Next: About this document
Up: Proposal for Ph.D.
Previous: Perform 3-D Simulation
References
- 1
-
K. Aki.
Local site effect on ground motion.
In J. Lawrence Von Thun, editor, Earthquake Engineering and Soil
Dynamics. II: Recent Advances in Ground-Motion Evaluation, pages 103-155.
ASCE, 1988.
- 2
-
K. Aki and P. G. Richards.
Quantitative Seismology.
W. H. Freeman and Co., 1980.
- 3
-
H. Bao, J. Bielak, O. Ghattas, D. R. O'Hallaro, L. F. Kallivokas, J. R.
Shewchuk, and J. Xu.
Earthquake ground motion modeling on parallel computers.
In IEEE, editor, Proc. Supercomputing '96, Pittsburgh, PA, USA,
November 1996.
- 4
-
J. Bielak and P. Christiano.
On the effective seismic input for the nonlinear soil-structure
interaction systems.
Earthquake Eng. Struct. Dynamics, 12(4):107-119, 1984.
- 5
-
J. Bielak, L. F. Kallivokas, J. Xu, and R. Monopoli.
Finite element absorbing boundary for the wave equation in a
halfspace with an application to engineering seismology.
In SIAM and INRIA, editors, Proc. 3rd Int. Conf. on Math. Num.
Aspects of Wave Propagation, pages 489-498, Mandelieu-La Napoule, France,
April 1995.
- 6
-
M. Bouchon.
Discrete wave number representation of elastic wave fields in
three-space dimensions.
J. Geophys. Res., 84(B7):3609-3614, 1979.
- 7
-
M. Bouchon.
A simple, complete numerical solution to the problems of diffraction
of SH waves by an irregular surface.
J. Acoust. Soc. Am., 77:1-5, 1985.
- 8
-
M. Bouchon, M. Campillo, and S. Gaffet.
A boundary integral equation- discrete wavenumber representation
method to study wave propagation in multilayered media having irregular
interfaces.
Geophysics, 54:1134-1140, 1989.
- 9
-
M. Campillo.
Modeling of SH wave propagation in an irregularly layered medium.
application to seismic profiles near a dome.
Geophys. Prospecting, 35:236-249, 1987.
- 10
-
M. Campillo and M. Bouchon.
Sythetic SH seismograms in a laterally varying medium by the
discrete wavenumber method.
Geophys. J. R. Astr. Soc., 83:307-317, 1985.
- 11
-
M. Campillo, F. Sánchez-Sesma, and K. Aki.
Influence of small lateral variations of a soft surficial layer on
seismic ground motion.
Int. J. Soil Dyn. Earthquake Eng., 9:284-287, 1990.
- 12
-
C. Cerjan, D. Kosloff, R. Kosloff, and M. Reshef.
A nonreflecting boundary condition for discrete acoustic and elastic
wave equations.
Geophysics, 50:705-708, 1985.
- 13
-
R. Clayton and B. Engquist.
Absorbing boundaries conditions for acoustic and elastic wave
equations.
Bull. Seism. Soc. Am., 67:1529-1540, 1977.
- 14
-
M. G. Cremonini, P. Christiano, and J. Bielak.
Implementation of effective seismic input for soil-structure
interaction systems.
Earthquake Eng. Struc. Dynamics, 16:615-625, 1988.
- 15
-
D. J. Dowrick.
Earthquake resistant design for engineers and architects.
John Wiley and Sons, Ltd., 1987.
2nd Edition.
- 16
-
A. Frankel.
Three-dimensional simulations of the ground motions in the San
Bernardino valley, california, for hypothetical earthquakes on the San
Andreas fault.
Bull. Seism. Soc. Am., 83:1020-1041, 1993.
- 17
-
A. Frankel and J. Vidale.
A three-dimensional simulation of seismic waves in the Santa
Clara Valley, California, from a Loma Prieta aftershock.
Bull. Seism. Soc. Am., 82:2045-2074, 1992.
- 18
-
S. Gaffet and M. Bouchon.
Effect of two-dimensional topographies using the discrete
wavenumber-boundary integral equation method in P-SV cases.
J. Acoust. Soc. Am., 83:2277-2283, 1989.
- 19
-
R. Graves and R. Clayton.
Modeling path effects in three-dimensional basin structures.
Bull. Seism. Soc. Am., 82:81-103, 1992.
- 20
-
Y. Hisada.
An effecient method for computing Green's functions for a layered
half-space with sources and receivers at close depths.
Bull. Seism. Soc. Am., 84(5):1456-1472, 1994.
- 21
-
M. Horike, H. Uebayashi, and Y. Takeuchi.
Seismic response in three-dimensional sedimentary basin due to
S-wave incidence.
J. Phys. Earth, 38:261-284, 1990.
- 22
-
L. F. Kallivokas, J. Bielak, and R. C. MacCamy.
Symmetric local absorbing boundaries in time and space.
J. Eng. Mech., ASCE, 117:2027-2048, 1991.
- 23
-
K. Kato, K. Aki, and T-L. Teng.
3D simulations of the surface wave propagation in the Kanto
sedimentary basin, Japan (Part 1: Application of the surface wave
Gaussian wave method).
Bull. Seism. Soc. Am., 85:467-477, 1995.
- 24
-
H. Kawase.
Time domain response of a semicircular crayon for incident SV, P
and Rayleigh waves calculated by discrete wavenumber boundary element
method.
Bull. Seism. Soc. Am., 78:1415-1437, 1988.
- 25
-
H. Kawase and K. Aki.
A study of the response of a soft basin for incident S, P, and
Rayleigh, waves with spacial reference to the long duration observed in
Mexico City.
Bull. Seism. Soc. Am., 79:1361-1382, 1989.
