next up previous contents
Next: About this document Up: Proposal for Ph.D. Previous: Perform 3-D Simulation

References

1
K. Aki. Local site effect on ground motion. In J. Lawrence Von Thun, editor, Earthquake Engineering and Soil Dynamics. II: Recent Advances in Ground-Motion Evaluation, pages 103-155. ASCE, 1988.

2
K. Aki and P. G. Richards. Quantitative Seismology. W. H. Freeman and Co., 1980.

3
H. Bao, J. Bielak, O. Ghattas, D. R. O'Hallaro, L. F. Kallivokas, J. R. Shewchuk, and J. Xu. Earthquake ground motion modeling on parallel computers. In IEEE, editor, Proc. Supercomputing '96, Pittsburgh, PA, USA, November 1996.

4
J. Bielak and P. Christiano. On the effective seismic input for the nonlinear soil-structure interaction systems. Earthquake Eng. Struct. Dynamics, 12(4):107-119, 1984.

5
J. Bielak, L. F. Kallivokas, J. Xu, and R. Monopoli. Finite element absorbing boundary for the wave equation in a halfspace with an application to engineering seismology. In SIAM and INRIA, editors, Proc. 3rd Int. Conf. on Math. Num. Aspects of Wave Propagation, pages 489-498, Mandelieu-La Napoule, France, April 1995.

6
M. Bouchon. Discrete wave number representation of elastic wave fields in three-space dimensions. J. Geophys. Res., 84(B7):3609-3614, 1979.

7
M. Bouchon. A simple, complete numerical solution to the problems of diffraction of SH waves by an irregular surface. J. Acoust. Soc. Am., 77:1-5, 1985.

8
M. Bouchon, M. Campillo, and S. Gaffet. A boundary integral equation- discrete wavenumber representation method to study wave propagation in multilayered media having irregular interfaces. Geophysics, 54:1134-1140, 1989.

9
M. Campillo. Modeling of SH wave propagation in an irregularly layered medium. application to seismic profiles near a dome. Geophys. Prospecting, 35:236-249, 1987.

10
M. Campillo and M. Bouchon. Sythetic SH seismograms in a laterally varying medium by the discrete wavenumber method. Geophys. J. R. Astr. Soc., 83:307-317, 1985.

11
M. Campillo, F. Sánchez-Sesma, and K. Aki. Influence of small lateral variations of a soft surficial layer on seismic ground motion. Int. J. Soil Dyn. Earthquake Eng., 9:284-287, 1990.

12
C. Cerjan, D. Kosloff, R. Kosloff, and M. Reshef. A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics, 50:705-708, 1985.

13
R. Clayton and B. Engquist. Absorbing boundaries conditions for acoustic and elastic wave equations. Bull. Seism. Soc. Am., 67:1529-1540, 1977.

14
M. G. Cremonini, P. Christiano, and J. Bielak. Implementation of effective seismic input for soil-structure interaction systems. Earthquake Eng. Struc. Dynamics, 16:615-625, 1988.

15
D. J. Dowrick. Earthquake resistant design for engineers and architects. John Wiley and Sons, Ltd., 1987. 2nd Edition.

16
A. Frankel. Three-dimensional simulations of the ground motions in the San Bernardino valley, california, for hypothetical earthquakes on the San Andreas fault. Bull. Seism. Soc. Am., 83:1020-1041, 1993.

17
A. Frankel and J. Vidale. A three-dimensional simulation of seismic waves in the Santa Clara Valley, California, from a Loma Prieta aftershock. Bull. Seism. Soc. Am., 82:2045-2074, 1992.

18
S. Gaffet and M. Bouchon. Effect of two-dimensional topographies using the discrete wavenumber-boundary integral equation method in P-SV cases. J. Acoust. Soc. Am., 83:2277-2283, 1989.

19
R. Graves and R. Clayton. Modeling path effects in three-dimensional basin structures. Bull. Seism. Soc. Am., 82:81-103, 1992.

20
Y. Hisada. An effecient method for computing Green's functions for a layered half-space with sources and receivers at close depths. Bull. Seism. Soc. Am., 84(5):1456-1472, 1994.

21
M. Horike, H. Uebayashi, and Y. Takeuchi. Seismic response in three-dimensional sedimentary basin due to S-wave incidence. J. Phys. Earth, 38:261-284, 1990.

22
L. F. Kallivokas, J. Bielak, and R. C. MacCamy. Symmetric local absorbing boundaries in time and space. J. Eng. Mech., ASCE, 117:2027-2048, 1991.

23
K. Kato, K. Aki, and T-L. Teng. 3D simulations of the surface wave propagation in the Kanto sedimentary basin, Japan (Part 1: Application of the surface wave Gaussian wave method). Bull. Seism. Soc. Am., 85:467-477, 1995.

24
H. Kawase. Time domain response of a semicircular crayon for incident SV, P and Rayleigh waves calculated by discrete wavenumber boundary element method. Bull. Seism. Soc. Am., 78:1415-1437, 1988.

25
H. Kawase and K. Aki. A study of the response of a soft basin for incident S, P, and Rayleigh, waves with spacial reference to the long duration observed in Mexico City. Bull. Seism. Soc. Am., 79:1361-1382, 1989.

