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ABSTRACT
In a (randomized) oblivious routing scheme the path chosen
for a request between a source s and a target t is indepen-
dent from the current traffic in the network. Hence, such a
scheme consists of probability distributions over s− t paths
for every source-target pair s, t in the network.

In a recent result [11] it was shown that for any undi-
rected network there is an oblivious routing scheme that
achieves a polylogarithmic competitive ratio with respect to
congestion. Subsequently, Azar et al. [4] gave a polynomial
time algorithm that for a given network constructs the best
oblivious routing scheme, i.e. the scheme that guarantees
the best possible competitive ratio. Unfortunately, the lat-
ter result is based on the Ellipsoid algorithm; hence it is
unpractical for large networks.

In this paper we present a combinatorial algorithm for
constructing an oblivious routing scheme that guarantees a
competitive ratio of O(log4 n) for undirected networks. Fur-
thermore, our approach yields a proof for the existence of an
oblivious routing scheme with competitive ratio O(log3 n),
which is much simpler than the original proof from [11].
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1. INTRODUCTION
Efficient routing protocols for unstructured network topolo-
gies have become more and more important in recent years,
because of the dramatic growth of the Internet, and the in-
creasing popularity of e.g. ad-hoc networks and networks
of workstations. A routing algorithm for such networks
should be simple in order to enable quick routing decisions;
it should be distributed in order to work efficiently in large
networks, and it should be online in order to deal with var-
ious traffic patterns.

In this paper we focus on the problem of online virtual cir-
cuit routing in which routing requests, consisting of a source
and a target node, arrive online and a routing algorithm has
to select a path in the network that connects the source and
the target node for each request. The goal is to minimize
the congestion, i.e. the maximum load of a network link,
where the load of a link is the amount of data transmitted
by the link divided by the link-capacity.

One approach towards online routing in networks is to
route obliviously, i.e. without any knowledge of the current
state of the network. For an oblivious algorithm the path
chosen for a request may only depend on the source node,
the target node and on some random input if randomiza-
tion is allowed. Therefore, an oblivious algorithm meets all
the criteria described above. It is simple, because routing
paths can be realized via a lookup in a routing table; it is
distributed, since all routing decisions can be made locally
and it is online, since it does not require preprocessing.

In a recent result [11] it was shown that for any undi-
rected network, there exists an oblivious routing algorithm
that achieves a competitive ratio of O(log3 n) with respect
to congestion, where n denotes the number of nodes in the
graph. This result is non-constructive, i.e. the question



whether such an oblivious algorithm can be found in poly-
nomial time remained open.

This question was subsequently addressed by Azar et.
al [4] who have shown that the optimal oblivious routing
scheme, i.e., the scheme that guarantees the best possible
competitive ratio, can be constructed in polynomial time.

In this paper we present a constructive version of the re-
sults in [11] that guarantees a competitive ratio of O(log4 n).
While this algorithm guarantees a weaker bound than the
polytime algorithm of [4] it has the following advantages.

The algorithm in [4] is based on linear programming with
an infinite number of constraints. Therefore, it uses the
Ellipsoid algorithm with a separation oracle to compute the
solution. This approach is unpractical for large networks.

A second important difference to the work in [4] lies in
the structure of the resulting oblivious routing scheme. Our
algorithm follows the approach of [11] and constructs a hi-
erarchical decomposition of the network that then can be
used to define the oblivious routing scheme. As shown in
[9] and [11] this hierarchical decomposition can be used to
solve other important problems in the area of distributed
computing, as e.g. multicast routing and data management
problems. Furthermore, Maggs et al. [10] have shown most
recently that the decomposition can be used as a precon-
ditioner for solving sparse linear systems. Hence, our work
does not only give an efficient construction of an oblivious
routing scheme but also gives a constructive vesion for all
the above problems, that depend on the hierarchical decom-
position.

Finally, an important contribution of this work is that it
enormously simplifies the proofs in [11].

1.1 Related work
Rhagavan and Thompson [12] have shown that the offline

version of the virtual circuit routing problem can be solved
via a concurrent multicommodity flow problem. By applying
randomized rounding to the solution of the CMCF-problem
they get a virtual circuit routing algorithm that well approx-
imates the lowest possible congestion.

In the online setting Aspnes et al. [1] presented an al-
gorithm that achieves a competitive ratio of O(log n) w.r.t.
congestion. This algorithm is based on the use of an ex-
ponential cost function. Each edge e is assigned a length
that is exponential in the current load of e. If a routing re-
quest occurs the algorithm chooses a shortest path between
source and destination with respect to the length assigned
to the edges. The competitive ratio of this algorithm is opti-
mal due to a lower bound provided in the same paper. The
drawback of this algorithm is that it is centralized and it
serializes the routing requests.

Awerbuch and Azar [3] gave a distributed algorithm that
repeatedly scans the network so as to choose the routes.
Unfortunately, this algorithm requires shared variables on
the edges of the network and hence is hard to implement.

All above algorithms are adaptive. In [13] Valiant and
Brebner considered oblivious routing on specific network
topologies and designed an efficient randomized oblivious
routing algorithm for the hypercube. Later, Borodin and
Hopcroft [5] and subsequently Kaklamanis et al. [7] have
shown that randomization is required for efficient oblivi-
ous algorithms, since deterministic algorithms cannot well
approximate the minimal possible congestion on any non-
trivial network.

Independently from our work Harrelson et al. [6] gave a
construction of a hierarchical decomposition that guarantees
better bound on the competitive ratio than our result.

