly classifies all M training data points U

U hg correctly classifies all M training data points)

K
< Z P(h;, correctly classifies all M training data points)
k=1
by the union bound: P(AU B) = P(A) + P(B) — P(A N B)
< P(A) + P(B)
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Proof of
Theorem 1:

Finite,
Realizable Case
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K
z P (h;, correctly classifies all M training data points)

k=1
<k(l-eM < |H|(1-e)M

because k < |H|

3.

Probability that at least one bad hypothesis correctly
classifies all M training data points < |H|(1 — )M

Using the fact that 1 — x < exp(—x) V x,
|H|(1 - e < |H]|exp(—e)™ = |H| exp(—Me)

Probability that at least one bad hypothesis correctly
classifies all M training data points < |H | exp(—Me),
which we want to be low, i.e., || exp(—Me) < 6
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)
|| exp(—Me) < § - exp(—Me) < —

|H|

)
Proof of — —Me < log (W)
Theorem 1: 1 )
Finite, o M= (_ log (W))
Realizable Case e l<log (@))

€ o)
1 1
- M > - (log(lﬂ-[l) + log (E))
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Proof of
Theorem 1:

Finite,
Realizable Case
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6. Given M > é(log(I}[I) + log (%)) labelled training

data points, the probability that 3 a bad hypothesis
hy € I with R(hy) > eand R(h,) =0is< §
()

Given M > é(log(I}[I) + log (%)) labelled training data

points, the probability that all hypotheses h;, € H with
R(hy) > ehave R(h) >0is>1—6
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Proof of
Theorem 1:

Finite,
Realizable Case
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6. GivenM > é(log(I}[I) + log (%)) labelled training

data points, the probability that all hypotheses hj, €
H with R(hg) > e have R(hy) > 0is>1—6
)

Given M > é(log(I}[I) + log (%)) labelled training data

points, the probability that all hypotheses h;, € H with
R(hy) =0haveR(hy) <€is=>1—16

(proof by contrapositive)
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* The contrapositive of a statement A = B is =B = —A

* A statement and its contrapositive are logically equivalent,
Aside: Proof by i.e., A = B means that =B = —A4

Contra positive - Example: “it’s raining = Henry brings am umbrella”
is the same as saying

“Henry didn’t bring an umbrella = it’s not raining ”
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Theorem 1:

Finite,
Realizable Case
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* For a finite hypothesis set H s.t. ¢* € H and arbitrary
distribution p*, if the number of labelled training data

points satisfies

M > %(ln(l?[l) +1n (%))

then with probability at least 1 — 6, all h € H with
R(h) =0haveR(h) <€

* Solving for € gives...
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* For a finite hypothesis set H s.t. ¢* € H and arbitrary
distribution p*, given a training data set S s.t. |[S| = M,

Statistical all h € 7 with R(h) = 0 have
Learning 1 1
R(h) < M(ln(l?—[l) +1n (E))

Theory
Corollary with probability at least 1 — 6.
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Theorem 2:

Finite,
Agnostic Case

Henry Chai - 7/5/22

* For a finite hypothesis set H and arbitrary distribution

p*, if the number of labelled training data points satisfies

M > 2—12(1n(|}[|) + In (;))

then with probability at least 1 — §, all h € H satisfy
IR(h) —R(h)| <€

* Bound is inversely quadratic in €, e.g., halving € means

we need four times as many labelled training data points

* Solving for € gives...
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Statistical
Learning

Theory
Corollary
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* For a finite hypothesis set H and arbitrary distribution
p*, given a training dataset Ss.t. |S| =M, allh e H

have

R(R) < R(R) + w % (ln(l}[l) +1In (%))

with probability at least 1 — 6.
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What happens

when
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?

* For a finite hypothesis set H and arbitrary distribution
p*, given a training dataset Ss.t. |S| =M, allh e H

have

R(R) < R(R) + w % (ln(l}[l) +1In (%))

with probability at least 1 — 6.
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- Statistical learning theory model
* Expected vs. empirical risk of a hypothesis

* Four possible cases of interest
* realizable vs. agnostic
* finite vs. infinite

- Sample complexity bounds and statistical learning

theory corollaries for finite hypothesis sets
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