- 26
-
J. Kim and A. Papageogiou.
Discrete wavenumber boundary element method for 3D scattering
problems.
J. Eng. Mech., ASCE, 119:603-624, 1993.
- 27
-
J. J. Lee and C. A. Langston.
Wave propagation in a three-dimensional circular basin.
Bull. Seism. Soc. Am., 73:1637-1655, 1983.
- 28
-
X. Li, J. Bielak, and O. Ghattas.
Three-dimensional earthquake site response on a CM-2.
In Proc.10th World Conf. on Earthquake Eng., 1992.
- 29
-
E. J. Luco, H. I. Wong, and F. C. P. de Barros.
Three-dimensional response of a cylindrical crayon in a layered
half-space.
Earthquake Eng. Struc. Dynamics, 19:799-817, 1990.
- 30
-
J. Lysmer and L.A. Drake.
A finite element method for seismology.
In B. Alder, S. Fernbach, and B.A. Bolt, editors, Methods in
Computational Physics, Volume 11, chapter 6. Academic Press, New York, 1972.
- 31
-
H. Magistrale, K. L. McLaughlin, and S. M. Day.
A geology-based 3-D velocity model of the Los Angeles basin
sediments.
Submitted to Bull. Seism. Soc. Am., 1996.
- 32
-
K. B. Olsen and R. J. Archuleta.
Three-dimensional simulation of earthquakes on the Los Angeles
fault system.
Bull. Seism. Soc. Am., 86:575-596, 1996.
- 33
-
K. B. Olsen, R. J. Archuleta, and J. R. Matarese.
Three-dimensional simulation of a magnitude 7.75 earthquake on the
San Andreas fault.
Science, 270:1628-1632, 1996.
- 34
-
K. B. Olsen and G. T. Schuster.
Site amplification in the Salt Lake Valley by three-dimensional
elastic wave propagation.
Eos, Transactions, American Geophysical Union, 73(43):338,
1992.
Supplement.
- 35
-
H. A. Pedersen, F. J. Sánchez-Sesma, and M. Campillo.
Three-dimensional scattering by two-dimensional topographies.
Bull. Seism. Soc. Am., 84:1169-1183, 1994.
- 36
-
A. Pitarka, H. Tanaka, and D. Suetsugu.
Modeling strong motion in the Ashigara valley for the 1990
Odaware, Japan, earthquake.
Bull. Seism. Soc. Am., 84:1327-1335, 1994.
- 37
-
J. A. Rial.
Seismic wave resonances in 3D sedimentary basins.
Int. J. Geophys., 99:81-90, 1989.
- 38
-
J. A. Rial, N. G. Saltzman, and H. Ling.
Earthquake induced resonance in sedimentary basins.
American Scientists, 80:566-578, 1992.
- 39
-
F. J. Sánchez-Sesma.
Diffraction of elastic waves by three-dimensional surface
irregularities.
Earthquake Eng. Struc. Dynamics, 73:1621-1636, 1983.
- 40
-
F. J. Sánchez-Sesma and M. Campillo.
Diffraction of P, SV, and Rayleigh waves by topographic
features: a boundary integral formulation.
Bull. Seism. Soc. Am., 81:2234-2253, 1991.
- 41
-
F. J. Sánchez-Sesma and F. Luzón.
Seismic response of three-dimensional alluvial valleys for incident,
P, S, and Rayleigh waves.
Bull. Seism. Soc. Am., 85:269, 1995.
- 42
-
F. J. Sánchez-Sesma, J. L. Rodríguez-Zuniga, and L. E. Pérez-Rocha.
Seismic response of shallow alluvial valleys: The use of simplified
models.
Bull. Seism. Soc. Am., 85:890, 1995.
- 43
-
C. W. Schrivner and D. V. Helmberger.
Seismic wave form modelling in Los Angeles basin.
Bull. Seism. Soc. Am., 84:1310-1326, 1994.
- 44
-
R. Stacy.
Improved transparent boundary formulations for the elastic-wave
equation.
Bull. Seism. Soc. Am., 78:2089-2097, 1988.
- 45
-
T. Toshinawa and T. Ohmachi.
Love-wave propagation in a three-dimensional basin.
Bull. Seism. Soc. Am., 82:1661-1677, 1992.
- 46
-
J. E. Vidale and D. V. Helmberger.
Elastic finite-difference seismograms for SH waves.
Bull. Seism. Soc. Am., 75:1765-1782, 1988.
- 47
-
D. J. Wald, T. H. Heaton, and K. W. Hudnut.
The slip history the 1994 Northridge, California, earthquake
determined from strong-motion, teleseismic, GPS, and leveling data.
Bull. Seism. Soc. Am., 86(1B), 1996.
- 48
-
H. L. Wong and P. C. Jennings.
Effect of crayon topographies on strong ground motion.
Bull. Seism. Soc. Am., 65:1239-1257, 1975.
- 49
-
J. Xu, J. Bielak, and O. Ghattas.
Modeling of valley and structural response in Kirovakan, 1988
Amenia earthquake.
in preparation, 1997.
- 50
-
K. Yomogida and J. T. Egten.
3-D wave propagation in the Los Angeles basin for the
whittier-narrows earthquake.
Bull. Seism. Soc. Am., 83:1325-1344, 1993.
- 51
-
X. Zeng and J. Bielak.
Stability assessment of a unified variational boundary integral
method applicable to thin scatterers and scatterers with corners.
Computer Methods in Applied Mechanics and Engineering,
111:305-321, 1994.
- 52
-
L. Zhang and A. K. Chopra.
Three-dimensional analysis of spatially varying ground motions around
uniform canyon in a homogeneous half apce.
Earthquake Eng. Struct. Dynamics, 20:911-926, 1991.
Hesheng Bao
Mon Mar 24 21:08:34 EST 1997