2. PRELIMINARIES
We model the network as a complete weighted undirected

graph G with node set V . We use n to denote the cardinality
of V , i.e. |V | = n. Network links are represented via a
weight function c : V × V →

� +
0 that for a pair of nodes

describes the link-capacity between these nodes. If c(u, v) =
0 for two nodes u and v, then there is no link between these
nodes in the physical network. Note that the graph G is
undirected which means that we assume c(u, v) = c(v, u) for
any two nodes u, v ∈ V . Furthermore, we assume that the
weight function c is normalized, i.e. the minimum nonzero
capacity of a link is 1. We denote the maximum capacity of
a network link with cmax.

We define a function cap : 2V × 2V →
� +

0 which for two
subsets X,Y ⊆ V describes the total link-capacity that is
available between nodes of X and nodes of Y . It is defined
as follows:

cap(X,Y ) :=
X

x∈X,y∈Y

c(x, y) .

For a set X ⊆ V we denote the total capacity of edges
leaving set X in G with out(X) = cap(X,X ), where X :=
V \X.

A randomized oblivious routing scheme consists of a prob-
ability distribution over s-t paths for each source-target pair
s, t. Equivalently, such a probability distribution can be
viewed as a unit flow between s and t.

We assume that our oblivious algorithm may route frac-
tionally, i.e. a routing request of demand d between s and t
may be fulfilled via a flow of value d between s and t, and
is not restricted to use only a single path. The results of
Rhagavan and Thompson [12] show that fractional routing
and the method of probabilistically choosing a fixed path,
where the probability that a path is chosen corresponds to
the flow in the fractional routing are nearly equivalent.

Since we use fractional routing we can neglect individual
routing requests and only need the total demand between
every source-target pair to specify the communication load
induced by a routing algorithm. This is done via a demand
matrix D which is an n × n nonnegative matrix where the
diagonal entries are 0.

For a given routing algorithm and a demand matrix we
define the (absolute) load of a link as the total amount of
data transmitted by the link. The relative load of a link is
defined to be its load divided by its capacity. Finally, we
define the congestion to be the maximum over the relative
loads of all links in the network.

Suppose that ds,t denotes the total demand of all routing
requests between s and t. The load induced by an oblivious
algorithm on an edge e is given by

P

s,t ds,t ·flows,t(e), where

flows,t : V ×V →
� +

0 denotes the unit flow between s and t,
used in the oblivious routing scheme. This fixes the conges-
tion, as well. The optimal congestion that can be achieved
for a given demand matrix D can be simply computed via
a concurrent multicommodity flow problem.

Let opt(D) and obl(D) denote the congestion achieved for
demand matrix D, by an optimal algorithm and by a given
oblivious routing scheme, respectively. The competitive ra-
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Figure 1: A hierarchical decomposition of a graph and the associated decomposition tree. Small circles in

the right figure correspond to blue vertices and large circles correspond to red vertices.

tio of an oblivious algorithm is defined as supD{ obl(D)
opt(D)

}. We

will show how to construct an oblivious routing scheme with
a competitive ratio of O(log4 n).

2.1 The hierarchical decomposition
Our oblivious routing scheme depends on a hierarchical

decomposition of the network which is defined as follows. A
hierarchical decomposition H of the graph G is a set system
over the universe V that has the following properties

• H is laminar, i.e. for two subsets X,Y ∈ H either
X \ Y , Y \X or X ∩ Y is empty.

• H contains V and all sets {v}, v ∈ V .

Given a hierarchical decomposition H of G we construct
a decomposition tree TH = (Vt, Et). The node set Vt =
V B

t ] V R
t of the tree consists of a set V B

t of blue nodes and
a set V R

t of red nodes that are defined as follows. For each
set H 6= V from the laminar system H the tree contains two
nodes rt ∈ V R

t and bt ∈ V B
t . We call H the set or cluster

corresponding to rt and bt. Further, rt and bt are called
the red node and blue node, respectively, corresponding to
cluster H. For H = V the tree contains only a red node but
no blue one.1

In the following the cluster corresponding to a node vt ∈
Vt will be denoted with Hvt . A red node rt and a blue node
bt in TH are connected if Hbt ⊆ Hrt and if there is no H ∈ H
such that Hbt ( H ( Hrt . Note that by this definition TH

is indeed a tree, since H is a laminar system. We assume
TH to be rooted at the node corresponding to the cluster V ,
that contains all nodes in the network. By this definition
the root and the leaves of TH are red nodes and the leaves
correspond to sets {v}, v ∈ V , i.e. there is a one-to-one
relation between the nodes of G and the leaf nodes of TH.

We define levels for nodes and edges in TH, as follows.
The level of a node vt of TH is defined as the number of red
nodes on the path from vt to the root, not counting vt. The
level of an edge (rt, bt) ∈ Et is defined as the level of the red
node rt of the edge. Further, we define the level of a cluster
H of the laminar system as the level of a corresponding node

1Note that this definition of a decomposition tree substan-
tially differs from the definition used in [11], since a cluster
of the set system may correspond to several tree nodes and
not only to one. The new definition may seem unnatural
but it will turn out that it will help us to simplify the proof
of the competitive ratio of the oblivious routing scheme.

in TH. (Note that both nodes corresponding to H are on
the same level.) Finally, we say that an edge e of G is cut
on level ` ≥ 1 if both endpoints of e are contained in the
same level `− 1 cluster but in different level ` clusters. We
use level(e) for an edge e ∈ E to denote the level on which
e is cut. Figure 1 gives an example of a complete laminar
system and the corresponding decomposition tree.

3. THE ROUTING SCHEME
The oblivious routing scheme that for each pair u, v of

nodes in V defines a unit flow between u and v is based on
the solution of a certain concurrent multicommodity flow
problem (CMCF-problem) for each cluster of the hierar-
chical decomposition H. In order to specify these CMCF-
problems we first define a weight function w` : 2V →

� +
0 for

each level ` ∈ {0, . . . , height(TH)} as follows:

w`(X) :=
X

e∈X×V
level(e)≤`

c(e) .