26
J. Kim and A. Papageogiou. Discrete wavenumber boundary element method for 3D scattering problems. J. Eng. Mech., ASCE, 119:603-624, 1993.

27
J. J. Lee and C. A. Langston. Wave propagation in a three-dimensional circular basin. Bull. Seism. Soc. Am., 73:1637-1655, 1983.

28
X. Li, J. Bielak, and O. Ghattas. Three-dimensional earthquake site response on a CM-2. In Proc.10th World Conf. on Earthquake Eng., 1992.

29
E. J. Luco, H. I. Wong, and F. C. P. de Barros. Three-dimensional response of a cylindrical crayon in a layered half-space. Earthquake Eng. Struc. Dynamics, 19:799-817, 1990.

30
J. Lysmer and L.A. Drake. A finite element method for seismology. In B. Alder, S. Fernbach, and B.A. Bolt, editors, Methods in Computational Physics, Volume 11, chapter 6. Academic Press, New York, 1972.

31
H. Magistrale, K. L. McLaughlin, and S. M. Day. A geology-based 3-D velocity model of the Los Angeles basin sediments. Submitted to Bull. Seism. Soc. Am., 1996.

32
K. B. Olsen and R. J. Archuleta. Three-dimensional simulation of earthquakes on the Los Angeles fault system. Bull. Seism. Soc. Am., 86:575-596, 1996.

33
K. B. Olsen, R. J. Archuleta, and J. R. Matarese. Three-dimensional simulation of a magnitude 7.75 earthquake on the San Andreas fault. Science, 270:1628-1632, 1996.

34
K. B. Olsen and G. T. Schuster. Site amplification in the Salt Lake Valley by three-dimensional elastic wave propagation. Eos, Transactions, American Geophysical Union, 73(43):338, 1992. Supplement.

35
H. A. Pedersen, F. J. Sánchez-Sesma, and M. Campillo. Three-dimensional scattering by two-dimensional topographies. Bull. Seism. Soc. Am., 84:1169-1183, 1994.

36
A. Pitarka, H. Tanaka, and D. Suetsugu. Modeling strong motion in the Ashigara valley for the 1990 Odaware, Japan, earthquake. Bull. Seism. Soc. Am., 84:1327-1335, 1994.

37
J. A. Rial. Seismic wave resonances in 3D sedimentary basins. Int. J. Geophys., 99:81-90, 1989.

38
J. A. Rial, N. G. Saltzman, and H. Ling. Earthquake induced resonance in sedimentary basins. American Scientists, 80:566-578, 1992.

39
F. J. Sánchez-Sesma. Diffraction of elastic waves by three-dimensional surface irregularities. Earthquake Eng. Struc. Dynamics, 73:1621-1636, 1983.

40
F. J. Sánchez-Sesma and M. Campillo. Diffraction of P, SV, and Rayleigh waves by topographic features: a boundary integral formulation. Bull. Seism. Soc. Am., 81:2234-2253, 1991.

41
F. J. Sánchez-Sesma and F. Luzón. Seismic response of three-dimensional alluvial valleys for incident, P, S, and Rayleigh waves. Bull. Seism. Soc. Am., 85:269, 1995.

42
F. J. Sánchez-Sesma, J. L. Rodríguez-Zuniga, and L. E. Pérez-Rocha. Seismic response of shallow alluvial valleys: The use of simplified models. Bull. Seism. Soc. Am., 85:890, 1995.

43
C. W. Schrivner and D. V. Helmberger. Seismic wave form modelling in Los Angeles basin. Bull. Seism. Soc. Am., 84:1310-1326, 1994.

44
R. Stacy. Improved transparent boundary formulations for the elastic-wave equation. Bull. Seism. Soc. Am., 78:2089-2097, 1988.

45
T. Toshinawa and T. Ohmachi. Love-wave propagation in a three-dimensional basin. Bull. Seism. Soc. Am., 82:1661-1677, 1992.

46
J. E. Vidale and D. V. Helmberger. Elastic finite-difference seismograms for SH waves. Bull. Seism. Soc. Am., 75:1765-1782, 1988.

47
D. J. Wald, T. H. Heaton, and K. W. Hudnut. The slip history the 1994 Northridge, California, earthquake determined from strong-motion, teleseismic, GPS, and leveling data. Bull. Seism. Soc. Am., 86(1B), 1996.

48
H. L. Wong and P. C. Jennings. Effect of crayon topographies on strong ground motion. Bull. Seism. Soc. Am., 65:1239-1257, 1975.

49
J. Xu, J. Bielak, and O. Ghattas. Modeling of valley and structural response in Kirovakan, 1988 Amenia earthquake. in preparation, 1997.

50
K. Yomogida and J. T. Egten. 3-D wave propagation in the Los Angeles basin for the whittier-narrows earthquake. Bull. Seism. Soc. Am., 83:1325-1344, 1993.

51
X. Zeng and J. Bielak. Stability assessment of a unified variational boundary integral method applicable to thin scatterers and scatterers with corners. Computer Methods in Applied Mechanics and Engineering, 111:305-321, 1994.

52
L. Zhang and A. K. Chopra. Three-dimensional analysis of spatially varying ground motions around uniform canyon in a homogeneous half apce. Earthquake Eng. Struct. Dynamics, 20:911-926, 1991.



Hesheng Bao
Mon Mar 24 21:08:34 EST 1997