Informally speaking, the weight function w`(X) counts for
a subset X, the capacity of all edges that are adjacent to
nodes in X and are cut before, or at level ` in the hi-
erarchical decomposition. The following properties of w`

will be used intensively throughout the paper. First of
all w` is additive, i.e. for a set X = X1 ] X2, w`(X) =
w`(X1) + w`(X2). Furthermore, for a level ` cluster Hvt we
have w`(Svt) = out(Svt). Finally, w`−1(X) ≤ w`(X) holds
for any ` ∈ {1, . . . , height(TG)}.

The CMCF-problem for a level ` cluster Hvt of the de-
composition tree is defined as follows. There are |Hvt |

2 com-
modities du,v for u, v ∈ Hvt . The source for commodity du,v

is u, its sink is v and its demand is

dem(u, v) :=
w`+1(u) · w`+1(v)

w`+1(Hvt)
.

We solve the CMCF-problem in the cluster Hvt , i.e. the
flow is restricted to use only links inside Hvt and has to
respect the link-capacities, i.e. the flow that traverses an
edge must be smaller than the capacity of that edge. The
throughput fraction of a solution to a CMCF-problem is
the minimum, over all commodities, of the fraction of the
commodity’s demand that is actually met by the solution.

The following theorem shows that there is a good oblivious
routing scheme if all CMCF-problems can be solved with a
large throughput fraction.



Theorem 1. Let qmin denote the minimum throughput
fraction that is achieved for the CMCF-problem of a clus-
ter of the hierarchical decomposition H. Further, let h de-
note the height of TH. Then there is an oblivious routing
scheme with competitive ratio O(h/qmin). This scheme can
be constructed in polynomial time.

Proof. We first describe the oblivious routing scheme.
Let s, t ∈ V be a source-target pair. We construct a unit flow
from s to t, as follows. The flow paths are chosen according
to the path in TH between the nodes that correspond to {s}
and {t}. Let v1, . . . , vr denote the tree nodes on this path
and let `(i) denote the level of node vi.

Initially all the flow starts in s, i.e. in the only node
contained in Hv1 . Then the flow is first distributed among
the nodes in Hv2 ; then it is distributed among nodes in Hv3

and so on, until it is distributed among nodes in Hvr = {t},
so that all flow reaches the target t. The distribution of the
flow among nodes in cluster Hvi is not uniform but depends
on the level of vi and on its color. If vi is a blue node, then
a node u ∈ Hvi receives a fraction of w`(i)(u)/w`(i)(Hvi)
of the flow and if vi is a red node, u receives a fraction of
w`(i)+1(u)/w`(i)+1(Hvi).

The intuition behind these values is as follows. If vi is
a blue node then the flow is distributed according to the
weight of edges that leave or enter cluster Hvi . (Recall that
w`(i)(Hvi) counts the capacity of all edges that leave Hvi .)
This is reasonable because the flow sent to vi has either just
entered cluster Hvi or is going to leave this cluster in the
next step. (For a flow that does not have to leave or enter
Hvi , either s, t /∈ Hvi or s, t ∈ Hvi must hold. In the first
case the flow would not be routed to vi. In the second case
vi would be the node with the lowest level on the path from
v1 to vr. This is a red node.) In both cases it seems a
good idea to store the flow somehow close to the edges that
connect Hvi to the rest of the graph.

If vi is a red node the flow distribution is done according
to the weight of edges that leave or enter the sub-clusters
of Hvi . In the case that the flow is at a red node vi it
either has to enter a sub-cluster of Hvi in the next step, or
it has to leave Hvi . It will turn out that the first case is
more critical for deriving a good bound on the competitive
ratio. Therefore the flow is distributed according to the
edges leaving sub-clusters of Hvi .

Let fi(u) denote the fraction of flow received by node
u in cluster Hvi . The transition from the distribution for
cluster Hvi to the distribution for cluster Hvi+1 is done as
follows. Let rt denote the red node from {vi, vi+1}. A node
u ∈ Hvi sends a fraction of fi(u) · fi+1(v) to node v ∈ Hvi+1

using the flow paths of commodity du,v from the definition of
the multicommodity flow problem of cluster Hrt . Obviously
this transforms the flow distribution of Hvi into the flow
distribution of Hvi+1 since the total flow sent to v will be
fi+1(v).

Now, we argue that this oblivious routing scheme has a
competitive ratio of O(h/qmin). Suppose that we are given
routing demands between source-target pairs such that the
congestion when routing these demands optimally, is 1. We
show that the congestion when using the oblivious routing
scheme described above is only O(h/qmin).

Fix an edge e ∈ E and a level `. Let rt denote a red
level ` node of TH and let d denote the degree of rt. We
denote the children of rt in TH with bi, i ∈ {1, . . . , d} and

the father with bt. We are interested in the load Lrt(e)
that is created by the oblivious routing scheme on edge e
for transforming distributions between Hrt and clusters Hbt

and Hbi
, i ∈ {1, . . . , d}. Obviously this load is 0 if e is not

contained in cluster Hrt , since in this case the corresponding
CMCF does not use edge e. Therefore, let in the following
rt denote the level ` node such that e is contained in Hrt if
such a node exists. We will bound Lrt(e) by the following
claim.

Claim 2. For each edge e ∈ E, Lrt(e) = O(1/qmin).

Proof. First consider load created between clusters Hrt

and Hbt . The flow that is sent between u ∈ Hrt and v ∈ Hbt

is at most

flow(u, v) :=

„

w`+1(u)

w`+1(Hrt)

«

·

„

w`(v)

w`(Hbt)

«

· out(Hrt) . (1)

This holds since (
w`+1(u)

w`+1(Hrt
)
) is the fraction of the total flow

that resides in u according to the distribution on cluster Hrt

and ( w`(u)
w`(Hbt

)
) is the corresponding term for v in cluster Hbt .

Furthermore all flow that is sent between clusters Hrt and
Hbt corresponds to demands between source-target pairs s, t
for which exactly one node of s, t is contained in Hrt . There-
fore the value of this flow is at most out(Hrt) since an op-
timal algorithm can route the demands with congestion 1.
(This would not be possible if the flow that needs to leave
or enter Hrt was be larger than out(Hrt).)

We can utilize w`(Hbt) = out(Hrt) and w`(v) ≤ w`+1(v)

in Equation 1 and we get that flow(u, v) ≤
w`+1(u)·w`+1(v)

w`+1(Hrt
)

≤

dem(u, v), where dem(u, v) is the demand between u and
v in the CMCF-problem for Hrt . Since the flow is sent
according to the CMCF, the load for an edge e will be at
most 1/qmin.

Now, we consider load created for sending flow between
cluster Hrt and clusters Hbi

, i ∈ {1, . . . , d}. The flow that
is sent between u ∈ Hrt and v ∈ Hbi

is at most

flow(u, v) :=

„

w`+1(u)

w`+1(Hrt)

«

·

„

w`+1(vi)

w`+1(Hbi
)

«

· out(Hbi
) .

Since w`+1(Hbi
) = out(Hbi

) (bi is on level `+1) we get that
also in this case flow(u, v) ≤ dem(u, v). Therefore the load
on edge e due to this flow will be at most 1/qmin. Altogether
this yields the claim.

Since each edge is contained in at most h different clusters,
the theorem follows from the above claim.

4. CONSTRUCTION OF THE DECOMPO-
SITION

In this section we show that for any graph G = (V,E)
we are able to construct a hierarchical decomposition H,
such that the height of the corresponding decomposition
tree TH is O(log n) and in each cluster H ∈ H the CMCF-
problem has a throughput fraction of at least Ω(1/ log3 n).
This yields an oblivious routing scheme for graph G which is
O(log4 n)-competitive with respect to congestion. Further-
more we show that this construction can be done in polyno-
mial time with respect to cmax and the number of nodes in
the graph G.

In order to formally define our construction algorithm we
need some notation. Consider any set of nodes X ⊆ V and



a concurrent multicommodity flow problem on X. A cut
in the subgraph induced by X is a partition of X into two
subsets A and B = X \ A. The sparsity of a cut (A,B)

is defined as cap(A,B)
dem(A,B)

, where dem(A,B) is the demand of

the CMCF-problem that is separated by the cut, i.e. the
sum over all demands of commodities for which sources and
destinations lie in different parts of the cut.

Clearly, the sparsity of a cut in X places an upper bound
on the throughput fraction of the corresponding multicom-
modity flow problem. Let σ denote the maximum possible
ratio between the throughput fraction of a CMCF-problem
and the sparsity of an approximate sparsest cut on G, com-
puted by a suitable algorithm. For general graphs there
exist approximation algorithms such that σ = O(log n) and
for planar graphs there are algorithms with σ = O(1) (see
[2] and [8]).

Denoting the throughput fraction of the CMCF-problem
with q, we obtain that there exists a cut (A,B) such that

cap(A,B)

dem(A,B)
≤ σ · q .

Furthermore, such a cut can be constructed in polynomial
time with respect to |X|. Let φ denote the minimum sparsity
of a cut. Then cap(A,B)/dem(A,B) ≤ σ · φ. Therefore we
call (A,B) an approximate sparsest cut.

For the remainder of the section we define λ = 64 ·σ · log n
and qmin = 1/(24 · σ · λ). We say that a cluster H fulfills the
throughput property if the solution to the CMCF-problem in
H has a throughput fraction of at least qmin. Notice that
qmin = Ω(1/(log n · σ2)) = Ω(1/ log3 n).

In the following we describe an algorithm for partitioning
a single level ` cluster H. If we partition H into subclusters
then the function w`+1(·) is well defined over the subsets of
H and so is the CMCF-problem in the cluster H. By appro-
priate partitioning our algorithm tries to ensure that H ful-
fills the throughput property. If this is possible we can apply
our algorithm to the set V and then recursively to the com-
puted subclusters. This yields a hierarchical decomposition
H of graph G that consists of clusters in which the solution
to the CMCF-problem has a sufficiently large throughput
fraction. Additionally the algorithm ensures that the size of
each subcluster of an input cluster H is at most a constant
fraction of the size of H. Thus, the height of the decom-
position tree TH is at most logarithmic. Furthermore, the
algorithm runs in polynomial time.

An important difficulty of this approach is that it turns
out that not every subset H of V can be partitioned into
subclusters such that the corresponding CMCF-problem on
H fulfills the throughput property. To ensure that such a
partitioning is possible, we need an additional precondition
that has to be fulfilled by an input set for the algorithm.
This precondition is as follows.

Definition 3. A level ` cluster H fulfills the precondition
if for all sets U , such that |U | ≤ 3

4
|S| the following condition

holds:

λ · cap(U,H \ U) ≥ w`(U) .

Now we can formally describe the properties of the algo-
rithm.

Lemma 4. Let H be a level ` cluster, which contains at
least two vertices and fulfills the precondition. Then it is

possible to partition H into disjoint subclusters Hi with the
following characteristics:

1. H fulfills the throughput property.

2. For each subcluster Hi we have |Hi| ≤
2
3
· |H|.

3. Each subcluster Hi fulfills the precondition.

Moreover this partitioning can be done in polynomial time
with respect to |H| and cmax, where cmax denotes the max-
imum capacity of a network link.

Now, we first argue that the algorithm characterized by the
above lemma yields the construction of the hierarchical de-
composition H. First we apply the algorithm to the set
V which is the only cluster on level 0 of the decomposi-
tion tree. V fulfills the precondition, because w0(V ) = 0.
The algorithm returns a partitioning of V that defines the
function w1(·) and yields the level 1 clusters which fulfill
the precondition. We apply the algorithm recursively to all
these clusters until we get singleton sets {v}, v ∈ V . By
Property 1 our algorithm ensures that for each cluster the
corresponding CMCF-problem has a good throughput frac-
tion. Further, the height of the decomposition tree TH is
logarithmic because of Property 2 of the lemma. Since the
number of all clusters on a single level of the decomposition
tree is at most n, the number of clusters in the hierarchy
H is at most O(n · logn). Therefore the total construction
time is also polynomial with respect to cmax and n.
In the rest of this section we present our construction algo-
rithm.

Proof of Lemma 4. The algorithm for partitioning a
set H according to the requirements of Lemma 4 uses a
subroutine that is described in the proof of the following
lemma.

Lemma 5. It is possible to partition any set R ⊆ V into
disjoint sets Ri, such that each Ri fulfills the precondition
and

P

i out(Ri) ≤ 2 out(R). Moreover, this partitioning can
be computed in polynomial time with respect to |R|.

Proof. We use the algorithm AssurePrecondition

described in Figure 2. The algorithm works as follows. We
start with a partition that contains only R. In each iter-
ation we consider each set Ri of the current partitioning
PR. We define a concurrent multicommodity flow problem
G with demands dem(u, v) = w`(u)/|Ri| for each ordered
pair u, v ∈ Ri. Then we compute (A,B) – an approximate
sparsest cut of Ri. Let ψ denote the sparsity of this cut, i.e.,

ψ = cap(A,B)/
“

|B|
|Ri|

· w`(A) + |A|
|Ri|

· w`(B)
”

. If ψ ≤ 4σ
λ

,

then Ri is replaced by A and B in the current partitioning
PR. We proceed until the sparsity of the computed ap-
proximate cut for each Ri is greater than 4σ

λ
. For simpler

notation we denote the term 4σ
λ

with Λ further on.
The algorithm runs in polynomial time because the num-

ber of iterations is bounded by |R| and each iteration runs
in polynomial time.

First we prove that after this algorithm has finished, each
set Ri from the partitioning of R fulfills the precondition.
Assume for contradiction that there exists a set Ri and U ⊆
Ri such that |U | ≤ 3

4
|Ri| and λ · cap(U,Ri \ U) < w`(U).

Let φ denote the sparsity of the sparsest cut for G(Ri). We



AssurePrecondition (R )

PR := {R}

do

for each Ri ∈ PR do

compute (A,B) - an approximate sparsest cut for G(Ri)
ψ := sparsity of the cut (A,B)

if ψ ≤ 4σ
λ

then

PR := PR \ {Ri}

PR := PR ∪ {A,B}

until we made no changes to PR in this iteration
return PR

Figure 2: The algorithm AssurePrecondition

derive a bound on φ and thus also on the sparsity of the
approximate sparsest cut ψ computed by the algorithm.

λ · cap(U,Ri \ U) < w`(U)

≤ 4
|Ri \ U |

|Ri|
· w`(U)

≤ 4

„

|Ri \ U |

|Ri|
w`(U) +

|U |

|Ri|
w`(Ri \ U)

«

This gives that the sparsity of the cut (U,R\U) is at most
4/λ. Therefore we get ψ ≤ σ · φ ≤ 4σ/λ which is a contra-
diction, since in this case the algorithm would have divided
Ri. Hence, each set Ri ∈ PR fulfills the precondition.

To prove that
P

i out(Ri) ≤ 2 out(R) we consider a di-
rected weighted graph H with node set VH whose vertices
correspond to edges of G leaving a partition Ri in the cur-
rent partitioning PR. For simpler notation, let RH ⊆ VH

denote the set of nodes of H that represent edges which
have exactly one endpoint in R, i.e. edges that contribute
to out(R).

The edges of H will model the fact that newly introduced
capacity is amortized against already existing capacity. In
the following, we define the set of edges of H more precisely.
Consider a step of the algorithm in which a set Ri is divided
into sets A and B. Such a step increases the capacity of
edges that leave partitions of PR by the capacity of edges
between A and B, i.e., 2 cap(A,B). (Each edge is counted
twice since it leaves two partitions of PR.) For each such
edge we introduce a new vertex in H. We want to derive a
bound on the total capcity that is added to H. Therefore
we amortize the newly created capacity 2 cap(A,B) against
the capacity out(Ri).

Let EA = A × Ri and EB = B × Ri denote the set of
edges that have one endpoint outside Ri and the other in A
and B, respectively. (EA ∪EB contains all edges that leave
the set Ri.) In order do describe our amortization scheme
we introduce the following notion. We say that the edges
from EA ∪EB pay for the new edges from A×B. We define
for each pair of edges e ∈ A × B and e′ ∈ EA ∪ EB a price
pay(e′, e) that describes the amount that is paid by edge e′

for edge e. We require that for each edge e ∈ A×B it holds
that

X

e′∈EA∪EB

pay(e′, e) ≥ 2c(e) ,

i.e., we pay enough for edge e.

We model this payment in the graph H via a directed
edge from ve′ to ve that is weighted with pay(e′, e). Then the
above requirement simply states that for each node ve ∈ VH\
RH (a node that is added to H during the running time of
AssurePrecondition), the weight of incoming edges must
be at least as large as two times the weight of ve, i.e., c(e).

The exact definition of the function pay(·, ·) is as follows.
For an edge ea ∈ EA we define

pay(ea, e) := 2Λ ·
c(e)

cap(A,B)
·
|B|

|Ri|
· c(ea),

and for an edge eb ∈ EB we define

pay(eb, e) := 2Λ ·
c(e)

cap(A,B)
·
|A|

|Ri|
· c(eb) .

In order to simplify our notation we extend the function
pay(·, ·) to vertices of H, i.e. for two vertices ve, ve′ ∈ VH

that correspond to edge e, e′ ∈ V×V we define pay(ve′ , ve) =
pay(e′, e) which describes the weight of edge (ve′ , ve) ∈ EH .

The following claim shows that by the above definition we
pay enough for new edges.

Claim 6. ∀ve ∈ VH \RH :
P

v∈VH
pay(v, ve) ≥ 2c(e).

Proof. Let e denote an edge that is created when parti-
tioning a set Ri into A and B. We can estimate the incoming
edges of ve by

X

v∈VH

pay(v, ve) =
X

e′∈EA∪EB

pay(ve′ , ve)

=
X

ea∈EA

pay(vea , ve) +
X

eb∈EB

pay(veb
, ve)

=
X

ea∈EA

2Λ ·
|B|

|Ri|
·

c(e)

cap(A,B)
· c(ea)

+
X

eb∈EB

2Λ ·
|A|

|Ri|
·

c(e)

cap(A,B)
· c(eb)

= 2Λ ·
c(e)

cap(A,B)
·

„

|B|

|Ri|
· w`(A)

+
|A|

|Ri|
· w`(B)

«

≥ 2 c(e),



where the last step follows from the fact that (A,B) is a cut

with sparsity at most Λ which implies that Λ·
“

|B|
|Ri|

· w`(A)+

|A|
|Ri|

· w`(B)
”

≥ cap(A,B).

The following claim relates the total weight of edges leav-
ing node ve ∈ VH to c(e).

Claim 7. The total payment of an edge e during the
whole algorithm is at most c(e)/2, i.e.

X

v∈VH

pay(ve, v) ≤ c(e)/2 .

Proof. Let e = (v, u). We consider sequences of different
sets in which v and u lie during the run of the algorithm.
We denote these sequences of sets as V0, V1, . . . , Vl and U0,
U1, . . . , Uk for v and u, respectively. For those sequences,
let ni = |Vi| and mj = |Uj |.

Each edge (ve, v) of H corresponds to cutting some Vi

into Vi+1 and Vi \Vi+1 or Uj into Uj+1 and Uj \Uj+1. First
we consider the case in which Vi is cut into A := Vi+1 and
B := Vi \ Vi+1. We can estimate the total weight of edges
between ve and nodes of H that represent edges from A×B
as follows

X

e′∈A×B

pay(ve, ve′) =
X

e′∈A×B

2Λ ·
|B|

|Vi|
·

c(e′)

cap(A,B)
· c(e)

= 2Λ · c(e) ·
|B|

|Vi|
·

P

e′∈A×B

c(e′)

cap(A,B)

= 2Λ · c(e) ·
|B|

|Vi|

= 2Λ · c(e) ·
ni − ni+1

ni

An analogous bound can be proved for the case when we di-
vide Uj into Uj+1 and Uj\Uj+1, namely

P

e′∈A×B

pay(ve, ve′) =

2Λ · c(e) ·
mj−mj+1

mj
.

Claim 8. For any sequence of numbers n = n0 > · · · >

nk ≥ 1 it holds that n0−n1
n0

+ n1−n2
n1

+ · · · +
nk−1−nk

nk−1
≤

2 logn .

Thus, the total weight outgoing from ve can be estimated as

P

v∈VH

pay(ve, v) = 2Λ·c(e) ·

»

“

n0−n1
n0

+ · · · +
nk−1−nk

nk−1

”

+
“

m0−m1
m0

+ · · · +
ml−1−ml

ml−1

”

–

≤ 2Λ · c(e) · (2 log n+ 2 log n)

≤ 8 · 4σ
λ

· logn · c(e)

≤ c(e)/2 .

This gives the claim.

Now, we can use the above claims to show that
P

i out(Ri) ≤
2 out(R). This is done by summing the weight of all inci-
dent edges for each node ve ∈ H, where incoming edges
are counted positively and outgoing edges are counted neg-
atively. Recall that RH ⊆ H denotes the set of nodes of H

that represent edges leaving set R in the graph G. We get

0 =
P

ve∈VH

 

P

v∈VH

pay(v, ve) −
P

v∈VH

pay(ve, v)

!

=
P

ve∈VH\RH

 

P

v∈VH

pay(v, ve) −
P

v∈VH

pay(ve, v)

!

−
P

ve∈RH

 

P

v∈VH

pay(ve, v)

!

≥
P

ve∈VH\RH

`

2 c(e) − 1
2

c(e)
´

−
P

ve∈RH

`

1
2

c(e)
´

.

This gives out(R) ≥ 3
P

ve∈VH\RH
c(e). Altogether we get

2 out(R) ≥ out(R) + 3
X

ve∈VH\RH

c(e)

≥ out(R) + 2
X

ve∈VH\RH

c(e)

=
X

i

out(Ri) ,

as desired.

Now, we describe the algorithm Partition for partitioning
a cluster H according to the requirements of Lemma 4.

In each iteration of the algorithm we maintain a parti-
tioning PH that fulfills Requirements 2 and 3, i.e. each
subcluster Hi has at most 2

3
|H| nodes and fulfills the pre-

condition. We begin with subclusters containing only one
node. Clearly both requirements are fulfilled.

The general idea of the algorithm to guarantee that the
solution for the CMCF-problem that corresponds to the final
partitioning has a good throughput fraction, is as follows.
In each iteration the algorithm checks whether the CMCF-
problem that corresponds to the current partitioning already
has a throughput fraction larger than qmin. If this is the
case, the algorithm terminates, since all the requirements are
fulfilled. Otherwise the algorithm tries to find a collection
of sublusters Hi of the current partitioning that has a cer-
tain property, namely that out(

U

i∈I Hi) ¿ w`+1(
U

i∈I Hi),
where I is the index set of the collection of these subclus-
ters. Then the algorithm removes all the subclusters that
belong to this collection and adds a new single subcluster
U∗ :=

U

i∈I
Hi that simply contains all nodes from the col-

lection. Then in a final step the algorithm partitions U ∗

with AssurePrecondition in order to ensure that every
subcluster of the partitioning fulfills the precondition.

We call the replacement of all Hi by clusters that results
from AssurePrecondition(U∗) a local improvement of the
algorithm. A key result for the construction is that we show
that in each local improvement step the total capacity of
edges that connect different subclusters decreases at least
by a constant. Since this capacity is clearly bounded from
below by 0, the algorithm will terminate after at most |H|2 ·
cmax iterations, i.e. in polynomial time. Furthermore, since
we show that the algorithm always makes an improvement
step if H does not fulfill the throughput property, we can
conclude that after termination the CMCF-problem on H
can be solved with throughput fraction of at least qmin.

Now we describe how the algorithm finds a collection of
subclusters such that out(

U

i∈I Hi) ¿ w`+1(
U

i∈I Hi) if H
does not fulfill the throughput property. First we compute
an approximate sparsest cut (A,B) corresponding to the



Partition (S )

PH := {{v} | v ∈ H}

while H does not fulfill the throughput property
do

compute (A,B) - an approximate sparsest cut of H /* W.l.o.g. |A| ≤ |B| */

U∗ := round(A)

for each Hi ⊆ U∗ do PH := PH \Hi

PH := PH ∪ AssurePrecondition(U∗)

end

return PH

Figure 3: The algorithm Partition

CMCF-problem in H. Without loss of generality we can
assume that |A| ≤ |B|.

For the sparsity of this cut we have cap(A,B)/dem(A,B)
≤ σ · qmin = 1/(24λ), where

dem(A,B) =
X

u∈A,v∈B

dem(u, v) +
X

u∈A,v∈B

dem(u, v)

=
X

u∈A,v∈B

w`+1(u) · w`+1(v)

w`+1(H)

+
X

u∈B,v∈A

w`+1(u) · w`+1(v)

w`+1(H)

= 2 ·
w`+1(A) · w`+1(B)

w`+1(H)

≤ 2 · w`+1(A) .

Combining the sparsity of cut (A,B) with the above inequal-
ity we get

cap(A,B)

w`+1(A)
≤ 2 ·

cap(A,B)

dem(A,B)
≤

1

12λ
. (2)

We cannot directly use the set A to improve the cur-
rent partitioning of H, because it does not have to con-
sist of whole subclusters Hi. Therefore we define a set
U∗ := round(A), using a construction taken from [11]. U∗

is a rounding of the set A using the current partitioning, i.e.
U∗ is a union of disjoint subclusters Hi.

More precisely, let Ai := A ∩ Hi and Bi := B ∩ Hi. We
partition all indices of subclusters into sets IL and IS . If
|Ai| ≥

3
4
· |Hi| then we say that Hi has large intersection

with A and i ∈ IL. Otherwise i ∈ IS . U∗ is a union of
all subclusters Hi which have large intersection with A, i.e.
U∗ :=

U

i∈IL
Hi. Note that this definition and the fact that

|A| ≤ 1
2
|H| ensure that |U∗| ≤ 2

3
|H|. The following technical

claim is proven in [11]. (see appendix)

Claim 9. cap(A,B)
w`+1(A)

≥ 1
4λ

· out(U∗)
w`+1(U∗)

.

Using this claim and Equation 2 we get w`+1(U
∗) ≥

3 out(U∗). We are now able to prove that the Partition

algorithm terminates.

Lemma 10. The algorithm Partition terminates and its
running time is polynomially bounded with respect to cmax

and |H|.

Proof. By W (H) := w`+1(H) − out(H) we denote the
total capacity of edges that connect different subclusters in
H. For proving the lemma it suffices to show that in each
iteration of the Partition algorithm, W (H) decreases by
at least 1.

In each round we remove all the subclusters contained
in U∗. Therefore, W (H) decreases by w`+1(U

∗), i.e.,
by at least 3 out(U∗). After that we add clusters Ri re-
turned by AssurePrecondition(U∗) and W (H) increases
by
P

i
w`+1(Ri). Using Lemma 5 we obtain

X

i

w`+1(Ri) =
X

i

out(Ri) ≤ 2 out(U∗) .

Thus in each iteration W (H) decreases by at least out(U ∗).
Since the capacity function c(.) is normalized, out(U∗) ≥ 1,
which yields the lemma.

We have proved that the algorithm Partition termi-
nates and since the algorithm does not terminate unless
the throughput fraction of the CMCF-problem in H is
greater than qmin, we can conclude that finally H ful-
fills the throughput property. This finishes the proof of
Lemma 4

Theorem 11. Let σ denote the gap between an approxi-
mate sparsest cut and the throughput fraction of a CMCF-
problem on a graph G. Then a hierarchical decomposition of
G that guarantees a competitive ratio of O(log2 n·σ2) for the
oblivious routing problem can be constructed in polynomial
time.

Proof. Combining Theorem 1 and Lemma 4 gives the
theorem.

Remark 12. If in the algorithm AssurePrecondition

the subroutine for approximating a sparsest cut is replaced
by an exact algorithm, the competitive ratio of the resulting
oblivious routing scheme is O(log2 n · σ).

Proof. If a cut in the AssurePrecondition algorithm
is computed optimally the precondition holds with λ =
O(log n) for every cluster. Therefore, we could compute a
partitioning for which the throughput fraction of the CMCF-
problem would be at least qmin = 1/(24 · σ · λ). Since
the height of the decomposition tree remains logarithmic,
Theorem 1 implies that the oblivious routing scheme yields
a competitive ratio of O(log2 n · σ).



Note that this version of the construction algorithm is not
polynomial since computing a sparsest cut is NP-hard. But
this modification of our construction algorithm proves the
existence of an oblivious routing scheme with competitive
ratio O(log3 n). Hence, it achieves the same result as in [11]
but with a much simpler proof.

For planar networks [11] proves the existence of an obliv-
ious routing scheme with competitive ratio O(log2 n). Since
the sparsest cut gap σ is constant for planar networks,
Theorem 11 shows that for such graphs a hierarchical de-
composition with competitve ratio O(log2 n) can be con-
structed in polynomial time. Hence, there is no asymptotical
difference for the competitive ratio on planar networks be-
tween the nonconstructive result of [11] and our constructive
result.
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[11] H. Räcke. Minimizing congestion in general networks.
In Proc. of the 43th IEEE Symp. on Foundations of
Computer Science (FOCS), pages 43–52, 2002.

[12] P. Raghavan and C. D. Thompson. Randomized
rounding: A technique for provably good algorithms

and algorithmic proofs. Combinatorica, 7:365–374,
1981.

[13] L. G. Valiant and G. J. Brebner. Universal schemes
for parallel communication. In Proc. of the 13th ACM
Symp. on Theory of Computing (STOC), pages
263–277, 1981.

APPENDIX

A. PROOF OF CLAIM 9

Proof. Let ` be the level of a cluster H. Since H fulfills
the precondition and |A| ≤ 1

2
|H|, we have

λ · cap(A,B) ≥ w`(A) ≥ w`(U
∗ ∩A) . (3)

Analogously the ` + 1 level sets Hi fulfill the precondition
and for all i ∈ IS Ai ≤

3
4
|Hi| and for all i ∈ IL Bi ≤

3
4
|Hi|.

Thus,

∀i ∈ IS (λ+ 1) · cap(Ai, Bi) ≥ w`+1(Ai) + cap(Ai, Bi)

= out(Ai)

∀i ∈ IL (λ+ 1) · cap(Ai, Bi) ≥ w`+1(Bi) + cap(Ai, Bi)

= out(Bi) .

Similarly we have

λ ·
X

i∈IL

cap(Ai, Bi) ≥
X

i∈IL

w`+1(Bi) ≥
X

i∈IL

w`(Bi)

= w`(
]

i∈IL

Bi) = w`(U
∗ \A) .

Thus,

(λ+ 1) · cap(A,B) ≥(λ+ 1) ·
X

i∈IL

cap(Ai, Bi)

+ (λ+ 1) ·
X

i∈IS

cap(Ai, Bi)

≥w`(U
∗ \A) +

X

i∈IS

out(Ai) .

(4)

We also relate cap(A,B) to cap(U∗, H \ U∗).

cap(U∗, H \ U∗)

= cap(
]

i∈IL

Hi,
]

i∈IS

Hi)

= cap(
]

i∈IL

Ai,
]

i∈IS

Bi) + cap(
]

i∈IL

Ai,
]

i∈IS

Ai)

+ cap(
]

i∈IL

Bi,
]

i∈IS

Hi)

≤ cap(A,B) +
X

i∈IS

out(Ai) +
X

i∈IL

out(Bi)

≤ cap(A,B) + (λ+ 1) ·
X

i∈IS

cap(Ai, Bi)

+ (λ+ 1) ·
X

i∈IL

cap(Ai, Bi)

≤ cap(A,B) + (λ+ 1) · cap(A,B)

= (λ+ 2) · cap(A,B)

(5)



We use inequalities 3, 4 and 5 to bound the expression
out(U∗) +

P

i∈IS

out(Ai) as follows

out(U∗) +
X

i∈IS

out(Ai) ≤ cap(U∗, H \ U∗) + w`(U
∗)

+
X

i∈IS

out(Ai)

≤ cap(U∗, H \ U∗) + w`(U
∗ ∩A)

+ w`(U
∗ \A) +

X

i∈IS

out(Ai)

≤ cap(A,B) ((λ+ 2) + λ+ (λ+ 1))

≤ 4λ · cap(A,B) .

For the last inequality we utilized λ ≥ 3.

Now,

w`+1(A)

cap(A,B)
=

P

i
cap(Ai, Hi)

cap(A,B)

=

P

i∈IL
cap(Ai, Hi) +

P

i∈IS
cap(Ai, Hi)

cap(A,B)

≤ 4λ ·

P

i∈IL
cap(Ai, Hi) +

P

i∈IS
cap(Ai, Hi)

out(U∗) +
P

i∈IS
out(Ai)

≤ 4λ ·

P

i∈IL
cap(Hi, Hi) +

P

i∈IS
out(Ai)

out(U∗) +
P

i∈IS
out(Ai)

= 4λ ·
w`+1(U

∗) +
P

i∈IS
out(Ai)

out(U∗) +
P

i∈IS
out(Ai)

≤ 4λ ·
w`+1(U

∗)

out(U∗)
,

where the last inequality follows since w`+1(U
∗) ≥ out(U∗).

This finishes the proof.
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